河南省高一上学期实验班数学10月月考试卷
重庆市2024-2025学年高一上学期10月月考试题 数学含答案

重庆高2027届高一上期月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤ B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥ B.2a > C.6a > D.6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}m m -<<∣B.{3m m <-∣或1}m >C.{13}m m -<<∣D.{1mm <-∣或3}m >6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.的B.34aa b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为168.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >,则有*12,2n a a a n n n+++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z xx y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫-⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.重庆高2027届高一上期月考数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤【答案】A 【解析】【分析】根据集合的交集运算法则运算即可.【详解】因为{}{}4016A x x =≤=≤≤,{}2323B x x x x ⎧⎫==>⎨⎩⎭,所以A B = 2163x x ⎧⎫<≤⎨⎬⎩⎭.故选:A .2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤【答案】B 【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫ ⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭【答案】D 【解析】【分析】根据抽象函数及具体函数的定义域求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以函数()f x 的定义域为()1,6-,则对于函数()1g x +=,需满足116310x x -<+<⎧⎨->⎩,解得153x <<,即函数()1g x +=的定义域为1,53⎛⎫⎪⎝⎭.故选:D.4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥B.2a >C.6a > D.6a ≥【答案】C 【解析】【分析】对于全称量词命题2[1,2],0x x x a ∀∈+-≤,我们需要先求出使得该命题为真时a 的取值范围,然后再根据充分不必要条件的定义来判断选项.【详解】令2()f x x x =+,[1,2]x ∈.对于二次函数2y ax bx c =++,其对称轴为122b x a =-=-.因为10a =>,所以函数()f x 在[1,2]上单调递增.那么()f x 在[1,2]上的最大值为2max ()(2)226f x f ==+=.因为2[1,2],0x x x a ∀∈+-≤为真命题,即2a x x ≥+在[1,2]上恒成立,所以max ()6a f x ≥=.A 是B 的充分而不必要条件,即值A B ⇒,B A ¿.当6a >时,一定满足6a ≥,所以6a >是6a ≥的充分不必要条件.而2a >时,不能保证一定满足6a ≥,2a ≥时,也不能保证一定满足6a ≥.故选:C.5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}mm -<<∣ B.{3m m <-∣或1}m > C.{13}m m -<<∣ D.{1mm <-∣或3}m >【答案】C 【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫ ⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,1【答案】D 【解析】【分析】根据题意,得到()f x 在定义域R 上为单调递减函数,结合分段函数的单调性的判定方法,列出不等式组,即可求解.【详解】由函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩因为函数()y f x =任意12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,所以函数()f x 在定义域R 上为单调递减函数,则满足()()242223024252321a a a a +⎧≥⎪⎪-<⎨⎪-+⨯+≥-⨯+⎪⎩,即0321a a a ≥⎧⎪⎪<⎨⎪≤⎪⎩,解得01a ≤≤,所以实数a 的取值范围是[]0,1.故选:D.7.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.B.34a a b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为16【答案】B 【解析】【分析】利用基本不等式可判断AC 的正误,利用“1”的代换可判断B 的正误,利用换元法结合常数代换可判断D 的正误.【详解】选项A:2112,1a b a b +=+≤++===时取等,+A 对;选项B:3433443577a a b a b a b aa b a b a b+++++=+=++≥+,当且仅当35,22a b -==时取等,故34a a b ++的最小值为7+,故B 错选项C :()()2119111,242a b a b a b +++⎛⎫++≤=== ⎪⎝⎭时取等,故()()11a b ++的最大值为94,故C 对;选项D :换元,令3,2x a y b =+=+,则6x y +=,故()()222232941032x y a b x y a b x y x y--+=+=+-++++94194251413446666x y y x x y x y ⎛⎫⎛⎫+=+⋅-=++-≥-= ⎪ ⎪⎝⎭⎝⎭,当且仅当1812,55x y ==取等号,故2232a b a b +++的最小值为16,故D 正确;故选:B.8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512【答案】A 【解析】【分析】将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,从而有集合A 与集合B 的交替和之和为4,再利用符合条件的集合对有92个,即可求解.【详解】由题知{}5,4,3,2,1,0,1,2,3,4M =-----,将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,则符合条件的集合对有92个,又由题设定义有集合A 与集合B 的交替和之和为4,所以交替和的总和为9114222048⨯==.故选:A.二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--【答案】BD 【解析】【分析】利用特殊值验证AC 是错误的,利用作差法判断B 的真假,利用配方法证明D 是正确的.【详解】对A :令1a =-,1b =,则0ab ≠且a b <,但11a b>不成立,故A 错误;对B :当0a b >>时,()()()20242024202420242024b a a b b b a a a a +-++-=++()()202402024b a a a -=<+,所以20242024b b a a +<+成立,故B 正确;对C :令3a =-,4b =-,0c =,1d =-,则,a b c d >>,但ac bd >不成立,故C 错误;对D :因为()()()222212222144a b a b a b a b ++----++++=()()22120a b =-++≥,所以()221222a b a b ++≥--成立,故D 正确.故选:BD10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦【答案】ACD 【解析】【分析】根据充分条件、必要条件的概念判断A ,分类讨论求出k 的范围判断B ,根据数轴穿根法及不等式的解集求出ba及0a <解不等式判断C ,由命题的否定转化为不等式恒成立,看作关于a 的不等式恒成立即可判断D.【详解】对A ,若p 是q 的必要不充分条件,p 是r 的充要条件,则q p r ⇒⇔,但是p 不能推出q ,所以q r ⇒,但是r 不能推出q ,所以q 是r 的充分不必要条件,故A 正确;对B ,当0k =时,原不等式为03≥,恒成立满足题意,当0k ≠时,由题意需满足()2Δ16430k k k k >⎧⎨=-⋅+≤⎩,解得01k <≤,综上,实数k 的取值范围是01k ≤≤,故B 错误;对C ,由不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,结合数轴穿根法知,1,2bc a==,且0a <,所以不等式2320ax ax b --≥可化为2340x x --≤,解得14x -≤≤,故C 正确;对D ,由题意知[]()21,3,2130a ax a x a ∀∈---+-≥为真命题,则()22130a x x x --++≥在[]1,3a ∈-时恒成立,令()2()213g a a x x x =--++,只需()()2213403350g x x g x x ⎧-=-++≥⎪⎨=-≥⎪⎩,则14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,解得[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦,故D 正确.故选:ACD11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦【答案】ABD 【解析】【分析】根据所给函数解析式直接求解判断A ,根据()f x 的性质及(),()g x f x 图象判断B ,归纳出()f x 在[]2024,2025上的解析式判断C ,根据规律,归纳值域特点判断D.【详解】选项A :()()()()()210121013101320272025202331f f f f f λλλλλ====== ,()()()()()210111012202420222020200f f f f f λλλλ====== ,则()()101320272024f f λ+=,所以选项A 正确;选项B :由()()122f x f x =-知,()0,2024x ∈时,()()()()()[)()()[)()()[)210112,0,2124,2,42146,4,62120222024,2022,20242x x x x x x f x x x x x x x ⎧-∈⎪⎪--∈⎪⎪⎪=--∈⎨⎪⎪⎪⎪--∈⎪⎩ ,由于()()()()()()1111111,33,553254g f g f g f ===<==<=,但()()()()31011111177,202320237220232g f g f =>==>= ,作,的图象,如图,结合图象可知()0,6x ∈上有2226++=个交点,在[)6,2024x ∈上无交点,故选项B 正确;选项C :[]2024,2025x ∈时,()()()1012120242026f x x x λ=--,故()f x 在[]2024,2025上单增,故C 错误;选项D :因为1λ<-,所以当[]0,4x ∈时,值域为[],1λ;当[]0,8x ∈时,值域为32,λλ⎡⎤⎣⎦;当[]0,12x ∈时,值域为54,λλ⎡⎤⎣⎦;当[]0,16x ∈时,值域为76,λλ⎡⎤⎣⎦;L 当[]0,4x n ∈时,值域为2122,n n λλ--⎡⎤⎣⎦,故D 正确.故选:ABD.【点睛】关键点点睛:根据所给函数解析式,可知函数类似周期特点,图象形状类似,振幅有规律变化,据此可归纳函数的性质是解题的关键所在.三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.【答案】4【解析】【分析】求出集合A ,列举出集合A 的子集即可.【详解】因2{10}{1,1}A x x =-==-∣,故集合A 的子集有,{1},{1},{1,1}∅--共4个.故答案为:4.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】【分析】根据集合的包含关系,讨论0a =和0a >两种情况,求集合B ,再比较端点值,即可求解.【详解】因为A B B = ,所以A B ⊆,因为()(){}10B x x a ax =+-≤∣,且0a ≥:1 当0a =时,[)0,B ∞=+,符合题意;2当0a >时,1,B a a ⎡⎤=-⎢⎥⎣⎦,则11404a a ≥⇒<≤,综上,10,4a ⎡⎤∈⎢⎥⎣⎦.故答案为:10,4⎡⎤⎢⎣⎦14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.【答案】【解析】【分析】根据函数的单调性可知243x y =-,代入可得234386y x y xx x y x y++=+,根据基本不等式可得最值.【详解】由题可知()()()()3323231313x x y y -+-=-+-,因为3,y t y t ==在R 上单调递增,所以()3g t t t =+在R 上单增,所以上式可表示为()()2313g x g y -=-,则2313x y -=-,即243x y =-,因此()22433433866x y y x y y x x x x y x y x y -++=++=+≥=当且仅当38243y x x y x y⎧=⎪⎨⎪=-⎩即25x -=,2415y -=时等号成立,故答案为:.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.【答案】(1)02x =或3-(2)5,42⎛⎫-⎪⎝⎭【解析】【分析】(1)根据分段函数定义分类列方程求解;(2)根据分段函数定义分类列不等式求解.【小问1详解】由()01f x =可得:1∘>−1−1=1⇒0=20=−2舍去)0000123,,23;21x x x x ≤-⎧⇒=-=-⎨--=⎩ 综上或【小问2详解】由()3f a a <+可得:1∘>−11<+3⇒>−12−2−8<0⇒>−1−2<<4⇒∈−1,4;2∘≤−1−−2<+3⇒≤−1>−52⇒∈−52,−1综上可得5,42a ⎛⎫∈-⎪⎝⎭.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.【答案】(1)3{|4A B x x =≤ 或1}x >(2)3,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)根据条件,先求出集合,A B ,再利用集合的运算,即可求解;(2)由(1)可得R 3,24A ⎛⎤= ⎥⎝⎦ð,再根据条件,分M =∅和M 蛊两种情况讨论,即可求解.【小问1详解】由5402x +≥-,即4302x x -≥-,得到2x >或34x ≤,所以3{|4A x x =≤或2}x >,又由321x ->,得到321x -<-或321x ->,即13x <或1x >,所以1{3B x =<或1}x >,所以3{|4A B x x =≤ 或1}x >.【小问2详解】因为3{|4A x x =≤或2}x >,所以R 3,24A ⎛⎤= ⎥⎝⎦ð,①当321a a ->-,即43a <时,此时M =∅()RA ð,所以43a <满足题意,②当43a ≥,即M 蛊时,由题有212334a a -≤⎧⎪⎨->⎪⎩,解得4332a ≤≤,综上,实数a 的取值范围是3,2a ⎛⎤∈-∞ ⎥⎝⎦.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.【答案】(1)4(2)()222f x x x=-(3)(],10-∞【解析】【分析】(1)令1x =-即可求出()1f -.(2)根据条件,先设出二次函数的解析式,再根据()26231x f x x --≤≤+恒成立,可求待定系数.(3)问题转化成()f x 在区间(]1,6的最小值不小于()g x 在[]6,10上的最小值求参数的取值范围.【小问1详解】在不等式()26231x f x x --≤≤+,令()()141414x f f =-⇒≤-≤⇒-=.【小问2详解】因为()f x 为二次函数且图象过原点()0,0,所以可设()()2,0f x ax bx a =+≠,由()1444f a b b a -=⇒-=⇒=-,于是()()24f x ax a x =+-,由题:()()262220,f x x ax a x x ≥--⇔+++≥∈R 恒成立⇔>0Δ≤0⇔>0+22−8=−22≤0⇒=2,=−2⇒=22−2,检验知此时满足()()223110,f x x x x ≤+⇔+≥∈R ,故()222f x x x =-.【小问3详解】函数()222f x x x =-,开口向上,对称轴12x =,所以()222f x x x =-在区间(]1,6上单调递增,因此,(]11,6x ∈时,()()()(11,6f x f f ⎤∈⎦,即()(]10,60f x ∈,而()g x m x =-在[]6,10上单调递减,所以[]26,10x ∈时,()[]210,6g x m m ∈--因为对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,等价于()()(]110010,10f g m m ∞≥⇒≥-⇒∈-18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a > ,则有*12,2n a a a n n n +++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.【答案】(1)6(2)最大值为272048,38x =(3)1*1111,1kk k k k +⎛⎫⎛⎫+<+∈ ⎪ ⎪+⎝⎭⎝⎭N ,证明见解析【解析】【分析】(1)根据三阶基本不等式的内容直接可得解;(2)由()()32722212128333x x xx x x -=⋅⋅⋅⋅-,结合四阶基本不等式可得最值;(3)猜测111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N 成立,验证1k =不等式成立;结合推广公式证明2k ≥结论成立.【小问1详解】因为,,0x y z >,所以由三阶基本不等式可得:246y z x x y z ++≥,当且仅当24y z xx y z==即2y z x ==时取等号,因此24y z x x y z++的最小值为6;【小问2详解】当10,2x ⎛⎫∈ ⎪⎝⎭时,由四阶基本不等式可得:()()()432221227222272733312128333842048x x x x x x x x x x ⎛⎫+++- ⎪-=⋅⋅⋅⋅-≤= ⎪⎝⎭,当且仅当2123xx =-即310,82x ⎛⎫=∈ ⎪⎝⎭时取等号,因此()312x x -的最大值为272048;【小问3详解】大小关系为111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N ,证明如下:由条件可知:12,,,0n a a a > 时,*1212,,2nn n a a a a a a n n n +++⎛⎫⋅≤∈≥ ⎪⎝⎭N ,当1k =时,左边11121⎛⎫=+= ⎪⎝⎭,右边219124⎛⎫=+= ⎪⎝⎭,左边<右边,不等式成立;当2k ≥,*k ∈N 时,由1k +阶基本不等式,可知:不等式左边111111111kk k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+=+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()(1)1111111111(11)11()111k k k k k k k k k k k k k ++++⎛⎫⎛⎫⎛⎫⎛⎫++++++++++ ⎪⎪ ⎪⎪⎛⎫++⎝⎭⎝⎭⎝⎭ ⎪≤== ⎪+++ ⎪⎝⎭⎪⎝⎭个个1111k k +⎛⎫=+ ⎪+⎝⎭而111k ⎛⎫+≠ ⎪⎝⎭,因此上式的不等号取不到等号,于是1111111111kk k k k k k ++++⎛⎫⎛⎫⎛⎫+<=+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,综上,原不等式得证.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.【答案】(1)0(2)()f x 在1,2⎛⎫+∞⎪⎝⎭上单调递减,证明见解析(3)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)令1a b ==可得302f ⎛⎫= ⎪⎝⎭,再由()()0f x f x -+=,即可得出答案;(2)由单调性的定义证明即可;(3)由单调性和奇偶性列出不等式,再结合二次函数的性质求解即可.【小问1详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中令333120222a b ff f ⎛⎫⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(或令53532,102222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭).而()()333000222f x f x f f f ⎛⎫⎛⎫⎛⎫-+=⇒-+=⇒-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问2详解】()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减.下证明:由④知:对任意,0a b >,恒有111222f ab f b f a ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证一:任取2112x x >>,于是()()22211111111111122112222222x x f x f x f x f x f x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎛⎫⎛⎫-=⋅-+--+=+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪--⎝⎭⎝⎭因为2112x x >>,所以2111022x x ->->221111132********x x x x --⇒>⇒+>--,而对任意32x >时恒有()0f x <,故211120122x f x ⎛⎫- ⎪+<⎪ ⎪-⎝⎭,即()()210f x f x -<,所以()f x 在1,2∞⎛⎫+⎪⎝⎭上单调递减,证毕;证二:任取2112x x >>,设2111,,1,022x mn x n m n =+=+>>()()21111222f x f x f mn f n f m ⎛⎫⎛⎫⎛⎫-=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为131.22m m >+>,所以102f m ⎛⎫+< ⎪⎝⎭,即()()21f x f x <,也即()f x 在1,2∞⎛⎫+⎪⎝⎭单调递减,证毕;【小问3详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中:令5599222222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而()()0f x f x -+=,于是922f ⎛⎫-= ⎪⎝⎭令139339,402442242a b f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⇒+==⇒=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由(2)知()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减,又()()0f x f x -+=,可得()f x 在1,2∞⎛⎫-- ⎪⎝⎭上也单调递减,如图,可知不等式()()21232f t k t k -+-+≤等价于:对任意[]11t ,∈-,不等式()231234t k t k -+-+≥……①或者()29112322t k t k -≤-+-+<-恒成立,……②法一:令()()[]2123,1,1g t t k t k t =-+-+∈-立,因为()g t 开口向下,由()g t 图像可知:不等式①()()11313204;334144k g k g k ⎧⎧≥-≥⎪⎪⎪⎪⇔⇒⇒≥⎨⎨⎪⎪≥≥⎪⎪⎩⎩对于②,当1t =±时,由()()1391121022919112222k g k g k ∅⎧⎧-≤<-≤-<-⎪⎪⎪⎪⇒⇒∈⎨⎨⎪⎪-≤<--≤<-⎪⎪⎩⎩,即一定不存在k 满足②.综上取并,得3,4k ∞⎡⎫∈+⎪⎢⎣⎭法二:令()()[]()2123,1,1,g t t k t k t g t =-+-+∈-开口向下,对称轴为12t k =-,且()()211152,1,224g k g k g k k k ⎛⎫-=-=-=++ ⎪⎝⎭,1 当112k -<-即32k >时,问题等价于>321≥34或>32−1<−121≥−92,解得32k >;2 当1102k -≤-≤即1322k ≤≤时,等价于()1322314k g ⎧≤≤⎪⎪⎨⎪≥⎪⎩或()13221133,;2242912k g k k g ⎧≤≤⎪⎪⎪⎛⎫⎡⎤-<-⇒∈⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎪≥-⎪⎩3 当1012k <-≤即1122k -≤<时,问题等价于()1122314k g ⎧-≤<⎪⎪⎨⎪-≥⎪⎩或()11221122912k g k g ⎧-≤<⎪⎪⎪⎛⎫-<-⎨ ⎪⎝⎭⎪⎪-≥-⎪⎩,解得k ∈∅;4 当112k ->即12k <-时,问题等价于()12314k g ⎧<-⎪⎪⎨⎪-≥⎪⎩或()()12112912k g g ⎧<-⎪⎪⎪<-⎨⎪⎪-≥-⎪⎩,解得k ∈∅;综上,3,4k ∞⎡⎫∈+⎪⎢⎣⎭.。
重庆市第一中学2024-2025学年高一上学期10月月考数学试题

重庆市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}{}432A B x x ==,,则A B =I ( )A .2163x x ⎧⎫<≤⎨⎬⎩⎭ B .{}316x x ≤<C .223x x ⎧⎫<≤⎨⎬⎩⎭D .{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是( ) A .230,1x x x ∀≥+≤ B .230,1x x x ∀<+≤ C .230,1x x x ∃<+≤D .230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1f xg x +的定义域为( )A .()4,3-B .()2,5-C .1,33⎛⎫⎪⎝⎭D .1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是( )A .2a ≥B .2a >C .6a >D .6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A .{31}mm -<<∣ B .{3m m <-∣或1}m > C .{13}mm -<<∣D .{1mm <-∣或3}m > 6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是( ) A .30,2⎛⎫⎪⎝⎭B .30,2⎡⎫⎪⎢⎣⎭C .()0,1D .[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是( )AB .34a a b ++的最小值为7+C .()()11a b ++的最大值为94D .2232a b a b +++的最小值为16 8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为( ) A .2048B .2024C .1024D .512二、多选题9.已知,,a b c ∈R ;则下列不等式一定成立的有( ) A .若0ab ≠且a b <,则11a b> B .若0a b >>,则20242024b b a a +<+ C .若,a bcd >>,则ac bd >D .()221222a b a b ++≥--10.下列说法正确的是( )A .若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B .若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C .若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D .“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有( )A .()()101320272024f f λ+=B .当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C .当0λ<时,()f x 在区间[]2024,2025上单调递减D .当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题12.已知集合{}210A xx =-=∣,则集合A 有个子集. 13.已知集合[]()(){}1,4,10A B xx a ax ==+-≤∣,若A B B =U 且0a ≥,则实数a 的取值范围是.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为.四、解答题15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围. 16.已知函数()f x =A ,集合{}321B xx =->∣. (1)求A B U ;(2)集合{}321M xa x a =-≤≤-∣,若M ()R A ð,求实数a 的取值范围. 17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值; (2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >L,则有*12,2n a a a n n n+++∈≥N L ,当且仅当12n a a a ===L 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11k k ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=- ⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=; ③对任意32x >,恒有()0f x <; ④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞ ⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.。
贵州大学附属中学2024-2025学年高一上学期10月月考数学试卷

贵州大学附属中学2024-2025学年高一上学期10月月考数学试卷一、单选题1.已知集合{}{}2|19,2,1,0,1,2A x x B =<<=--,则A B =I ( )A .{}0,1,2B .{}1,2C .{}2,2-D .{}2,1,1,2--2.已知集合{}1,1,2,3A =-,集合{}2|,B y y x x A ==∈,则集合B 的子集个数为( )A .7B .8C .16D .323.{}2{1,,},1,,2A x y B x y ==,若A B =,则实数x 的取值集合为( )A .12⎧⎫⎨⎬⎩⎭B .11,22⎧⎫-⎨⎬⎩⎭C .10,2⎧⎫-⎨⎬⎩⎭D .110,,22⎧⎫-⎨⎬⎩⎭4.设0ab >,则“a b <”是“11a b>”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既非充分也非必要条件5.如图,已知矩形U 表示全集,A 、B 是U 的两个子集,则阴影部分可表示为( )A .()U AB ⋃ð B .()U A B ⋂ðC .()U B A ⋂ðD .()U A B ⋂ð6.已知实数1x >,则函数221y x x =+-的最小值为( ) A .5B .6C .7D .87.已知不等式11m x m -<<+成立的充分条件是1132x -<<,则实数m 的取值范围是( )A .1223m m ⎧⎫-<<⎨⎬⎩⎭B .1223m m ⎧⎫-≤≤⎨⎬⎩⎭C .1223m m m ⎧⎫≤->⎨⎬⎩⎭或 D .1223m m m ⎧⎫<-≥⎨⎬⎩⎭或 8.持续的高温干燥天气导致某地突发山火,现需将物资运往灭火前线.从物资集散地到灭火前线-共40km ,其中靠近灭火前线5km 的山路崎岖,需摩托车运送,其他路段可用汽车运送.已知在可用汽车运送的路段,运送的平均速度为60km h ,设需摩托车运送的路段平均速度为km h x ,为使物资能在1小时内到达灭火前线,则x 应该满足的不等式为( ). A .40160x>+ B .40160x<+ C .355160x +> D .355160x+<二、多选题9.已知全集U R =,集合A 、B 满足A ⫋B ,则下列选项正确的有( ) A .A B B =IB .A B B =UC .()U A B??ðD .()R A B ⋂=∅ð10.下列不等式恒成立的是( )A .296a a +≥B .若0a ≠,则12a a+≥ C .若0ab >,则2b aa b+≥D .若,0a b >,则22a b ab +⎛⎫≤ ⎪⎝⎭11.下列命题正确的是( )A .命题“R x ∃∈,210x x ++≥”的否定是“R x ∀∈,210x x ++<”B .0a b +=的充要条件是1ba=- C .2R,0x x ∀∈>D .1a >,1b >是1ab >的充分不必要条件三、填空题12.已知集合{}{}13,21M x x N x x =-<<=-<<,则M N ⋃=. 13.写出“1x <”的一个充分不必要条件. 14.设a ,b ,c 为非零实数,则ab bc abc x ab bc abc=++的所有可能取值构成的集合为.四、解答题15.已知全集U 为R ,集合A={x|0<x ≤2},B={x|-2<x+1<2},求: (1)A ∩B ;(2)(∁UA )∩(∁UB ).16.(1)已知23a <<,21b -<<-,求3a b +的取值范围. (2)已知0a b >>,0c <,求证:c ca b>. 17.设R U =,已知集合{}|27A x x =-≤≤,{}|121B x m x m =+≤≤-. (1)当5∈B 时,求实数m 的范围;(2)设:p x A ∈;:q x B ∈,若p 是q 的必要不充分条件,求实数m 的范围.18.课堂上,老师让同学们制作几种几何体,张同学用了3张A4纸,7张B5纸;李同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x ,每张B5纸的面积为y ,且x y >,张同学的用纸总面积为1W ,李同学的用纸总面积为2W .回答下列问题:(1)1W =________(用x 、y 的式子表示),2W =________(用x 、y 的式子表示); (2)请你分析谁用的纸面积大.19.对于任意正实数 200a b Qa b a b ≥∴-≥∴+≥,,,,, 仅当a b = 时,等号成立. 结论: ),0a b a b +≥> . 若 ab P = 为定值,仅当 a b = 时,a b +有最小值 . 根据上述内容,回答下列问题:(1)初步探究: 若 x >0 ,仅当 x = ___时,有 1x x+ 最小值___; (2)变式探究: 对于函数 ()133y x x x =+>- ,当 x 取何值时,函数 y 的值最小? 最小值是多少?(3)拓展应用:疫情期间、为了解决疑似人员的临隔离问题. 高速公路榆测站入口处, 检测人员利用检测站的一面墙 (墙的长度不限), 用 63 米长的钢丝网围成了 9 间相同的长方形隔离房, 如图. 设每间离房的面积为 S (米2). 问: 每间隔离房的长、宽各为多少时,可使每间隔离房的面积 S 最大? 最大面积是多少?。
河南省部分名校2024-2025学年高三上学期10月月考数学试卷

河南省部分名校2024-2025学年高三上学期10月月考数学试卷一、单选题1.已知命题():,ln 210xp x ∀∈+>R ,命题:1q x ∃>,sin20253x =,则( )A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题2.已知全集U =R ,集合{}50,2x A x B x x x ⎧⎫-=<=>⎨⎬⎩⎭,则图中阴影部分表示的集合为( )A .{}25x x <<B .{}25x x ≤<C .{}02x x <<D .{}02x x <≤3.已知点(),27a 在幂函数()()()2,mf x a x a m =-∈R 的图象上,则a m +=( )A .4B .5C .6D .74.已知1012y x <<<<,则下列结论一定正确的是( ) A .122x y <+< B .11y yx x+>+C >D .104xy <<5.已知函数()3124e ,1,32,1x x x f x x ax a x -⎧+<=⎨++≥⎩在R 上单调递增,则实数a 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .4,5⎡⎫+∞⎪⎢⎣⎭C .24,35⎡⎤-⎢⎥⎣⎦D .24,35⎡⎫-⎪⎢⎣⎭6.对数螺线在自然界中广泛存在,比如鹦鹉螺的外壳就是精度很高的对数螺线,向日葵种子的排列方式、松子在松果上的排列方式都和对数螺线高度吻合.已知某种对数螺线的解析式可以用2πe x xρα=表示,其中[)0,0,x α>∈+∞,则( )A .0.055πln1.5e sin 24ρρρ>>B .0.05ln1.55πe sin 24ρρρ>>C .0.055πln1.5e sin 24ρρρ>>D .0.05ln1.55πe sin 24ρρρ>>7.“102a ≤<”是“函数()()23log f x ax x a =++的值域为R ”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件8.已知函数()f x 及其导函数f ′ x 的定义域均为R ,若()()()2,f x f x x f x =-+的图象关于直线1x =对称,且()20f =,则201(20)()i f f i ='-=∑( )A .10B .20C .10-D .20-二、多选题9.已知集合{}22350A x x x =∈--<N ,则下列说法正确的是( )A .0A ∈B .1A -∉C .集合A 有15个真子集D .{}0,1,2A ⊆10.已知函数()11ln f x x=+,则下列说法正确的是( ) A .()f x 的图象无对称中心 B .()12f x f x ⎛⎫+= ⎪⎝⎭C .()f x 的图象与()()11ln g x x =---的图象关于原点对称D .()f x 的图象与()1e x h x -=的图象关于直线y x =对称11.记函数()1e xf x x=-的零点为0x ,则下列说法正确的是( )A .00ln 0x x -=B .013,24x ⎛⎫∈ ⎪⎝⎭C .当32x >时,()1f x x >+ D .0x 为函数()1e ln 1xx x g x x +=+的极值点三、填空题 12.函数()()3log 32x f x x +=+的定义域为.13.已知0a b >>,则222a b ab b +-的最小值为.14.若函数()sin f x x ax =+的图象上存在,A B 两点使得()f x 在A 处的切线与在B 处的切线的夹角为π4,则实数a 的取值范围是.四、解答题15.根据指数函数的相关性质解决下面两个问题: (1)已知2332abab⋅>⋅,证明:1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(2)若关于x 的方程24x x t +=有两个不相等的实数根,求实数t 的取值范围. 16.已知正数,a b 满足2(3)102a b ab +-=. (1)求3a b +的取值范围; (2)证明:2296a b +≥.17.已知函数()e sin 1xf x x =--.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)当π,4x ⎡⎫∈-+∞⎪⎢⎣⎭时,比较()f x 与0的大小关系,并说明理由.18.一天中,区域的居民活动类型(工作、学习和休闲)越丰富,活动地点总数越多,区域之间人口流动越频繁,其活力越高.Q 市基于大数据测算城市活力,发现该市一工作日中活力度()M t 与一日中时间t 的关系可以用函数()()()()126,06,56,612,12e ,1224n t M t M t mt m t M t --⎧<<⎪=+-≤≤⎨⎪⋅<≤⎩来刻画,其中(]()()0,24,624t M M ∈=,正午12点时,该市的活力度为20,是该工作日内活力度的最高值.(1)求实数,m n 的值;(2)求Q 市该工作日内活力度不大于10的时长;(3)证明:Q 市该工作日内活力度升高时所对应瞬时变化率的绝对值恒大于活力度降低时所对应瞬时变化率的绝对值(附:ln20.69≈).19.有一种美,叫做对称美,数学中的“对称”体现了数学美,对称性是数学美的最重要的特征.若函数()f x 的图象在其定义域内连续,0x 在()f x 的定义域内且函数()f x 的图象上存在关于直线0x x =对称的两点,则称直线0x x =为函数()f x 图象的一条“准对称轴”.(1)已知二次函数()()20,,f x ax bx c a b c =++≠∈R ,直线0x x =为函数()f x 图象的“准对称轴”,请直接写出0x 的取值;(2)已知三次函数()3(0)g x x mx m =->,证明:当且仅当0x <0x x =为函数()g x 图象的一条“准对称轴”;(3)已知x '为函数()e 2xh x x =-的极值点,判断直线x x '=是否是函数()h x 图象的一条“准对称轴”,并说明理由.。
2024-2025学年遵义市高一数学上学期10月考试卷附答案解析

2024-2025学年遵义市高一数学上学期10月考试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教B 版必修第一册第一章,第二章第1节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组对象能构成集合的是()A.中国著名的数学家B.高一(2)班个子比较高的学生C.不大于5的自然数D.约等于3的实数2.命题“所有平行四边形的对角线互相平分”的否定是()A.所有的平行四边形的对角线不互相平分B.对角线不互相平分的四边形不是平行四边形C.存在一个平行四边形的对角线互相平分D.存在一个平行四边形的对角线不互相平分3.已知集合{}1,2,3,5A =,{}2,3,4,6B =,则A B = ()A.{}1,2,3,4,5,6 B.{}1,5 C.{}2,3 D.{}4,64.金钱豹是猫科豹属中的一种猫科动物.根据以上信息,可知“甲是猫科动物”是“甲是金钱豹”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.如图,书架宽84cm ,在该书架上按图示方式摆放语文书和英语书,已知每本英语书厚0.9cm ,每本语文书厚1.1cm ,语文书和英语书共84本恰好摆满该书架,则书架上英语书的本数为()A.38B.39C.41D.426.已知集合(){}22,4,,A x y xy x y =+=∈∈Z Z ,则集合A 的真子集的个数是()A.7B.8C.15D.167.已知p 是q 的充分不必要条件,q 是s 的充要条件,s 是r 的充分不必要条件,r 是q 的必要不充分条件,则p 是s 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有()A .5名B.4名C.3名D.2名二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知命题p :有些三角形是轴对称图形,命题q :梯形的对角线相等,则()A.p 是存在量词命题B.q 是全称量词命题C.p 是假命题D.q ⌝是真命题10.已知函数2y ax bx c =++的部分图象如图所示,则()A.0abc <B.0b c +>C.20a b c ++>D.关于x 的方程20cx bx a ++=的解集为1,13⎧⎫-⎨⎬⎩⎭11.若S 是含有n 个元素的数集,则称S 为n 数集S.n 数集S 中含有m (m n ≤)个元素的子集,称为S 的m 子集.若在n 数集S 的任何一个t (4t n ≤≤)子集中,存在4个不同的数a ,b ,c ,d ,使得a b c d +=+,则称该S 的t 子集为S 的等和子集.下列结论正确的是()A.3数集A 有6个非空真子集B.4数集B 有6个2子集C.若集合{}1,2,3,4,6C =,则C 的等和子集有2个D.若集合{}1,2,3,4,6,13,20,40D =,则D 的等和子集有24个三、填空题:本题共3小题,每小题5分,共15分.12.若“[]2,1,20x x a ∀∈-+≥”是真命题,则a 的最小值是______.13.已知,a b 挝R R ,集合{}{}2,,2,2,0a b a a +=,则()3a b -=______.14.已知21x y =⎧⎨=⎩是方程组11122220,20a b y c a b c ++=⎧⎨++=⎩的解,则方程组111222130,21302a xb yc a x b y c ⎧-+=⎪⎪⎨⎪-+=⎪⎩的解是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知22:21,:5p x a a q x a <--<+.(1)若p 是q 的充要条件,求a 的值;(2)若p 是q 的充分不必要条件,求a 的取值范围.16.已知集合{}21A x x =->,{}135B x a x a =+<<+.(1)当1a =时,求()A B ⋂R ð;(2)若A B B = ,求a 的取值范围.17.已知p :关于x 的方程22220x ax a a -++-=有实根,q :关于x 的方程250x a -+=的解在[]3,9-内.(1)若q ⌝是真命题,求a 的取值范围;(2)若p 和q 中恰有一个是真命题,求a 的取值范围.18.已知二次函数24y x x m =++的图象与x 轴交于()()12,0,,0A x B x 两点.(1)当5m =-时,求关于x 的方程240x x m ++=的解;(2)若221212x x +=,求m 的值;(3)若0m >,求222112x x x x +的取值范围.19.已知集合{}()123123,,,,0,2n n A a a a a a a a a n =≤<<<<≥ ,若对任意的整数(),1,s t s t t s n a a ≤≤≤+和s t a a -中至少有一个是集合A 的元素,则称集合A 具有性质M .(1)判断集合{}0,1,7,8A =是否具有性质M ,并说明理由.(2)若集合{}12312,,,,B a a a a = 具有性质M ,证明:10a =,且12112a a a =+.(3)当7n =时,若集合A 具有性质M ,且231,2a a ==,求集合A.2024-2025学年遵义市高一数学上学期10月考试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教B 版必修第一册第一章,第二章第1节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组对象能构成集合的是()A.中国著名的数学家B.高一(2)班个子比较高的学生C.不大于5的自然数D.约等于3的实数【答案】C【分析】根据构成集合中元素的确定性判断各项即可.【详解】A :著名数学家的标准不明确,不能构成集合;B :个子比较高的标准不明确,不能构成集合;C :不大于5的自然数有0,1,2,3,4,5,能构成集合;D :约等于3的实数的精度不明确,不能构成集合.故选:C2.命题“所有平行四边形的对角线互相平分”的否定是()A.所有的平行四边形的对角线不互相平分B.对角线不互相平分的四边形不是平行四边形C.存在一个平行四边形的对角线互相平分D.存在一个平行四边形的对角线不互相平分【答案】D 【解析】【分析】根据全称命题的否定形式写法,即可确定答案.【详解】根据全称命题的否定为特称命题,即将全称量词改为存在量词,并否定原结论,所以,原命题的否定为“存在一个平行四边形的对角线不互相平分”.故选:D3.已知集合{}1,2,3,5A =,{}2,3,4,6B =,则A B = ()A.{}1,2,3,4,5,6 B.{}1,5 C.{}2,3 D.{}4,6【答案】A 【解析】【分析】应用集合的并运算求结果.【详解】由题设{1,2,3,5}{2,3,4,6}{1,2,3,4,5,6}A B == .故选:A4.金钱豹是猫科豹属中的一种猫科动物.根据以上信息,可知“甲是猫科动物”是“甲是金钱豹”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据必要不充分条件的判定方法进行判断.【详解】由“甲是金钱豹”可推出“甲是猫科动物”,由“甲是猫科动物”不能推出“甲是金钱豹”,所以“甲是猫科动物”是“甲是金钱豹”的必要不充分条件.故选:B5.如图,书架宽84cm ,在该书架上按图示方式摆放语文书和英语书,已知每本英语书厚0.9cm ,每本语文书厚1.1cm ,语文书和英语书共84本恰好摆满该书架,则书架上英语书的本数为()A.38B.39C.41D.42【答案】D 【解析】【分析】由题意列出一元一次方程求解即可.【详解】设书架上有x 本英语书,则语文书有84x -本,由题意,()0.984 1.184x x +-⨯=,解得42x =,故选:D 6.已知集合(){}22,4,,A x y xy x y =+=∈∈Z Z ,则集合A 的真子集的个数是()A.7B.8C.15D.16【答案】C 【解析】【分析】化简集合A ,根据集合A 中元素个数得解.【详解】因为(){}()()()(){}22,4,,0,2,0,2,2,0,20A x y xy x y =+=∈∈=--Z Z ,,所以集合A 的真子集的个数是42115-=个.故选:C7.已知p 是q 的充分不必要条件,q 是s 的充要条件,s 是r 的充分不必要条件,r 是q 的必要不充分条件,则p 是s 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的概念求解即可.【详解】由题意知,p q s r q ⇒⇔⇒⇐,q ⇒p ,所以可得p s ⇒,而s 推不出p ,则p 是s 的充分不必要条件,故选:A8.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有()A.5名 B.4名C.3名D.2名【答案】B 【解析】【分析】画出韦恩图,根据题意列出方程,求出三个小组都参加的人数,即可得解.【详解】设三个小组都参加的人数为x ,只参加音乐科学的人数为1y ,只参加音乐体育的人数为2y ,只参加体育科学的人数为3y ,作出韦恩图,如图,由题意,12132324202122y x y y x y y x y +++++++++=++,即()12323632439y y y x +++=-=,因为有12名学生只参加了2个兴趣小组,所以12312y y y ++=,代入解得5x =,即三个兴趣小组都参加的有5人,所以参加兴趣小组的一共有2412541++=人,所以不参加所有兴趣小组的有45414-=人.故选:B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知命题p :有些三角形是轴对称图形,命题q :梯形的对角线相等,则()A.p 是存在量词命题B.q 是全称量词命题C.p 是假命题D.q ⌝是真命题【答案】ABD 【解析】【分析】根据存在量词、全称量词命题的定义、及相关概念判定真假即可.【详解】由题意得:p 是存在量词命题,q 是全称量词命题,A ,B 正确.因为等腰三角形是轴对称图形,所以p 是真命题,C 错误.因为有些梯形(例如直角梯形)的对角线不相等,所以q 是假命题,q ⌝是真命题,D 正确.故选:ABD10.已知函数2y ax bx c =++的部分图象如图所示,则()A.0abc <B.0b c +>C.20a b c ++>D.关于x 的方程20cx bx a ++=的解集为1,13⎧⎫-⎨⎬⎩⎭【答案】BD 【解析】【分析】由函数图象可分析出,,a b c 符号判断A ,根据1为对应二次方程的根可判断BC ,再由3,1-为二次函数对应方程的两个根判断D.【详解】由图象知,0x =时,0y c =>,开口向下,0a <,310b a -+=-<,即0ba>,则0ab >,则0b <,所以0abc >,故A 错误;由1x =时,0a b c ++=且0a <,所以0b c +>,故B 正确;因为20a b c a a b c a ++=+++=<,故C 错误;由20cx bx a ++=可得2110a b c x x ⎛⎫+⋅+= ⎪⎝⎭,因为3,1-是方程20ax bx c ++=的两根,所以1,13-是方程2110a b c x x ⎛⎫+⋅+= ⎪⎝⎭的根,所以关于x 的方程20cx bx a ++=的解集为1,13⎧⎫-⎨⎬⎩⎭,故D 正确.故选:BD11.若S 是含有n 个元素的数集,则称S 为n 数集S.n 数集S 中含有m (m n ≤)个元素的子集,称为S 的m 子集.若在n 数集S 的任何一个t (4t n ≤≤)子集中,存在4个不同的数a ,b ,c ,d ,使得a b c d +=+,则称该S 的t 子集为S 的等和子集.下列结论正确的是()A.3数集A 有6个非空真子集B.4数集B 有6个2子集C.若集合{}1,2,3,4,6C =,则C 的等和子集有2个D.若集合{}1,2,3,4,6,13,20,40D =,则D 的等和子集有24个【答案】ABD 【解析】【分析】根据集合的新定义结合子集及真子集的性质分别判断各个选项即可.【详解】3数集A 有3226-=个非空真子集,A 正确.假设{},,,B x y z p =,则B 的2子集有{},x y ,{},x z ,{},x p ,{},y z ,{},y p ,{},z p ,共6个,B 正确.C 的等和子集有{}1,2,3,4,{}1,3,4,6,{}1,2,3,4,6,共3个,C 错误.因为4613+<,61320+<,132040+<,所以在D 中,只有1423+=+,1634+=+两组符合条件的等式.在D 的4子集中,D 的等和子集有{}1,2,3,4,{}1,3,4,6,共2个;在D 的5子集中,D 的等和子集有{}1,2,3,4,6,{}1,2,3,4,13,{}1,2,3,4,20,{}1,2,3,4,40,{}1,3,4,6,13,{}1,3,4,6,20,{}1,3,4,6,40,共7个;在D 的6子集中,D 的等和子集有{}1,2,3,4,6,13,{}1,2,3,4,6,20,{}1,2,3,4,6,40,{}1,2,3,4,13,20,{}1,2,3,4,13,40,{}1,2,3,4,20,40,{}1,3,4,6,13,20,{}1,3,4,6,13,40,{}1,3,4,6,20,40,共9个;在D 的7子集中,D 的等和子集有{}1,2,3,4,6,13,20,{}1,2,3,4,6,13,40,{}1,2,3,4,6,20,40,{}1,2,3,4,13,20,40,{}1,3,4,6,13,20,40,共5个;在D 的8子集中,D 的等和子集有{}1,2,3,4,6,13,20,40,共1个.综上,D 的等和子集有2795124++++=个,D 正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.若“[]2,1,20x x a ∀∈-+≥”是真命题,则a 的最小值是______.【答案】4【解析】【分析】由命题为真有2a x ≥-在[2,1]x ∈-上恒成立,求参数范围,进而确定最小值.【详解】由题设2a x ≥-在[2,1]x ∈-上恒成立,而max (2)4x -=,所以4a ≥,故其最小值为4.故答案为:413.已知,a b 挝R R ,集合{}{}2,,2,2,0a b a a +=,则()3a b -=______.【答案】8【解析】【分析】根据集合相等,结合元素的互异性求参数,进而确定目标式的值.【详解】由题设,若0a =,则{}2,2,0a 不满足元素的互异性,所以2110a b a a a b a +=⎧=⎧⎪=⇒⎨⎨=-⎩⎪≠⎩,显然满足题设,所以()3328a b -==.故答案为:814.已知21x y =⎧⎨=⎩是方程组11122220,20a b y c a b c ++=⎧⎨++=⎩的解,则方程组111222130,21302a x b y c a x b y c ⎧-+=⎪⎪⎨⎪-+=⎪⎩的解是______.【答案】413x y =⎧⎪⎨=-⎪⎩【解析】【分析】根据两个方程组之间的关系,观察可得出方程组的解.【详解】由题意,21x y =⎧⎨=⎩代入方程组可得1112222020a b c a b c ++=⎧⎨++=⎩,所以当14,3x y ==-时,代入方程组111222130,21302a x b y c a x b y c ⎧-+=⎪⎪⎨⎪-+=⎪⎩,可得1112222020a b c a b c ++=⎧⎨++=⎩,成立,所以方程组111222130,21302a x b y c a x b y c ⎧-+=⎪⎪⎨⎪-+=⎪⎩的解是413x y =⎧⎪⎨=-⎪⎩,故答案为:413x y =⎧⎪⎨=-⎪⎩四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知22:21,:5p x a a q x a <--<+.(1)若p 是q 的充要条件,求a 的值;(2)若p 是q 的充分不必要条件,求a 的取值范围.【答案】(1)3-(2)()3,-+∞【解析】【分析】(1)根据充要条件知,不等式的解集相同,建立方程得解;(2)由充分不必要条件可化为22215a a a --<+,解不等式得解.【小问1详解】因为p 是q 的充要条件,所以22215a a a --=+,解得3a =-.【小问2详解】因为p 是q 的充分不必要条件,所以()221,a a -∞--()25,a -∞+,即22215a a a --<+,解得3a >-,所以a 的取值范围()3,-+∞.16.已知集合{}21A x x =->,{}135B x a x a =+<<+.(1)当1a =时,求()A B ⋂R ð;(2)若A B B = ,求a 的取值范围.【答案】(1)(]2,3(2)(][),22,-∞-+∞U 【解析】【分析】(1)根据集合的补集、交集运算求解;(2)转化为B A ⊆,分类讨论求解即可.【小问1详解】因为{}()213,A x x ∞=->=+,所以(],3A =-∞R ð,又1a =,故{}()1352,8B x a x a =+<<+=,所以()(]2,3A B =R ð.【小问2详解】因为A B B = ,所以B A ⊆,当B =∅时,可得135a a +≥+,即2a ≤-,当B ≠∅时,由B A ⊆可得213a a >-⎧⎨+≥⎩,解得2a ≥.综上,a 的取值范围为(][),22,-∞-+∞U .17.已知p :关于x 的方程22220x ax a a -++-=有实根,q :关于x 的方程250x a -+=的解在[]3,9-内.(1)若q ⌝是真命题,求a 的取值范围;(2)若p 和q 中恰有一个是真命题,求a 的取值范围.【答案】(1)(,1)(7,)-∞+∞ ;(2)(,1)(2,7]-∞ .【解析】【分析】(1)由命题q 是真命题求出a 的取值范围,根据其补集即可得出q ⌝是真命题时a 的取值范围;(2)利用判别式求出p 为真时a 的范围,分p 真q 假,p 假q 真两种情况求解即可.【小问1详解】由250x a -+=解得52x a =-+,当3529a -≤-+≤,解得17a ≤≤,因为命题q ⌝是真命题,则命题q 是假命题,所以1a <或7a <.所以实数a 的取值范围是(,1)(7,)-∞+∞ .【小问2详解】由(1)知,命题q 是真命题,即7:1q a ≤≤,若p 为真命题,即关于x 的方程22220x ax a a -++-=有实数根,因此2244(2)0a a a ∆=-+-≥,解得2a ≤,则p 为假命题时,2a >.当p 真q 假时,则217a a a ≤⎧⎨⎩或,解得1a <;当p 假q 真时,则217a a >⎧⎨≤≤⎩,解得27a <≤.综上,p 和q 中恰有一个是真命题时,a 的取值范围为(,1)(2,7]-∞ .18.已知二次函数24y x x m =++的图象与x 轴交于()()12,0,,0A x B x 两点.(1)当5m =-时,求关于x 的方程240x x m ++=的解;(2)若221212x x +=,求m 的值;(3)若0m >,求222112x x x x +的取值范围.【答案】(1)1,5-(2)2(3)2221124x xx x +<-【解析】【分析】(1)解一元二次方程得解;(2)由一元二次方程根与系数的关系化简求值即可;(3)根据根与系数的关系化简及不等式的性质求解.【小问1详解】当5m =-时,方程2450x x +-=,即()()510x x +-=,解得5x =-或=1.即方程的解为1,5-.【小问2详解】由题意,240x x m ++=有两个不等根12,x x ,所以12124,x x x x m +=-⋅=,由()222121212216212x x x x x x m +=+-⋅=-=,解得2m =.此时,2m =满足1640m ∆=->,故所求m 的值为2.【小问3详解】由方程有不相等实根可得2440m ∆=->,解得4m <,又0m <,所以04m <<,且12124,x x x x m +=-⋅=,所以()()()()22222331212121211222121121212123x x x x x x x x x x x x x x x x x x x x x x x x ⎡⎤++-+-++⎣⎦+===⋅⋅⋅()41636412m m m--==-,由04m <<,则114m <,所以6416m ->-,故64124m-<-,即222112x x x x +的取值范围2221124x x x x +<-.19.已知集合{}()123123,,,,0,2n n A a a a a a a a a n =≤<<<<≥ ,若对任意的整数(),1,s t s t t s n a a ≤≤≤+和s t a a -中至少有一个是集合A 的元素,则称集合A 具有性质M .(1)判断集合{}0,1,7,8A =是否具有性质M ,并说明理由.(2)若集合{}12312,,,,B a a a a = 具有性质M ,证明:10a =,且12112a a a =+.(3)当7n =时,若集合A 具有性质M ,且231,2a a ==,求集合A .【答案】(1)集合{}0,1,7,8A =具有性质M ,理由见解析(2)证明见解析(3){}0,1,2,3,4,5,6A =.【解析】【分析】(1)集合A 具有性质M 的定义判断即可.(2)令12s t ==,利用集合B 具有性质M ,进而可得1212a a -是集合B 的元素,进而可得结论.(3)由(2)可得10a =,进而可得717726735744,,,a a a a a a a a a a a a -=-=-=-=,利用定义计算可求得集合A .【小问1详解】因为01,07,08,17,81,87++++--都是集合A 的元素,且t s =时,0s t a a -=也是集合A 的元素,所以集合{}0,1,7,8A =具有性质M .【小问2详解】令12s t ==因为集合B 具有性质M ,所以1212a a +和1212a a -中至少有一个是集合B 的元素.因为120a >,所以121212a a a +>,所以1212a a +不是集合B 的元素,所以1212a a -是集合B 的元素,即0是集合B 的元素.因为12312100a a a a a ≤<<<<⇒= .因为23120a a a <<<< ,所以1211212212110a a a a a a a -=>->>-> ,所以1221112112,,a a a a a a -=-= ,显然有12112a a a =+,得证.【小问3详解】由(2)可知10a =,则717276,,,a a a a a a --- ,即717726735744,,,a a a a a a a a a a a a -=-=-=-=,所以3542a a a +=,所以544340a a a a a <-=-<.因为54537a a a a a +>+=,所以54a a A +∉,且54a a A -∈,则544321a a a a a -=-==或544332a a a a a -=-==.当544321a a a a a -=-==时,423542746723,4,26,5a a a a a a a a a a a =+==+====-=,故集合{}0,1,2,3,4,5,6A =;当544332a a a a a -=-==时,435437467224,6,28,7a a a a a a a a a a ===+====-=,故集合{}0,1,2,4,6,7,8A =,此时145,413A A +=∉-=∉,不符合题意.综上,集合{}0,1,2,3,4,5,6A =.。
高一上学期第一次月考数学试卷A3打印版

河南宏力学校高一上学期第一次月考数 学 试 题考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟. 2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分)1. 设集合{}10,8,6,4,2,0=A ,{}8,4=B ,则C A B =【 】 (A ){}8,4 (B ){}6,2,0 (C ){}10,6,2,0 (D ){}10,8,6,4,2,02. 已知集合{}{}3,1,13,2,12-=--=N m m M ,若{}3=N M ,则m 的值为【 】(A )1,4- (B )1- (C )1 , 4- (D )4 3. 全集=U R ,{}03<<-=x x N ,{}1-<=x x M ,则图中阴影部分表示的集合是【 】(A ){}13-<<-x x (B ){}03<<-x x (C ){}01<≤-x x (D ){}3<x x4. 设函数()⎪⎩⎪⎨⎧<-≥=0,0,x x x x x f ,若()()21=-+f a f ,则=a 【 】(A )3- (B )3± (C )1- (D )1± 5. 下列各组函数是同一函数的是【 】①()32x x f -=与()x x x g 2-=; ②()x x f =与()2x x g =;③()0x x f =与()01xx g =; ④()122--=x x x f 与()122--=t t t g .(A )①② (B )③④ (C )①③ (D )①④ 6. 已知函数()x f 的定义域为()1,23+-a a ,且()1+x f 为奇函数,则a 的值可以是【 】 (A )2 (B )32(C )4 (D )6 7. 已知定义在R 上的增函数()x f ,满足()()0=-+x f x f ,∈321,,x x x R ,且021>+x x ,032>+x x ,013>+x x ,则()()()321x f x f x f ++的值【 】(A )一定大于0 (B )一定小于0 (C )等于0 (D )正负都有可能 8. 设0>a ,则函数()a x x y -=的图象的大致形状是【 】(A ) (B ) (C ) (D )9. 已知函数()x f y =在()2,0上是增函数,函数()2+=x f y 是偶函数,则下列结论中正确的是【 】(A )()⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<27251f f f (B )()⎪⎭⎫ ⎝⎛<<⎪⎭⎫⎝⎛27125f f f (C )()12527f f f <⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛ (D )()⎪⎭⎫ ⎝⎛<<⎪⎭⎫⎝⎛25127f f f 10. 已知函数()⎪⎩⎪⎨⎧>≤---=1,1,52x xa x ax x x f 是R 上的增函数,则实数a 的取值范围是【 】(A )3-≤0<a (B )3-≤a ≤2- (C )a ≤2- (D )0<a11. 定义一种运算⎩⎨⎧>≤=⊗ba b ba ab a ,,,令()()t x x x x f -⊗-+=223(t 为常数),且[]3,3-∈x ,则使函数()x f 的最大值为3的t 的集合是【 】 (A ){}3,3- (B ){}5,1- (C ){}1,3- (D ){}5,3- 12. 已知函数()35335+---=x x x x f ,若()()62>-+a f a f ,则a 的取值范围是【 】(A )()1,∞- (B )()3,∞- (C )()+∞,1 (D )()+∞,3第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分) 13. 函数()211-++=x x x f 的定义域是__________. 14. 已知集合(){}(){}4,,2,=-==+=y x y x N y x y x M ,那么=N M __________.15. 已知定义在R 上的函数()322--=x x x f ,设()()()⎩⎨⎧>≤=0,0,x x f x x f x g ,若函数()t x g y -=与x 轴有且只有三个交点,则实数t 的取值范围是____________. 16. 设关于x 的不等式012<--ax ax 的解集为S ,且S S ∉∈3,2,则a 的取值范围是__________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知{}{}121,42-≤≤+-=≤≤=m x m x B x x A . (1)若2=m ,求 A B A ,C R B ; (2)若∅=B A ,求m 的取值范围.18.(本题满分12分) 已知函数()x mx x f +=,且()21=f . (1)判断函数()x f 的奇偶性;(2)判断函数()x f 在()+∞,1上的单调性,并用定义证明你的结论.19.(本题满分12分)已知函数()ax x x f +-=22(∈x R )有最小值. (1)求实数a 的取值范围;(2)设()x g 为定义在R 上的奇函数,且当0<x 时,()()x f x g =,求()x g 的解析式.20.(本题满分12分)已知二次函数()12++=bx ax x f (0≠a )和()bx a bx x g 212+-=. (1)若()x f 为偶函数,试判断()x g 的奇偶性;(2)若方程()x x g =有两个不相等的实数根,当0>a 时,判断()x f 在()1,1-上的单调性;(3)当a b 2=时,问是否存在x 的值,使满足1-≤a ≤1且0≠a 的任意实数a ,不等式()4<x f 恒成立?并说明理由.21.(本题满分12分)某工厂某种航空产品的年固定成本为250万元,每生产x 件,需另投入成本为()x C ,当年产量不足80件时,()x x x C 10312+=(万元);当年产量不小于80件时,()14501000051-+=xx x C (万元).每件商品售价为50万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()x L (万元)关于年产量x (件)的函数解析式; (2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?22.(本题满分12分)已知函数()cx bax x f ++=2(∈a N *,∈b R ,c <0≤1)是定义在[]1,1-上的奇函数,()x f 的最大值为21.(1)求函数()x f 的解析式;(2)若关于x 方程()0log 2=-m x f 在⎥⎦⎤⎢⎣⎡1,21上有解,求实数m 的取值范围.。
河南省郑州外国语学校2024-2025学年高二上学期10月月考数学试卷

河南省郑州外国语学校2024-2025学年高二上学期10月月考数学试卷一、单选题1.若直线l 的一个方向向量为(,则它的倾斜角为( ) A .150︒B .120︒C .60︒D .30︒2.圆心为()1,2--,且与y 轴相切的圆的方程是( ) A .22(1)(2)4x y -+-= B .22(1)(2)1x y -+-= C .22(1)(2)1x y +++=D .22(1)(2)4x y +++=3.已知()()()1231,9,1,,3,2,0,2,1n n m n =-=-=u r u u r u u r,若{}123,,n n n u r u u r u u r 不能构成空间的一个基底,则m =( )A .3B .1C .5D .74.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过点(3,4)A -的直线l 的一个法向量为(1,3)-,则直线l 的点法式方程为:1(3)(3)(4)0x y ⨯++-⨯-=,化简得3150x y -+=.类比以上做法,在空间直角坐标系中,经过点(1,2,3)M 的平面的一个法向量为(1,2,4)m =-,则该平面的方程为( ) A .2470x y z --+= B .2470x y z +-+= C .2470x y z +++=D .2470x y z +--=5.台风中心从M 地以每小时30km 的速度向西北方向移动,离台风中心内的地区为危险地区,城市N 在M 地正西方向60km 处,则城市N 处于危险区内的时长为( )A .1hBC .2hD6.如图,平面ABCD ⊥平面ABEF ,四边形ABEF 为正方形,四边形ABCD 为菱形,60DAB ∠=︒,则直线,AC FB 所成角的余弦值为( )A .BC D7.直线y x b =+与曲线x =1个公共点,则实数b 的取值范围是( )A .11b -<≤B .1b ≤C .1b ≤-D .11b -<≤或b =8.在正三棱柱111ABC A B C -中,2AB =,1AA 2BC BO =u u u r u u u r,M 为棱11B C 上的动点,N为线段AM 上的动点,且MN MOMO MA=,则线段MN 长度的最小值为( )A .2BC D二、多选题9.以下四个命题为真命题的是( )A .过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .直线()cos 20x θθ+=∈R 的倾斜角的范围是π5π0,,π66⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭UC .已知()4,1B -,()4,6C ,则BC 边的中垂线所在的直线的方程为250y -=D .直线230x y +-=关于()1,0A 对称的直线方程为210x y ++=10.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》中有这样一个命题:平面内与两定点的距离的比为常数k (0k >且1k ≠)的点的轨迹为圆,后人将这个圆称为阿波罗尼斯圆,已知()0,0O ,()3,0A ,圆()()222:20C x y r r -+=>上有且只有一个点P 满足2PA PO =,则r 的取值可以是( )A .1B .4C .3D .511.已知正方体1111ABCD A B C D -的棱长为3,E ,F 分别为棱,BC CD 上的动点.若直线1CC 与平面1EFC 所成角为π6,则下列说法正确的是( )A .任意点E ,F ,二面角1C EF C --的大小为π3B .任意点E ,F ,点C 到面1EFC 的距离为32 C .存在点E ,F ,使得直线1C E 与AD 所成角为π3D .存在点E ,F ,使得线段EF 长度为三、填空题12.已知点()2,3A 到直线1:20l kx y -+=和直线2:10l x ky ++=的距离相等,则k =. 13.如图,在棱长为1的正方体1AC 中,点P Q 、分别是棱11AD A B 、上的动点.若异面直线1BD PQ 、互相垂直,则1AP AQ +=.14.已知实数1212x x y y 、、、满足22111x y +=,22221x y +=,121212x x y y +=,则的最大值为.四、解答题15.已知ABC V 的顶点()()()0,4,2,0,5,A B C m -,线段AB 的中点为D ,且CD AB ⊥. (1)求m 的值;(2)求BC 边上的中线所在直线的方程.16.如图,在直四棱柱1111ABCD A B C D -中,底面四边形ABCD 为梯形,AD BC ∥,2AB AD ==,BD =4BC =.(1)证明:111A B AD ⊥;(2)若12AA =,求点B 到平面11B CD 的距离.17.已知圆22:1O x y +=,直线:(3)0()l x m y m m +--=∈R . (1)若直线l 与圆O 相切,求m 的值;(2)当4m =时,已知P 为直线l 上的动点,过P 作圆O 的两条切线,切点分别为A ,B ,当切线长最短时,求弦AB 所在直线的方程. 18.在四棱锥P ABCD -中,PD ⊥平面ABCD ,1//,1,452AB DC AB AD CD AD AB PAD ⊥===∠=︒,,E 是PA 的中点,G 在线段AB 上,且满足CG BD ⊥.(1)求证://DE 平面PBC ;(2)求平面PGC 与平面BPC 夹角的余弦值.(3)在线段PA 上是否存在点H ,使得GH 与平面PGC AH 的长;若不存在,请说明理由.19.一个几何系统的“区径”是指几何系统中的两个点距离的最大值,如圆的区径即为它的直径长度.(1)已知ABC V 为直角边为1的等腰直角三角形,其中AB AC ⊥,求分别以ABC V 三边为直径的三个圆构成的几何系统的区径;(2)已知正方体1111ABCD A B C D -的棱长为2,求正方体的棱切球(与各棱相切的球)和1ACB V 外接圆构成的几何系统的区径;(3)已知正方体1111ABCD A B C D -的棱长为2,求正方形ABCD 内切圆和正方形11ADD A 内切圆构成的几何系统的区径.。
南京市中华中学2023-2024学年高一上数学10月月考试卷(含答案)

中华中学2023—2024学年度第一学期学情调研(二)高一数学本卷调研时间:120分钟总分:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合衣有限公司在暑假期间加班生产提供(](0,20)x x ∈(万元)的专项补贴.该制衣有限公司在收到市政府x (万元)补贴后,产量将增加到(3)t x =+(万件).同时该制衣有限公司生产t (万件)产品需要投入成本为36(73)t x t ++(万元),并以每件42(8)t+元的价格将其生产的产品全部售出.注:收益=销售金额+政府专项补贴-成本.(1)求该制衣有限公司暑假期间,加班生产所获收益y (万元)关于专项补贴x (万元)的表达式,并求当加班生产所获收益不低于35万元时,实数x 的取值范围;(2)南京市政府的专项补贴为多少万元时,该制衣有限公司假期间加班生产所获收益y (万元)最大?【解析】(1)4236873y t x t x t t ⎛⎫⎛⎫=+⋅+-++ ⎪⎪⎝⎭⎝⎭36422t x t =+--.因为3t x =+,所以363634224533y x x x x x =++--=--++.................................................3分由35y ≥,得3645353x x --+≥,即2760x x -+≤,所以16x ≤≤,又020x <≤,所以实数x 的取值范围是[1,6]..........................................6分(2)因为36453y x x =--+()363483x x ⎡⎤=-+++⎢⎥+⎣⎦.(020x <≤)..........................8分又因为(]0,20x ∈,所以3630,03x x +>>+,所以()363123x x ++≥=+(当且仅当36333x x x +==+即时取“=”)所以124836y ≤-+=,即当3x =万元时,y 取最大值36万元............................................11分答:南京市政府的专项补贴为3万元时,该制衣有限公司假期间加班生产所获收益最大....12分22.(12分)已知函数2()3f x x ax =++,Ra ∈(1)若函数)(1x f y =的定义域为R ,求实数a 的取值范围;(2)若当[]2,2x ∈-时,函数a x f y -=)(有意义,求实数a 的取值范围.(3)若函数a x a x f x g +--=)2()()(,函数)]([x g g y =的最小值是5,求实数a 的值.【解析】由)(1x f y =定义域为R ,则2()3f x x ax =++的值域大于0,所以2120a ∆=-<,所以(a ∈-........................................2分(2)由[2,2],x y ∈-=有意义,即()0f x a -≥恒成立,令2()()3,[2,2]h x f x a x ax a x =-=++-∈-最小值非负,221()(3,[2,2].24a h x x a a x =+--+∈-①当22a-<-即4a >时,()h x 在[2,2]-单调递增,min ()(2)73h x h a =-=-,所以4477303a a a a >⎧>⎧⎪⇒⎨⎨-≤≤⎩⎪⎩,所以a φ∈;................................4分②当222a-≤-≤即44a -≤≤时,()h x 在[2,2]-先单调递减后递增,2min1()()324a h x h a a =-=--+,所以224444441623041204a a a a a a a a -≤≤⎧-≤≤-≤≤⎧⎧⎪⇒⇒⎨⎨⎨-≤≤--+≥+-≤⎩⎩⎪⎩,所以[4,2]a ∈-;......6分③当22a->即4a <时,()h x 在[2,2]-单调递减,min ()(2)7h x h a ==+,所以44707a a a a <-<-⎧⎧⇒⎨⎨+≤≥-⎩⎩,所以[7,4)a ∈--综上:[7,2]a ∈-...............................................................8分(3)222()3(2)23(1)22g x x ax a x a x x a x a a =++--+=+++=+++≥+.令22()2,[()]23(1)2t g x a y g g x t t a t a =≥+==+++=+++....................9分①当21a +<-,即3a <-,min 25y a =+=,所以25333a a a a +==⎧⎧⇒⎨⎨<-<-⎩⎩无解;.....10分②当21a +≥-,即3a ≥-,2min (2)2(2)35y a a a =+++++=,所以231(2)3(2)40a a a a ≥-⎧⇒=-⎨+++-=⎩;.....................................11分综上: 1.a =-...............................................................12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省高一上学期实验班数学10月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)设P={x|x2﹣2x﹣3≤0},a= ,则下列关系中正确的是()
A . a⊆P
B . a∉P
C . {a}⊆P
D . {a}∈P
2. (2分) (2020高三上·合肥月考) 若集合,,则()
A .
B .
C .
D .
3. (2分) (2016高一下·淄川期中) 函数f(x)= 的定义域为()
A . (1,2)
B . (1,2]
C . (﹣∞,2]
D . (1,+∞)
4. (2分) (2019高一上·浙江期中) 已知函数,则等于()
A .
B . 0
C . 1
D . 2
5. (2分) (2018高二下·惠东月考) 若方程在上有解,则实数的取值范围是()
A .
B .
C .
D . ∪
6. (2分) (2019高一上·天津期中) 已知,且,则()
A .
B .
C .
D .
7. (2分) (2018高二下·深圳月考) 下列函数中,与函数的定义域、单调性与奇偶性均一致的函数是()
A .
B .
C .
D .
8. (2分)设a=log0.22,b=log0.23,c=20.2,d=0.22 ,则这四个数的大小关系是()
A . a<b<c<d
B . d<c<a<b
9. (2分) (2020高一上·深圳期中) 若函数是上的减函数,则的取值范围是()
A .
B .
C .
D .
10. (2分)已知函数f(x)在区间[a,b]上单调,且图象是连续不断的,若f(a)•f(b)<0,则方程f (x)=0在区间[a,b]上()
A . 至少有一实根
B . 至多有一实根
C . 没有实根
D . 必有唯一的实根
11. (2分)下列函数中,在其定义域内既是奇函数又是减函数的是()
A . y=﹣x3
B . y=
C . y=x
D . y=
12. (2分)若幂函数的图象过点,则函数的单调递减区间为()
A .
B .
二、填空题 (共4题;共4分)
13. (1分) (2020高二下·金华月考) 已知函数为偶函数,当时,,
________;当时, ________.
14. (1分) (2016高一上·余杭期末) 已知f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则a的取值范围是________
15. (1分) (2020高一上·上海期中) 设函数是定义在R上的偶函数,,若函数
在区间上是严格增函数,则不等式的解集为________.
16. (1分) (2019高一下·宾县期中) 已知关于的不等式的解集是
,则不等式的解集为________
三、解答题 (共6题;共70分)
17. (10分) (2018高一上·漳平月考) 已知函数f(x)是定义域为R的偶函数,当时,f(x)=x2-2x
(1)求出函数f(x)在R上的解析式;
(2)画出函数f(x)的图象,并根据图象写出f(x)的单调区间.
(3)求使f(x)=1时的x的值.
18. (10分) (2019高一上·河南月考) 已知全集,集合,
,
(1)求;
(2) .
19. (10分) (2019高一下·舒兰期中) 在平面直角坐标系中,为坐标原点,已知向量,,
.
(1)若,且,求向量的坐标.
(2)若,求的最小值.
20. (15分) (2016高一上·商州期中) 已知函数.
(1)求证:f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在上的值域是,求a的值.
21. (10分) (2018高一上·海南期中) 已知二次函数满足 ,且 . (1)求解析式;
(2)当时, ,求的值域;
(3)若方程没有实数根,求实数m取值范围.
22. (15分) (2019高一上·昌吉期中) 已知函数.
(Ⅰ)若,求的值.
(Ⅱ)若函数在上的最大值与最小值的差为,求实数的值.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题 (共4题;共4分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
三、解答题 (共6题;共70分)答案:17-1、
答案:17-2、
答案:17-3、
考点:
解析:
答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、答案:19-2、
考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、
答案:21-2、答案:21-3、考点:
解析:
答案:22-1、考点:
解析:。