驱动防滑控制要求
驱动防滑功能 测试标准

驱动防滑功能测试标准
驱动防滑功能是指车辆在行驶过程中,通过系统的控制和调节,确保车辆在加速、制动、转弯等情况下保持稳定,避免车辆发生打
滑或失控的情况。
针对驱动防滑功能的测试标准可以从多个角度进
行考虑:
1. 性能测试,这包括对驱动防滑功能在不同路况下的性能进行
测试,例如在干燥路面、湿滑路面、冰雪路面等不同条件下的性能
表现。
测试可以包括加速时的抓地力、制动时的防抱死效果、转弯
时的稳定性等方面。
2. 效果评估,测试标准也应该包括对驱动防滑功能的实际效果
进行评估,例如在紧急情况下是否能够有效地避免车辆打滑或失控,以及在极端路况下的表现如何。
3. 安全标准,驱动防滑功能的测试标准也应该符合相关的安全
标准,确保在实际道路使用中能够保障驾驶人和乘客的安全。
4. 法规要求,针对不同国家或地区的法规要求,驱动防滑功能
的测试标准也应该符合相应的法规标准,以确保车辆在上市销售时
符合当地的法规规定。
5. 耐久性测试,除了性能测试外,还需要对驱动防滑功能的耐
久性进行测试,确保在长期使用过程中功能稳定可靠。
总的来说,针对驱动防滑功能的测试标准应该全面考虑其性能、效果、安全、法规和耐久性等方面,以确保车辆在不同路况和使用
条件下的稳定性和安全性。
驱动防滑控制系统5

汽 车 底 盘 电 控 技 术
3.丰田LS400汽车TRC执行器的工作过程
制动执行器部件的功能
部 件 储压器切断 电磁阀 总泵切断电 磁阀 储液罐切断 电磁阀 压力传感开 关或压力传 感器 功 能 在TRC系统工作时,将来自储压器的液压传送至盘式制动分泵 当储压器中的液压正被传送至盘式制动分泵时,这个电磁阀阻止制动液 流回到总泵 在TRC系统工作时,这个电磁阀使制动液从盘式制动分泵流回至总泵储 液室 监测储压器中的压力,将这一信息发送至ABS和TRC ECU。ECU根据 这一数据控制泵的工作
汽 车 底 盘 电 控 技 术
汽
车
底
盘
电
控
技
术
模块五
驱动防滑控制系统
制作人 赵良红
汽 车 底 盘 电 控 技 术
5.1 学 习 目 标
【知识目标】 1. 了解ASR的功用 2. 了解ASR的构造、工作原理 3. 了解ASR的要求和分类 4. 掌握ASR常见故障的现象、原因分析方法 【能力目标】 1. 能分析ASR电路 2. 能拆装ASR部件 3. 能分析ASR故障原因 4. 能诊断及排除ASR常见故障
汽 车 底 盘 电 控 技 术
5.2
5.2.2
知识学习
ASR的结构与工作原理
1.ASR的结构
• 典型的ASR由ASR选择开关、车轮转速传感器、防抱死制动和驱 动防滑转电子控制单元、制动主继电器、制动执行装置、制动灯 开关。节气门继电器、主节气门位置传感器、副节气门位置传感 器、副节气门执行器。液压调节装置。故障指示灯、压力调节和 液面高度调节传感器和执行器等部分组成。
汽 车 底 盘 电 控 技 术
• 汽车打滑是指汽车车轮的滑转,车轮的滑转率又称滑移率。
ASR——汽车驱动防滑控制系统

4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行
5.26.20215.26.202108:3008:3008:30:57R执行器正常工作,ABS与ASR电子控制单 元将ABS执行器的三位电磁阀开关处于压力保持状态,控制蓄压器中高压制动 液液的释出,实现驱动车轮制动压力保持不变。
当需要减小驱动车轮的制动压力时,ASR执行器正常工作,ABS与ASR电子控制单元 将ABS执行器的三位电磁阀开关处于减压状态,车轮制动轮缸中的液压通过ABS执行 器中的三位电磁阀和储液器切断电磁阀流回制动主缸或蓄能器器中,使制动液压降低。 如果需要对左右驱动车轮的制动压力实施不同的控制时,ABS与ASR电子控制单元可 以分别对各轮对应的ABS电磁阀实施不同的控制.
副节气门执行器不动作时,副节气门全开,如下图 (a)所示,此 时发动机输出达到最大;当需要适当减小输出转矩时,副节气门 执行器使副节气门阀打开一半如图 (b)所示);若需要大大降低输 出转矩时,副节气门执行器使副节气门全闭如图(c)所示。
(a)全开 (b)开一半 (C)全闭 1.小齿轮;2.齿扇;3.主节气门阀;4.副节气门执行器阀
LS400
整个系统由ABS制动执行器和ASR制动执行器两部分组成。当ASR不起作用时,所有 ASR制动执行器的电磁阀处于断开状态,但不影响 ABS的正常工作。如果在汽车制动时, 出现车轮抱死现象,则ABS起作用,通过制动主缸切断电磁阀和ABS执行器的三位电磁 阀对车轮制动压力进行调节。
当车轮出现滑转时,ABS与ASR执行器同时起作用,ABS执行器的三位电磁阀处于加 压状态,ASR执行器中的制动主缸切断电磁阀接通,阀关闭,蓄压器切断电磁阀接通, 阀处于打开状态,这样在蓄压器中被加压的制动液通过蓄压器切断电磁阀和ABS执行器 的三位电磁阀将压力油送人制动轮缸,增大制动压力。
电动汽车驱动防滑控制系统设计

电动汽车驱动防滑控制系统设计摘要:电动汽车的驱动防滑控制系统可以对主动轮的传动扭矩进行合理地控制,从而避免主动轮的过度滑动,改善电动汽车的动力性和侧向稳定性,在电动汽车主动安全性方面,一直是一个重要的课题。
通过对驱动轮的打滑和角度加速度的分析,为确保车辆的安全运行提供一种更加实用的控制方案。
关键词:电动汽车;驱动防滑控制;车辆安全引言在平滑路面上起步加速时,车辆的主动轮很容易发生打滑。
在打滑过程中,由于滑移率太高,造成车辆的驱动力、横向力下降,导致车辆转向稳定性、转向控制性下降,对驾驶安全产生不利的影响。
此外,传动轮的打滑也会使其速度急剧增加,从而加重轮胎的磨损。
1、电动汽车驱动防滑控制途径1.1电机转矩调控一般采用电压控制、转速闭环控制和转矩闭环控制等控制方法。
该技术采用PWM技术,对电动机进行 PWM控制,通过对电动机的电压进行控制,从而实现对电动机的驱动扭矩的控制。
但是,这个电压不能比驱动马达的反 EMF高,否则就能控制输出扭矩,以达到最大输出扭矩。
电动机的速度控制就是把电动机的输入速度信号和系统的反馈速度信号进行差分,再进行控制,一般采用 PI或 PID控制。
要求操作者对油门踏板进行非常精细的控制,而人的反应能力有限。
因此,这种方式很难达到想要的结果。
调整电动机的电流,实际上相当于控制电动机的转矩,也就是控制转速回路的误差,从而改变电动机的电流,实现电动机的输出扭矩。
该方法的特点是高效、易于观察[1]。
1.2离合器与变速器控制在传动轮滑动比较大的情况下,可以通过调节离合器啮合度,使其在较大的滑动速度下产生较大的滑动,以减小输出扭矩。
变速器控制一般是指通过对传感器的信号进行处理,从而达到降低扭矩的目的。
通过电子设备自动调整变速箱的传动比,减少了扭矩的输出。
利用上述方法,可以进行传动和防滑控制,但在执行离合器和传动装置的控制时,系统的响应速度不太快。
并且,这种方法将受到很大的损坏,从而限制了这种方法的使用。
一文了解驱动轮防滑转调节技术(ASRTCSTRC)

一文了解驱动轮防滑转调节技术(ASRTCSTRC)汽车在起步、加速或冰雪路面上行驶时,容易出现打滑现象。
这是因为汽车发动机传递给车轮的最大驱动力是由轮胎与路面之间的附着系数和地面作用在驱动轮上的法向反力的乘积(即附着力)决定的。
当驱动力超过附着力时,即驱动轮处在附着系数极低的路面,车轮就会打滑空转(即滑转)且无法前进,发动机输出的功率大部分消耗在车轮的滑转上,不仅浪费燃油、加速轮胎磨损,而且降低车辆的通过性能和机动能力。
虽然安装防滑链,使用雪地轮胎和带防滑钉的防滑轮胎等能够起到防滑转作用,但是实践证明,最有效的办法还是采用电子控制防滑转调节系统(ASR/TCS/TRC)。
驱动轮防滑转调节系统(ASR)一、驱动轮防滑转调节系统(ASR)概述汽车防滑转调节系统(ASR,Anti-Slip Regulation System)又称为加速滑移调节系统(Acceleration Slip Regulation System),因为防止驱动轮滑转能够通过调节驱动轮的驱动力(牵引力)来实现,故又称为牵引力控制系统(TCS 或TRC,Traction Force Control System)。
驱动(轮)防滑系统(ASR)是车辆重要的主动安全技术之一,其功能是防止车辆在大加速度/低附着路面工况下轮胎过度滑转,提高车辆的安全性。
驱动轮防滑转调节系统ASR作用:在车轮开始滑转时,降低发动机的输出转矩来减小传递给驱动轮的驱动力,防止驱动力超过轮胎与路面之间的附着力(或通过增大滑转驱动轮的阻力来增大未滑转驱动轮的驱动力,使所有驱动轮的总驱动力增大),从而提高车辆的通过性。
汽车ASR控制效果图ASR与ABS密切相关,都是汽车的主动安全装置,两个系统通常同时采用。
ABS的作用是自动调节(增大或减小)制动力,防止车轮抱死滑移,提高汽车的制动性能;ASR的作用是维持附着条件,增大总驱动力,防止车轮抱死滑转,提高汽车的通过性。
二、驱动轮防滑转调节系统(ASR)基本原理驱动(轮)防滑系统是根据驱动轮和传动轮的转数来判定驱动轮是否发生打滑现象,进而抑制驱动轮转速的一种防滑控制系统,是一套基于ABS系统一起对有滑转趋势的驱动轮进行控制的系统。
驱动防滑控制技术(ASR)

驱动防滑控制的基本原理
汽车行驶时,驱动力的增大受到地面附着力的限制,当驱动力超过附着力时,驱动轮 将在地面上滑转。因此,汽车行驶时应满足下面的附着条件:
Ft Mn / r Fz
式中 Ft ——汽车驱动力(N ); Mn——作用在驱动轮上的转矩(N M);
r ——车轮半径( M);
F作用
汽车驱动防滑控制(acceleration slip regulation)系统(简称ASR),又称为牵引力控 制系统(Traction Control System,简称TCS) ;
汽车车轮打“滑”有两种情况:一是汽车制动时车轮抱死滑移,二是汽车驱 动时车轮滑转。ABS是防止车轮在制动时抱死而滑移,ASR则是防止驱动车轮原 地不动的滑转。
驱动防滑控制技术( )
主要内容
➢ ASR概述 ➢ 驱动防滑控制的基本原理 ➢ ASR组成以及控制方法 ➢ 典型ASR系统 ➢ ASR性能评价 ➢ ASR研究的关键技术及难点
ASR概述
汽车防滑控制系统
防抱制动系统 (antilock braking system, ABS) 驱动防滑系统(acceleration slip regulation, ASR)
ASR组成以及控制方法
一、ASR系统的基本组成
ASR系统的基本组成如图2所示,由传感器、电子控制模块 (ECU)、执行器、驱动车轮制动器等组成,各部件主要功能 如下:
图2 ASR系统的基本组成
ASR组成以及控制方法
传感器
车轮转速传感器、节气门位置传感器、ASR选择 开关等。
ECU
根据传感器的信号来判断汽车的行驶条件,经过 分析判断,对副节气门执行器、ASR制动执行器 发出指令,执行器完成对发动机供油系统或点火 时刻的控制,或对制动压力进行调整。
简述驱动防滑系统的控制方法

简述驱动防滑系统的控制方法
驱动防滑系统(ASR)的控制方法主要包括以下几种:
1. 逻辑门限值控制:这种方法不需要建立具体的数学模型,简化了驱动防滑控制器的开发过程。
2. PID控制:这是一种常用的控制方法,通过比例、积分和微分三个环节来调整系统参数,以达到理想的控制效果。
3. 最优控制:这种方法通过优化系统参数,使系统性能达到最优。
4. 神经网络控制:利用神经网络的自学习能力,对系统进行控制。
5. 滑模控制:在系统状态发生变化时,滑模控制能够快速响应并稳定系统。
6. 模型跟踪控制:使控制系统按照预定的模型进行工作,以达到理想的控制效果。
这些控制方法都是为了实现驱动防滑系统的功能,即通过识别路面状态,针对不同路况采用不同的滑转率控制策略,通过限制驱动轮的驱动转矩使车辆能在不同路面上充分利用附着力,防止车辆在驱动力急剧变化中发生驱动轮相对地面产生过度的滑转,从而使车辆轮胎相对地面的附着力降低。
以上内容仅供参考,建议咨询汽车专业技术人员了解具体的控制方法。
关于汽车驱动防滑技术的探讨

关于汽车驱动防滑控制技术的探讨摘要随着汽车行驶速度的提高,道路行车密度的增大,汽车行驶安全性已经受到了高度关注。
汽车的行驶安全性能要求不断提高,汽车安全系统已经成为汽车研究发展的重要部分。
汽车安全系统主要依靠制动踏板的制动装置保证汽车行驶安全,汽车照明系统辅助警示与提醒,至今在主动安全系统中汽车防抱死〔ABS)等技术,以及汽车辅助安全系统如安全带,安全气囊等的广泛应用,而且有更多的安全性系统参与制动与动力分配系统的发展,如汽车驱动防滑系统〔ASR〕,汽车电子稳定系统(ESP),汽车电子制动力分配系统(EBD),汽车辅助刹车系统(BA),汽车自适应巡航速度控制系统等(ACC),保证汽车在危险状况下行驶的安全性。
上述这些系统具有智能化的控制作用,根据车辆的行驶状况,自动地完成对汽车制动性能、转向辅助等的控制,无需人的主动性操作,可见汽车安全系统已经向智能型方向发展。
本文探讨了ASR系统的原理、发展、现状及与ABS系统的关系,简要讨论了当前较先进,运用较广泛的ESP系统。
介绍了汽车驱动防滑控制系统常用的四种控制方式。
以日系车丰田ABS/TRC系统为例分析了ASR系统的基本组成和工作原理。
关键词:汽车驱动防滑系统ASR 汽车防抱死系统ABS汽车电子稳定系统ESP 汽车驱动力控制系统TRC汽车驱动防滑系统(Acceleration Slip Regulation,简称ASR),是一种主动安全装置,可根据车辆的行驶行为使车辆驱动轮在恶劣路面或复杂路面条件下得到最佳纵向驱动力,能够在驱动过程中,特别在起步、加速、转弯等过程中防止驱动车轮发生过分滑转,使得汽车在驱动过程中保持方向稳定性和转向操纵能力及提高加速性能等。
驱动防滑系统是汽车制动防抱死系统功能的自然扩展,它的作用是维持汽车行驶时的方向稳定性,并尽可能利用车轮—路面间的纵向附着能力,提供最大的驱动力。
在装备了ABS的汽车上,ASR系统添加了发动机输出力矩的调节和驱动轮制动压力的调节功能后,所用的车轮转速传感器和压力调节器可全部为ASR所利用。