初中数学概念课堂教学

合集下载

数学全部的概念教案初中

数学全部的概念教案初中

数学全部的概念教案初中教案目标:1. 使学生掌握初中数学中的基本概念,包括实数、代数式、方程、不等式、函数等;2. 培养学生对数学概念的理解和运用能力;3. 培养学生的逻辑思维能力和抽象思维能力。

教学内容:1. 实数概念:有理数、无理数、实数的分类和性质;2. 代数式概念:代数式的定义、代数式的运算;3. 方程概念:方程的定义、方程的解法;4. 不等式概念:不等式的定义、不等式的解法;5. 函数概念:函数的定义、函数的性质、函数的图像。

教学过程:一、实数概念:1. 引入实数的概念,让学生了解实数包括有理数和无理数;2. 讲解有理数的定义,如整数、分数等,并让学生进行相关练习;3. 讲解无理数的定义,如根号下非完全平方数的无理数,并让学生进行相关练习;4. 总结实数的分类和性质,让学生掌握实数的基本概念。

二、代数式概念:1. 引入代数式的概念,让学生了解代数式是由字母和数字组成的表达式;2. 讲解代数式的运算规则,如加减乘除、幂的运算等,并让学生进行相关练习;3. 让学生运用代数式解决实际问题,培养学生的运用能力。

三、方程概念:1. 引入方程的概念,让学生了解方程是含有未知数的等式;2. 讲解方程的解法,如代入法、消元法等,并让学生进行相关练习;3. 让学生运用方程解决实际问题,培养学生的运用能力。

四、不等式概念:1. 引入不等式的概念,让学生了解不等式是不相等的等式;2. 讲解不等式的解法,如同号不等式、异号不等式等,并让学生进行相关练习;3. 让学生运用不等式解决实际问题,培养学生的运用能力。

五、函数概念:1. 引入函数的概念,让学生了解函数是自变量和因变量之间的依赖关系;2. 讲解函数的性质,如单调性、奇偶性等,并让学生进行相关练习;3. 讲解函数的图像,如直线、曲线等,并让学生进行相关练习;4. 让学生运用函数解决实际问题,培养学生的运用能力。

教学评价:1. 通过课堂讲解和练习,评价学生对数学概念的理解程度;2. 通过课后作业和测试,评价学生对数学概念的运用能力;3. 结合学生的课堂表现和作业完成情况,评价学生的逻辑思维能力和抽象思维能力。

初中数学概念教案

初中数学概念教案

初中数学概念教案一、教学目标1. 知识与技能:让学生掌握并有能够运用本节课所学的数学概念解决相关问题。

2. 过程与方法:通过观察、思考、交流、归纳等过程,培养学生的抽象思维能力和数学表达能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

二、教学内容1. 教学主题:有理数的分类2. 教学内容:(1) 了解有理数的分类标准;(2) 掌握有理数的分类结果;(3) 能够运用分类结果解决实际问题。

三、教学重点与难点1. 教学重点:有理数的分类标准和分类结果。

2. 教学难点:理解并运用分类结果解决实际问题。

四、教学过程1. 导入:通过复习小学学过的数的概念,引出有理数的分类。

2. 新课讲解:(1) 讲解有理数的分类标准,如正数、负数、整数、分数等;(2) 通过实例讲解有理数的分类过程,让学生参与分类,加深理解;(3) 给出有理数的分类结果,让学生记住各个类别的特点。

3. 课堂练习:(1) 让学生自主完成课堂练习题,巩固所学概念;(2) 选取部分练习题进行讲解,解答学生的疑问。

4. 应用拓展:(1) 通过实际问题,让学生运用有理数的分类结果解决问题;(2) 引导学生发现有理数分类在实际生活中的应用,培养学生的数学应用意识。

5. 课堂小结:对本节课的内容进行总结,强调有理数分类的重要性和应用价值。

6. 布置作业:布置适量作业,让学生巩固所学概念。

五、教学反思通过本节课的教学,学生应该掌握了有理数的分类标准和分类结果,能够在实际问题中运用有理数分类解决问题。

在教学过程中,要注意引导学生参与分类过程,提高学生的抽象思维能力和数学表达能力。

同时,要关注学生的学习情况,及时解答学生的疑问,确保学生能够熟练掌握有理数的分类。

六、教学评价通过课堂表现、课堂练习和课后作业等方面,评价学生对有理数分类的掌握程度。

对于掌握较好的学生,可以给予表扬和鼓励,提高学生的学习积极性;对于掌握不足的学生,要个别辅导,帮助其提高。

教学评一致性下初中数学概念课教学策略思考

教学评一致性下初中数学概念课教学策略思考

教学评一致性下初中数学概念课教学策略思考摘要:数学概念是初中数学学习的基础,同时也是数学学科的重要组成部分。

对于数学概念的教学,教师应抓住其本质特点进行讲解,在讲解过程中使学生掌握与概念有关的数学知识,进而形成对概念的正确理解。

但由于以往教学中存在着教师过于重视知识点教学、忽视了对学生解题思路分析及评价等问题,导致数学概念教学不能满足新课程改革对初中数学学科提出的要求。

为了使初中数学概念教学更加符合新课程改革标准,使学生真正掌握数学知识,在分析新课标对初中数学概念课提出的要求后,笔者对教学评一体化背景下初中数学概念课教学进行了深入研究。

关键词:教学评一体化;初中数学;概念课教学引言:“教学评一体化”是新课程改革背景下产生的一种新型教学理念,主要指在教师、学生、课程、评价之间形成一个相互联系的有机整体,并且将其融入到教学之中。

这一新型的教学理念不仅强调了教师、学生、课程之间的关系,还对学生评价体系做出了明确的规定。

在“教学评一体化”理念下,学生不再是被动地接受知识,而是成为了学习的主体。

教师在进行课堂教学时,应积极关注学生的学习状态以及对课程内容的掌握情况,以此来进行调整。

由于新课标改革过程中对学生评价标准作出了相应调整,所以教师在课堂教学时也要相应做出调整,以使其能够更加适应新课标的要求。

一、把握概念内涵,促进学生理解对于初中数学概念的教学,教师应重视数学概念内涵的理解,从数学概念中挖掘出蕴含其中的知识,促进学生对概念的掌握。

而要实现这一目标,教师首先应注重概念教学前的备课工作。

教师在备课过程中应充分把握概念内涵,对本节课涉及到的相关知识进行系统了解,并在此基础上做好教学设计。

对于初中数学概念课教学来说,其内容涉及到了大量的数学公式、定义以及定理等知识。

教师在备课过程中要根据本节课的教学目标对这些知识进行梳理。

如在进行“生活中的立体图形”概念教学时,教师要引导学生从立体图形的定义入手,从立体图形定义中去探索立体图形的定义及特征,从而对立体图形有一个全面深入的了解。

初中数学课堂教学设计5篇

初中数学课堂教学设计5篇

初中数学课堂教学设计5篇一、教学目标:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=k某+b(其中k,b为常数且k≠0),那么y 是一次函数。

正比例函数:对于y=k某+b,当b=0,k≠0时,有y=k某,此时称y 是某的正比例函数,k为正比例系数。

(1)从解析式看:y=k某+b(k≠0,b是常数)是一次函数;而y=k某(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=k某(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=k某+b(k≠0)的图象是过点(0,b)且与y=k某平行的一条直线。

基础训练:1、写出一个图象经过点(1,—3)的函数解析式为2、直线y=—2某—2不经过第象限,y随某的增大而。

3、如果P(2,k)在直线y=2某+2上,那么点P到某轴的距离是4、已知正比例函数y=(3k—1)某,若y随某的增大而增大,则k是5、过点(0,2)且与直线y=3某平行的直线是6、若正比例函数y=(1—2m)某的图像过点A(某1,y1)和点B(某2,y2)当某1y2,则m的取值范围是7、若y—2与某—2成正比例,当某=—2时,y=4,则某=时,y=—4。

8、直线y=—5某+b与直线y=某—3都交y轴上同一点,则b的值为9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

(2)求直线AC的解析式。

四、教学反思:题的答案做出来,尽量要一题多解。

再由小组长组织小组成员汇编,在汇编过程中要去粗取精。

课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。

初中数学课堂教学方法(完整版)

初中数学课堂教学方法(完整版)

初中数学课堂教学方法(完整版)初中数学课堂教学方法以下是初中数学课堂教学方法:1.做好课前准备。

在上课之前,教师需要对本节课的内容进行备课,对教材进行深入的研究,确定教学目标、教学重点和难点,并针对这些内容制定出相应的教学策略。

此外,教师还需要了解学生的知识水平和学习需求,以便更好地组织课堂教学。

2.创造教学情境。

教师可以根据教学内容和学生的实际情况,创设出恰当的教学情境,激发学生的学习兴趣和积极性。

例如,可以通过问题导入、故事引入、实验操作等方式来导入新课,吸引学生的注意力。

3.合理组织教学内容。

在课堂教学中,教师需要将教学内容进行合理的组织,使学生能够更好地理解和掌握知识点。

可以将教学内容划分为若干个知识点,逐一讲解,注重知识点的联系和延伸,让学生形成完整的知识体系。

4.注重教学互动。

教师需要注重与学生之间的互动,鼓励学生表达自己的观点和想法,以便更好地了解学生的学习情况,并及时调整教学策略。

此外,教师还可以通过小组讨论、合作探究等方式来促进学生的互动学习。

5.注重课堂小结。

在课堂结束前,教师需要对本节课的教学内容进行小结,帮助学生梳理知识点,加深学生对本节课内容的理解和记忆。

同时,也可以引导学生进行自我小结,提高学生的自我总结和归纳能力。

6.合理利用多媒体教学资源。

教师可以根据教学内容和学生的实际情况,合理利用多媒体教学资源,如PPT、视频、图片等,来丰富课堂教学内容,提高学生的学习兴趣和参与度。

但需要注意的是,多媒体教学资源的使用应该适度,避免过于花哨或干扰学生的注意力。

总之,初中数学课堂教学方法需要根据教学内容和学生的实际情况进行灵活应用,以更好地达到教学目标和促进学生全面发展。

初中数学分数教学方法设计针对初中数学分数的教学,可以采用以下教学方法设计:1.明确教学目标:教师需要明确教学目标,即让学生掌握分数的概念、计算方法以及应用。

2.知识点梳理:教师需要梳理知识点,包括分数的定义、性质、加减乘除运算等。

初中数的概念教案

初中数的概念教案

初中数的概念教案教学目标:1. 使学生理解有理数的意义,并能将给出的有理数进行分类;2. 培养学生树立分类讨论的思想。

教学重点和难点:1. 有理数的分类及其分类的标准;2. 理解有理数的概念,并能运用有理数解决实际问题。

教学手段:1. 现代课堂教学手段;2. 教学课件和例题。

教学方法:1. 启发式教学;2. 小组合作学习。

教学过程:一、导入(5分钟)1. 引导学生回顾已学的正数和负数的概念;2. 提问:正数和负数有什么特点?它们有什么实际应用?二、讲授新课(15分钟)1. 引入整数和分数的概念;2. 讲解整数和分数的分类,即正整数、负整数、正分数、负分数;3. 提问:整数和分数有什么关系?它们统称为什么?三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固对有理数的理解和分类;2. 引导学生通过小组合作,探讨有理数在实际问题中的应用。

四、拓展与提高(15分钟)1. 引导学生思考:有理数还有其他的分类方法吗?;2. 讲解有理数的进一步分类,如正有理数、负有理数、零等;3. 提问:这些分类有什么意义?如何运用它们解决实际问题?五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结有理数的分类和特点;2. 提问:你们认为有理数在生活中的应用有哪些?教学反思:本节课通过引入整数和分数的概念,让学生理解有理数的意义,并能对给出的有理数进行分类。

在教学过程中,采用启发式教学和小组合作学习的方法,引导学生主动探索和思考,培养学生的分类讨论思想。

通过课堂练习和拓展与提高环节,巩固学生对有理数的理解和应用。

总的来说,本节课达到了预期的教学目标,学生对有理数的认识有了更深入的理解。

但在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。

例谈概念教学在初中数学课堂的实施

例谈概念教学在初中数学课堂的实施中学数学里包含着大量的数学概念。

概念是数学知识体系中的基本元素,数学概念的教学与对学生概念思维能力的培养有密切的联系。

新课程标准下的教材,一改以往老教材中严密的知识结构体系和严谨的数学概念体系,对概念的描述、概括不再特别注重其表达形式,注重新课程标准强调的要“关注概念的实际背景与形成过程,帮助学生克服机械记忆的学习方式。

”笔者在数学概念的教学方式上曾做过一些初浅的探索,现与大家共同交流。

一、数学概念的有意义化教学我们知道学习概念一是要知道它的外延意义,二是要理解它的内涵意义。

而内涵意义是概念名称在学习者内部唤起的,独特的、个人的、情感的和态度的反应。

学习者的这类反应,取决于他们对这类物体的特定经验。

像“无理数”这类数学名称对大多数学生来讲具有很少的内涵意义,如果直接讲授,抽象难懂,则学生不易接受,心里容易疲劳。

例如:上《无理数》这课时,我准备了十个乒乓球,在每个乒乓球上分别贴上0-9这十个数字放在不透明的袋子里,上课时先出示乒乓球,然后请同学们上来在袋中摸出一个球,看谁摸到的球上的数字最大,并请一个同学在小数点后面写上同学所摸到乒乓球上的数字,随着一个个同学上来摸球,数字一次次地记,黑板上出现了一个不断延伸的小数:0.418532469…在学生玩得起劲的时候,暂停他们的工作,然后问“同学们,如果你们不停地上来摸球,数字不断地记下去,那么我们在黑板上能得到一个什么样的小数?学生回答“能得到一个有无限多位的小数。

”我追问“是无限循环小数吗?”学生异口同声“不是”。

“为什么”我追问。

有学生答“点数是摸乒乓球摸出来的,并没有什么规律。

”我及时归纳:“不错,这样得到的小数,一般是一个无限不循环小数。

这种无限不循环小数与我们已经学过的有限小数、无限循环小数不同,是一类新数,我们称它为“无理数”,这就是我们今天要学习的主题。

对这种摸奖式的摸球,学生对它有着非常丰富的感性经验.以摸乒乓球得到的数来产生一个具体的位数可以不断延伸的小数,为学生提供了一个可以“感触”的非常直观的无理数模型,使本来遥不可及的数学概念具体地走到学生的面前,赋予无理数一个真实可信的意义,使概念更容易接受、更有意义。

初中数学新概念教案模板

教案模板:初中数学新概念教学一、教学目标1. 让学生理解并掌握新概念的基本含义和性质。

2. 培养学生运用新概念解决实际问题的能力。

3. 培养学生积极参与、合作探究的学习态度。

二、教学内容1. 新概念的引入和定义。

2. 新概念的基本性质和特点。

3. 运用新概念解决实际问题。

三、教学过程1. 导入:通过生活实例或复习相关知识,引导学生思考新概念的重要性,激发学生的学习兴趣。

2. 新概念的引入:通过具体的实物或图形,引导学生观察、分析,从而引入新概念。

3. 新概念的定义:引导学生通过观察、讨论,总结出新概念的定义。

4. 新概念的性质和特点:通过示例或练习,引导学生探索新概念的性质和特点,巩固学生对新概念的理解。

5. 运用新概念解决实际问题:设计具有挑战性的问题,引导学生运用新概念进行分析、解决问题,提高学生的应用能力。

6. 总结:对本节课的新概念进行归纳总结,强调重点和难点,为学生课后复习提供指导。

四、教学策略1. 采用问题驱动的教学方法,引导学生主动参与、积极思考。

2. 利用多媒体教学手段,直观展示新概念的应用场景,增强学生的直观感受。

3. 组织小组讨论,鼓励学生发表自己的观点,培养学生的合作精神。

4. 注重个体差异,给予每个学生充分的关注和指导,提高学生的学习效果。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、思考能力和合作精神。

2. 练习作业:检查学生对新概念的理解和应用能力。

3. 课后访谈:了解学生对课堂学习的反馈,为改进教学提供依据。

六、教学资源1. 教材:提供丰富的新概念教学内容,方便学生学习和巩固。

2. 多媒体课件:通过图片、动画等形式,直观展示新概念的应用场景。

3. 练习题库:设计具有针对性的练习题,帮助学生巩固新概念。

七、教学时间1课时八、教学建议1. 注重学生的基础知识,确保学生掌握相关概念和性质。

2. 引导学生积极参与课堂讨论,培养学生的思考能力和表达能力。

3. 注重练习的布置和批改,及时发现和纠正学生的错误。

初中数学课堂教学的基本课型模式

初中数学课堂教学的基本课型模式一、新知课(一)概念新知课1、教学目的任务该课型通过各种教学形式、手段,揭示和概括研究对象的本质属性,引导学生把握准某类事物共同属性的关键特征,解决好概念的“内涵”与“外延”的认识和理解。

概念课教学还承担着对学生进行辩证唯物主义教育的重任。

突出数学源于客观存在,源于人类改造世界的劳动实践的思想。

要通过概念课的教学,帮助学生逐步形成正确的世界观和方法论。

2、课型特征该课型体现学生的学习活动是在进行“代表学习”和“概念学习”。

通过“概念学习”,把作为新知识中的概念,正确地初步地转化为学生自身认知结构的概念体系里的概念。

通过“代表学习”,对概念的文字、语言叙述或概念的定义能初步理解,掌握这些数学概念所对应的数学符号及这些符号的书写、使用方法。

初步了解由这些数学符号组成的语言含义,并能初步把它转译成一般语言。

3、教学策略原则1)概念课应注意直观教学。

让学生了解研究对象,多采用语言直观、教具直观、情境直观、电化直观等教学手段,引导学生从具体到抽象,经概括和整理之后形成新的概念,或从旧概念的发展中形成新概念。

2)概念课应解决学生“概念学习”中的几个问题:①对每一个数学概念,都应该准确地给它下定义。

对一些基本(原始)概念,不宜定义的也应给予清晰准确的“描述”。

通过给概念下定义的教学,让学生从定义的表达形式及逻辑思维中去领会该事物与其它事物的根本区别。

并注意对同一概念的下定义的不同方案,从而深化对概念的理解。

②对概念(定义)的理解必须克服形式主义。

课内应通过大量的正、反实例,变式等,反复地让学生进行分析、比较、鉴别、归纳,使之与邻近概念不至混淆,并要解决好新旧概念的相互干扰。

③概念教学还必须认真解决“语言文字”与“数学符号、式子”之间的互译问题,为以后在数、式运算中应用数学概念指导运算打下基础。

使学生把代表某一概念的数学符号与概念内涵直接挂钩。

④克服学生普遍存在的“学数学只管计算,何必花时间学概念”之类的错误认识。

“概念教学”在初中数学课堂的有效运用——教学案例分析

‘ 念 教 学 " 初 中 数 学 课 堂 的 有 效 运 用 ‘ 概 在
教 学案例 分析
周 尹
( 京市 玄 武 高 级 中学 , 苏 南 京 南 江 20 1) 1 0 8
摘 要 : 学概 念 是 反 映现 实世 界 的 空 间形 式 和 数 量 关 数 系的本 质 属 性 的 思 维 形 式 。 初 中数 学教 学 中 , 强概 念课 的 在 加


情 境 创 设
根 据 篮 球 比赛 规 则 : 一 场 得 2 , 一 场 得 1 . 某 次 赢 分 输 分 在 篮 球 联 赛 中 , 支 球 队 , 若 干 场 , 1 场 , 积2 分 , 该 队 一 赢 输 0 共 0 问
赢 了多 少 场 ? 如 果 设 该 队赢 了x , 可列 方 程 : 场 则
比较二 元 一 次 方 程 的解 与一 元 一 次 方 程 的解 的 区别 . 设 计 目的 : 学 生 自主 探索 解 二 元 一 次方 程 , 而 发 现 二 让 从 元 一 次 方程 的解 的无 穷 性 .与 一 元 一 次 方 程 的解 的唯 一 性 进 行 区 别 。 握 住解 的本 质 . 把 三 、 决 问题 解 根 据 篮 球 比赛 规 则 : 一 场 得 2 , 一 场 得 1 . 某 次 赢 分 输 分 在 篮 球 联 赛 中 , 支 球 队 , 了 若 干 场后 积 2 分 , 该 队 赢 了多 一 赛 O 问 少 场 ? 输 了 多少 场 ? 你 能 列 出输 赢 的所 有 可 能情 况 吗 ? 设 计 目的 :从 一 般 情 况 下 二 元 一 次 方 程 的解 的无 穷 个 到 具 体 问 题 中 的有 限个 . 学 生 灵 活 运用 所 学 知 识 解 决 问 题 . 让 试一 试 : 球 员在 一 场篮 球赛 比赛 中共得 3 分 ( 中罚球 得 某 5 其 1f ) 0 . 分别 投 中了多 少个 两分球 ? t 问他 多少 个 三分 球?如 果设 该 球 员 投 中 了x 两 分 球 ,个 三 分 球 , 可 列 方 程 为 : 个 v 则 . 你 能 用 表 格 列 出 该 球 员 投 中 两 分 球 和 三 分 球 的 所 有 可 能吗? 根 据你 所 列 的表 格 , 回答 下 列 问题 : ( ) 名 球员 最 多 投 中 了多 少 个 三 分球 ? 1这 ( ) 名 球 员最 多 投 中 了多 少 个球 ? 2这 ( ) 果 这 名 球员 投 中 了 l 个 球 , 么 他 投 中 了几 个 两 分 3如 0 那 球 ? 几 个三 分 球 ? 练 一练 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学概念课堂教学探究
概念是学习数学的基础,也是学生发现数学问题,用于解决数学问题的关键,学生是否能较好地理解并掌握数学概念,将直接影响着学生解决数学问题能力高低的培养. 因数学概念具有抽象性、发展性、生成性等特点,而这些特点和初中学生的思维水平又存在一定的差异,这就让学生对理解概念的内涵和外延,概念间的区别和练习有了一定难度,而教学中大多教师又停留在概念的表面上,这也就自然让学生对概念的学习不到位,导致问题解决过程受阻.
概念的掌握过程是从个别到一般、从具体到抽象的过程,因此,在概念教学过程中,概念教学就应该从概念的引入开始,让学生逐渐生成概念,并对相关概念间的区别和练习进行分析,最后在进行应用,进而掌握概念.
一、概念的引入
新课标中提出“抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式”. 课堂中引入概念,就是要让学生明白概念的产生背景,在有心理准备的基础上建立对概念的学习机制. 在概念引入过程中,教师要树立“让学生去发现”的教学意识,通过具体、形象的情境来作为引入的背景.
首先,可联系概念的现实原理来引入概念. 教学中教师可引导学生通过观察有关的实物、模型或图示等让学生在感性的基础上来建立概念,弄清概念提出的背景. 如在“平行线”(平面几何内)的概念教学中,教师可就学生的练习本中的平行线,课桌椅的平行
线,教室内的平行线进行分组就其位置特点和相交进行对比,然后进行概括;再如,在“圆的概念”教学中,教师以小组为单位,利用不同长度的线段来引导学生画圆,在画的过程中观察绳子、笔尖、图形的变化,最后进行归纳总结. 这其中还可引导学生从具体到抽象过渡,如在“垂直”的教学中,教师亦可让学生观察周围和“垂直”相关的实物,从具体的事物中去寻找相同的特点,从而得到抽象性的本质特点.
其次,可接着用类比的方法来引入概念. 数学概念之间具有较强的联系性,类比也是数学学习中的一种重要方法,通过类比来引入概念,是要让学生在前一概念的学习基础上去学习新概念,如一元一次方程和一元一次不等式的类比,二元一次方程和一元一次方程的类比,一次函数和反比例函数的类比等.
二、概念的剖析及辨析
当概念引入并生成后,教师就须引导学生根据概念的关键词对概念的本质进行剖析,从而掌握概念所要呈现的具体内容.
以函数概念教学为例,函数概念为”在某一变化过程中有两个变量 x, y,对于 x的每一个值, y都有唯一确定的值与它对应,y叫作 x的函数,其中 x叫做自变量, y叫做因变量”. 其中关键词为“两个变量”、“对应”、“每一个”、“唯一确定”,接着教师以案例“学生考试成绩”引导学生进行剖析,然后可让学生试着分析该学生的分数和序号之间是否存在函数关系;又如在y = x2中,y 是不是 x 的函数?如反过来又是什么结果?教学中教师还可根
据具体的函数图像来引导学生体会函数概念中的如“唯一”、“每一个”等关键词的内在含义. 但在剖析概念时需要注意文字、符号示、图形语言间的转换关系. 如图,关于三角形中位线的概念,文字描述为“联接三角形两边中点的线段叫做三角形的中位线”;符号语言描述为“在△ abc 中,d 为 ab边中点, e为 ac边中点,de
为△ abc 的中位线. 反之,若de 为△ abc 的中位线,则d 为ab边中点, e为 ac边中点”.
三、相关概念的区别与联系
区别是概念间的不同,联系则是概念间的联系点,应该说任何数学概念都不是孤立存在的,而是和其他概念间有着相互关系的. 在教学中引导学生对概念间的区别和联系进行探究,能较好地帮助学生掌握概念的本质属性.
如在“二次函数”的教学中,通过和一次函数的类比和二次方程、二次不等式等之间的对比,让学生连点成线,对二次函数有更深入的理解;在“梯形”的教学中,将梯形转化为三角形和平行四边形的组合后,四边形的特点凸显了出来,这也就很好地引导学生在解决平行四边形问题中通过辅助线来进行.
四、概念的应用
概念形成后,学生只是对概念的本质有了理解,在此基础上就需要引导学生根据概念的本质来分析并解决问题,从而加深学生对概念的内涵和外延的理解,也能提高学生的问题能力. 在概念的应用教学中,教师要注意通过引导来让学生尝试,让学生在解决问题
中再次去理解概念.
以三角形概念教学中的对应边和对应角为例,从概念定义上看,这两个概念较为简单,但在应用中学生经常出现问题,为让学生更好地理解这些概念,教学中教师可通过如下例题来进行巩固.
例:如图,b,d,c,e在同一直线,且△abc≌△fde,提出问题:1. 指出图形中的相关对应顶点、对应边和对应角;2. 在此图形中,你还能得到哪些结论?阐述你的理由;3.教师通过“几何画板”拖动其中一个顶点,让学生观察图形的变化,然后得到图形的大小改变,但对应的边和角却没有改变的特点;4.再通过平移△fde 后引导学生观察后思考哪些特性没有发生变化. 这样的联系不仅
巩固了当次课堂的教学内容,也为全等的学习奠定了基础.
目前,初中数学概念教学并没有固定的模式可循,虽说教无定法,但根据概念教学的特点和学生的认知规律来进行概念教学,对提高课堂教学效率无疑是大有好处的.。

相关文档
最新文档