2019届高考大一轮复习备考资料之数学人教A版全国用讲义:第七章 不等式7-1 含答案 精品
(新课标)2019届高考数学一轮复习第七章不等式7.1不等关

集合与常用逻辑用语 不 等 式
考纲链接
7.1 不等关系与不等式
1.不等关系 2.一元二次不等式 (1)会从实际问题的情境中抽象出一元二次不等式模型. (2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 3.二元一次不等式组与简单线性规划问题 (1)会从实际情境中抽象出二元一次不等式组. (2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. (3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. a+b 4.基本不等式: ab≤ (a≥0,b≥0) 2 (1)了解基本不等式的证明过程. (2)会用基本不等式解决简单的最大(小)值问题.
2
类型二
不等式的性质
)
(2016· 贵州模拟)若 a,b 都是实数,则 “ a- b>0”是“a -b >0”的( A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条t;0 得 a>b≥0, 由 a -b >0 得 a >b ,即|a|>|b|,所以“ a- b>0”是 “a2-b2>0”的充分不必要条件.故选 A.
)
B.-2<a-b<-1 D.-1<a-b<1
解:-1<a<1,-1<-b<1⇒-2<a-b <2.又 a<b,则-2<a-b<0.故选 A.
(2016· 四川成都模拟)若 a<b<0, 则下 列不等式中一定成立的是( 1 1 A. < a b 1 1 C.a+ <b+ b a ) 1 1 B. 2 < 2 b b+1 D. < a a+1
a b
解:因为 a<b<0,所以 b-a>0,ab>0, 1 1 b- a - = > 0,因此 A 错误;由函数 f( x) a b ab x a b 1 1 1 = 2 是 减 函 数 知 2 > 2 , B 错误;由 a+1 -b+1 = (a - b)1+ 1 < 0 知 C 正 b a ab 确.或用特值法,取 a=-2,b=-1,排除 A, B,D.故选 C.
2019届高考数学(文科)一轮复习课件(人教A版)第七章 不等式、推理与证明 7.2

������+������ 2 ,要弄清它们的作用、使用 2
条件及内在联系,两个公式也体现了 ab 和 a+b 的转化关系.
3.在利用不等式求最值时,一定要尽量避免多次使用基本不等式. 若必须多次使用,则一定要保证它们等号成立的条件一致.
-11考点1 考点2 考点3
考点 1
利用基本不等式证明不等式
-13考点1 考点2 考点3
(2)∵a+b=1,
1 1 1 1 1 ∴������ + ������ + ������������=2 ������ + ������
.
∵a+b=1,a>0,b>0,
������+������ ������+������ ������ ������ + =2+ + ������ ������ ������ ������ 1 ≥2+2=4 当且仅当������ = ������ = 2 时,等号成立 1 1 1 ∴������ + ������ + ������������≥8 1 当且仅当������ = ������ = 2 时,等号成立 .
关闭
30
������
≥4×2 900 =240,当且仅当 x=
900 ������
,即 x=30 时等号成立 .
解析
答案
-10知识梳理 双基自测 自测点评
1.应用基本不等式求最值要注意:“一正、二定、三相等”,可能 忽略某个条件,就会出错.
2.对于公式 a+b≥2 ������������,ab≤
思考利用基本不等式证明不等式的方法技巧有哪些?
-12考点1 考点2 考点3
2019届高考大一轮复习备考资料之数学人教A版全国用讲

§7.2 一元二次不等式及其解法1.“三个二次”的关系2.常用结论(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法口诀:大于取两边,小于取中间. 知识拓展(1)f (x )g (x )>0(<0)⇔f (x )·g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0. 以上两式的核心要义是将分式不等式转化为整式不等式.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ ) 题组二 教材改编2.[P80A 组T4]已知全集U =R ,集合A ={x |x 2-x -6≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4-xx +1≤0,那么集合A ∩(∁U B )等于( ) A .[-2,4) B .(-1,3] C .[-2,-1] D .[-1,3]答案 D解析 因为A ={x |-2≤x ≤3},B ={x |x <-1或x ≥4}, 故∁U B ={x |-1≤x <4},所以A ∩(∁U B )={x |-1≤x ≤3},故选D. 3.[P80A 组T2]y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0, 得-4<x <1.5.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.6.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集为空集,则实数a 的取值范围为____________. 答案 ⎣⎡⎭⎫-2,65 解析 当a 2-4=0时,a =±2.若a =-2,不等式可化为-1≥0,显然无解,满足题意;若a =2,不等式的解集不是空集,所以不满足题意;当a ≠±2时,要使不等式的解集为空集,则⎩⎪⎨⎪⎧a 2-4<0,(a +2)2+4(a 2-4)<0,解得-2<a <65. 综上,实数a 的取值范围为⎣⎡⎭⎫-2,65.题型一 一元二次不等式的求解命题点1 不含参的不等式典例 求不等式-2x 2+x +3<0的解集.解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0,得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞, 即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 命题点2 含参不等式典例 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0时,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥2a或x ≤-1; 当-2<a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 2a ≤x ≤-1;当a =-2时,不等式的解集为{-1};当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤2a . 思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集. 跟踪训练 解下列不等式: (1)0<x 2-x -2≤4;(2)12x 2-ax >a 2(a ∈R ). 解 (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4,则⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,可得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,∴原不等式的解集为{x |-2≤x <-1或2<x ≤3}. (2)∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得x 1=-a 4,x 2=a 3.当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-a 4或x >a 3; 当a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为 ⎩⎨⎧x ⎪⎪⎭⎬⎫x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题命题点1 在R 上的恒成立问题典例 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0)答案 D解析 ∵2kx 2+kx -38<0为一元二次不等式,∴k ≠0,又2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. (2)设a 为常数,对于∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,+∞) D .(-∞,4)答案 B解析 对于∀x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4. 命题点2 在给定区间上的恒成立问题典例 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 命题点3 给定参数范围的恒成立问题典例 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围. 解 由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4, 令g (m )=(x -2)m +x 2-4x +4.由题意,知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0. 解得x <1或x >3.故当x 的取值范围为(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零. 思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数. 跟踪训练 函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, ∴实数a 的取值范围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示):①如图①,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2. ②如图②,g (x )的图象与x 轴有交点, 但当x ∈[-2,+∞)时,g (x )≥0, 即⎩⎪⎨⎪⎧Δ≥0,x =-a2≤-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≤-2,4-2a +3-a ≥0,可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅.③如图③,g (x )的图象与x 轴有交点, 但当x ∈(-∞,2]时,g (x )≥0.即⎩⎪⎨⎪⎧Δ≥0,x =-a2≥2,g (2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≥2,7+a ≥0,可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≤-4,a ≥-7.∴-7≤a ≤-6,综上,实数a 的取值范围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6. ∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞). 题型三 一元二次不等式的应用典例 甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100·⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润. 解 (1)根据题意,得200⎝⎛⎭⎫5x +1-3x ≥3 000, 整理得5x -14-3x ≥0,即5x 2-14x -3≥0,又1≤x ≤10,可解得3≤x ≤10.即要使生产该产品2小时获得的利润不低于3 000元,x 的取值范围是[3,10]. (2)设利润为y 元,则 y =900x ·100⎝⎛⎭⎫5x +1-3x =9×104⎝⎛⎭⎫5+1x -3x 2 =9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112,故当x =6时,y max =457 500元.即甲厂以6千克/小时的生产速度生产900千克该产品时获得的利润最大,最大利润为457 500元. 思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.跟踪训练 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意,得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价,所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思想方法指导 函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. 解析 (1)由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a 22. 又∵f (x )<c ,∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵当x ∈[1,+∞)时,f (x )=x 2+2x +ax >0恒成立,即x 2+2x +a >0恒成立.即当x ≥1时,a >-(x 2+2x )恒成立. 令g (x )=-(x 2+2x ),则g (x )=-(x 2+2x )=-(x +1)2+1在[1,+∞)上单调递减, ∴g (x )max =g (1)=-3,故a >-3. ∴实数a 的取值范围是{a |a >-3}. 答案 (1)9 (2){a |a >-3}1.不等式(x -1)(2-x )≥0的解集为( )A .{x |1≤x ≤2}B .{x |x ≤1或x ≥2}C .{x |1<x <2}D .{x |x <1或x >2} 答案 A解析 由(x -1)(2-x )≥0可知,(x -2)(x -1)≤0,所以不等式的解集为{x |1≤x ≤2}.2.(2018·河北省三市联考)若集合A ={x |3+2x -x 2>0},集合B ={x |2x <2},则A ∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1) 答案 C解析 依题意,可求得A =(-1,3),B =(-∞,1),∴A ∩B =(-1,1).3.(2018·商丘调研)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( ) A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]答案 A 解析 方法一 当x ≤0时,x +2≥x 2,∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.方法二 作出函数y =f (x )和函数y =x 2的图象,如图所示,由图知f (x )≥x 2的解集为[-1,1].4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}答案 D解析 由题意知,当a =0时,满足条件.当a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0, 得0<a ≤4,所以0≤a ≤4.5.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件售价提高1元,销售量就会减少10件.那么要保证每天所赚的利润在320元以上,售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间答案 C解析 设售价定为每件x 元,利润为y ,则y =(x -8)[100-10(x -10)],依题意有(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16,所以每件售价应定为12元到16元之间.6.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3] 答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.7.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为________.答案 1±52 解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52. 8.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是____________. 答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪ a <x <1a 解析 原不等式即(x -a )⎝⎛⎭⎫x -1a <0, 由0<a <1,得a <1a ,∴a <x <1a. ∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a <x <1a .9.(2018·济南模拟)若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是________.答案 (-2,2]解析 原不等式等价于,(m -2)x 2+2(m -2)x -4<0,①当m -2=0,即m =2时,对任意x ,不等式都成立;②当m -2<0,即m <2时,Δ=4(m -2)2+16(m -2)<0,解得-2<m <2.综合①②,得m ∈(-2,2].10.(2018·湛江调研)已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3,则f (e x )>0(e 是自然对数的底数)的解集是__________. 答案 {x |-ln 2<x <ln 3}解析 依题意可得f (x )=a ⎝⎛⎭⎫x -12(x -3)(a <0),则f (e x )=a ⎝⎛⎭⎫e x -12(e x -3)(a <0), 由f (e x )=a ⎝⎛⎭⎫e x -12(e x -3)>0,可得12<e x <3, 解得-ln 2<x <ln 3.11.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .12.已知不等式(a +b )x +2a -3b <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-34,求不等式(a -2b )x 2+2(a -b -1)x +a -2>0的解集.解 因为(a +b )x +2a -3b <0,所以(a +b )x <3b -2a ,因为不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-34, 所以a +b <0,且3b -2a a +b=-34, 解得a =3b <0,则不等式(a -2b )x 2+2(a -b -1)x +a -2>0,等价于bx 2+(4b -2)x +3b -2>0,即x 2+⎝⎛⎭⎫4-2b x +3-2b<0, 即(x +1)⎝⎛⎭⎫x +3-2b <0. 因为-3+2b<-1, 所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3+2b <x <-1.13.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是____________.答案 ⎝⎛⎭⎫-235,+∞ 解析 方法一 ∵x 2+ax -2>0在x ∈[1,5]上有解,令f (x )=x 2+ax -2,∵f (0)=-2<0,f (x )的图象开口向上,∴只需f (5)>0,即25+5a -2>0,解得a >-235. 方法二 由x 2+ax -2>0在x ∈[1,5]上有解,可得a >2-x 2x =2x-x 在x ∈[1,5]上有解. 又f (x )=2x-x 在x ∈[1,5]上是减函数, ∴⎝⎛⎭⎫2x -x min =-235,只需a >-235. 14.不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为__________. 答案 [-8,4]解析 因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0对于任意的a ,b ∈R 恒成立,即a 2-λba +(8-λ)b 2≥0恒成立,由一元二次不等式的性质可知,Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.15.(2018·郑州质检)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,x 2-2x ,x <0, 若关于x 的不等式[f (x )]2+af (x )-b 2<0恰有1个整数解,则实数a 的最大值是( )A .2B .3C .5D .8答案 D解析 作出函数f (x )的图象如图实线部分所示,由[f (x )]2+af (x )-b 2<0, 得-a -a 2+4b 22<f (x )<-a +a 2+4b 22, 若b ≠0,则f (x )=0满足不等式,即不等式有2个整数解,不满足题意,所以b =0,所以-a <f (x )<0,且整数解x 只能是3,当2<x <4时,-8<f (x )<0,所以-8≤-a <-3,即a 的最大值为8,故选D.16.(2017·宿州模拟)若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为__________.答案 (-∞,0]解析 因为不等式4x -2x +1-a ≥0在[1,2]上恒成立, 所以4x -2x +1≥a 在[1,2]上恒成立. 令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1. 因为1≤x ≤2,所以2≤2x ≤4.由二次函数的性质可知,当2x =2,即x =1时,y 取得最小值0,所以实数a 的取值范围为(-∞,0].。
2019大一轮高考总复习理数(人教版)课件:第07章 不等式、推理与证明 第6节 数学归纳法

f(1) + f(2) + „ + f(k - 1) + f(k) = k[ f (k) - 1] + f(k) = (k + 1)f(k) - k = (k +
1 1)fk+1-k+1 f(k+1)-(k+1)=(k+1)[ f (k+1)-1] , -k=(k+1)·
1 2.(教材习题改编)在应用数学归纳法证明凸 n 边形的对角线为2n(n-3)条时,第 一步检验 n 等于( A.1 C.3
C
) B.2 D.0
解析:凸n边形的边最少有三条,故第一个值n0取3.
• 3.数列{an}中,已知a1=1,当n≥2时,an- B ,依次计算a ,a ,a 后,猜想 an-1=2n-1 2 3 4 an的表达式是( ) • A.3n-2 B.n2 -1 a =1,a =4,aD 计算出 = 9,4 an =- 16.可猜想 • C解析: .3n . 3 a =n .
• 5.用数学归纳法证明“当n为正奇数时,xn 2k+1 +yn能被x+y整除”,当第二步假设 n=2k- 1(k∈N*)命题为真时,进而需证n= ________________________ 时,命题亦真 解析:n为正奇数,假设n=2k-1成立后,需证明的应为n=2k+1时成立. .
0 2
第七章 不等式、推理与证明
第六节 数学归纳法
考点 数学归纳
高考试题
考查内容 未单独考查
核心素养
法
高考对本节内容不直接考查,有时作为解题方 命题分析 法出现在解答题中,多解决与正整数有关的问 题,难度中等.
栏 目 导 航
0 2
0 1课前· 回顾教材源自课堂· 考点突破0 3
课后· 高效演练
0 1
课前· 回顾教材
2019届高考数学一轮复习 第七章 不等式 推理与证明 7-4 基本不等式及其应用讲义 文

4.已知 a≥0,b≥0,且 a+b=2,则( )
A.ab≤12
B.ab≥12
C.a2+b2≥2 D.a2+b2≤3
[解析] 由 a+b=2 得,ab≤a+2 b2=1,排除 A. 当 a=0,b=2,ab=0 排除 B. 又a2+2 b2≥a+2 b2,可得 a2+b2≥2. 再由特殊值,排除 D.
(2)在求所列函数的最值时,若用基本不等式时,等号取不到, 可利用函数单调性求解.
[跟踪演练] (2017·安徽安庆三模)随着社会的发展,汽车逐步成为人们的 代步工具,家庭轿车的持有量逐年上升,交通堵塞现象时有发生, 据调查某段公路在某时段内的车流量 y(千辆/时)与汽车的平均速 度 v(千米/时)之间有函数关系:y=v2+89v0+0v1600(v>0). (1)在该时段内,当汽车的平均速度 v 为多少时车流量 y 最 大?最大车流量约为多少?(结果保留两位小数) (2)为保证在该时段内车流量至少为 10 千辆/时,则汽车的平 均速度应控制在什么范围内?
利用均值 不等式证明
[证明] 由 a+b=1,得1a+1b+a1b=21a+1b, ∵a+b=1,a>0,b>0, ∴1a+1b=a+a b+a+b b=2+ab+ba≥2+2=4, ∴1a+1b+a1b≥8当且仅当a=b=12时等号成立.
利用基本不等式证明不等式的技巧 利用基本不等式证明不等式时,首先要观察题中要证明的不 等式的形式,若不能直接使用基本不等式,则考虑利用拆项、配 凑等方法对不等式进行变形,使之达到能使用基本不等式的条 件;若题目中还有已知条件,则首先观察已知条件和所证不等式 之间的联系,当已知条件中含有 1 时,要注意 1 的代换.另外, 解题中要时刻注意等号能否取到.
此时 m=12x+34+5x0≥2 2x·5x0+34=443, 当且仅当12x=5x0,即 x=10 时,取“=”. 故销售量至少应达到443万件时,才能使技术革新后的销售收 入等于原销售收入与总投入之和.
2019版高考文科数学大一轮复习人教A版文档:第七章 不等式7.3

§7.3 二元一次不等式(组)与简单的线性规划问题最新考纲考情考向分析1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元一次线性规划问题,并能加以解决.以画二元一次不等式(组)表示的平面区域、目标函数最值的求法为主,兼顾由最优解(可行域)情况确定参数的范围,以及简单线性规划问题的实际应用,加强转化与化归和数形结合思想的应用意识.本节内容在高考中以选择、填空题的形式进行考查,难度中低档.1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.我们把直线画成虚线,以表示区域不包括边界直线.当我们在坐标系中画不等式Ax +By +C ≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)对于直线Ax +By +C =0同一侧的所有点,把它的坐标(x ,y )代入Ax +By +C ,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x 0,y 0)作为测试点,由Ax 0+By 0+C 的符号即可断定Ax +By +C >0表示的是直线Ax +By +C =0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x ,y 组成的一次不等式线性约束条件由x ,y 的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x ,y 的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.重要结论画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.知识拓展1.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.2.最优解和可行解的关系最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.( √ )(2)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.( × )(3)点(x1,y1),(x2,y2)在直线Ax+By+C=0同侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)> 0,异侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)<0.( √ )(4)第二、四象限表示的平面区域可以用不等式xy<0表示.( √ )(5)线性目标函数的最优解是唯一的.( × )(6)最优解指的是使目标函数取得最大值或最小值的可行解.( √ )(7)目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.( × )题组二 教材改编2.[P86T3]不等式组Error!表示的平面区域是( )答案 B解析 x-3y+6≥0表示直线x-3y+6=0及其右下方部分,x-y+2<0表示直线x-y+2=0的左上方部分,故不等式组表示的平面区域为选项B中的阴影部分.3.[P91T2]投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________.(用x,y分别表示生产A,B产品的吨数,x和y的单位是百吨)答案 Error!解析 用表格列出各数据A B总数产品吨数x y资金200x300y 1 400场地200x100y900所以不难看出,x≥0,y≥0,200x+300y≤1 400,200x+100y≤900.题组三 易错自纠4.下列各点中,不在x+y-1≤0表示的平面区域内的是( )A.(0,0) B.(-1,1)C.(-1,3) D.(2,-3)答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C.25.(2017·日照一模)已知变量x,y满足Error!则z=()2x+y的最大值为( ) 22A.B.2C.2 D.4答案 D解析 作出满足不等式组的平面区域,如图阴影部分所示,令m =2x +y ,则当m 取得最大值时,z =()2x +y 取得最大值.由图知直线m =2x +y 经过2点A (1,2)时,m 取得最大值,所以z max =()2×1+2=4,故选D.26.已知x ,y 满足Error!若使得z =ax +y 取最大值的点(x ,y )有无数个,则a 的值为________.答案 -1解析 先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,∴-a =k AB =1,∴a =-1.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题典例(2017·黄冈模拟)在平面直角坐标系中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C. D.1214答案 B解析 对于集合B ,令m =x +y ,n =x -y ,则x =,y =,由于(x ,y )∈A ,m +n2m -n2所以Error!即Error!因此平面区域B 的面积即为不等式组Error!所对应的平面区域(阴影部分)的面积,画出图形可知,该平面区域的面积为2×=1,故选B.(12×1×1)命题点2 含参数的平面区域问题典例 若不等式组Error!表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥B .0<a ≤143C .1≤a ≤ D .0<a ≤1或a ≥4343答案 D解析 作出不等式Error!表示的平面区域(如图中阴影部分所示).由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l:x+y=a在l1,l2之间(包含l2,不包含l1)或l3上方(包含l3).故选D.思维升华(1)求平面区域的面积对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形,分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法求解.跟踪训练(1)不等式(x-2y+1)(x+y-3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )答案 C解析 由(x-2y+1)(x+y-3)≤0,可得Error!或Error!画出平面区域后,只有选项C符合题意.(2)已知约束条件Error!表示面积为1的直角三角形区域,则实数k的值为( )A.1 B.-1 C.0 D.-2答案 A解析 由于x=1与x+y-4=0不可能垂直,所以只有可能x+y-4=0与kx-y=0垂直或x=1与kx-y=0垂直.①当x+y-4=0与kx-y=0垂直时,k=1,检验知三角形区域面积为1,即符合要求.②当x=1与kx-y=0垂直时,k=0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值典例(2017·全国Ⅱ)设x,y满足约束条件Error!则z=2x+y的最小值是( )A.-15 B.-9 C.1 D.9答案 A解析 不等式组表示的可行域如图中阴影部分所示.将目标函数z=2x+y化为y=-2x+z,作出直线y=-2x,并平移该直线知,当直线y=-2x+z经过点A(-6,-3)时,z有最小值,且z min=2×(-6)-3=-15.故选A.命题点2 求非线性目标函数的最值典例(2016·山东)若变量x,y满足Error!则x2+y2的最大值是( )A.4 B.9 C.10 D.12答案 C解析 满足条件Error!的可行域如图阴影部分(包括边界)所示,x2+y2是可行域上动点(x,y)到原点(0,0)距离的平方,显然,当x=3,y=-1时,x2+y2取得最大值,最大值为10.故选C.命题点3 求参数值或取值范围典例(2018届广雅中学、东华中学等联考)已知实数x,y满足Error!若z=x-my(m>0)的最大值为4,则z=x-my(m>0)的最小值为________.答案 -6解析 作出可行域如图阴影部分所示.目标函数化简得y =x -,1m zm 因为m >0,故只可能在A ,B 处取最大值.联立Error!解得B (-2,-2),联立Error!解得C (0,2),联立Error!解得A (2,0),若目标函数z =x -my (m >0)过点A ,z =2不符合题意,所以过点B 时取得最大值,此时4=-2+2m ,解得m =3,z =x -my (m >0)过点C 时,z min =-6.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有①表示点(x ,y )与原点(0,0)的距离,表示点(x ,y )与点(a ,b )的距离;x 2+y 2(x -a )2+(y -b )2②表示点(x ,y )与原点(0,0)连线的斜率,表示点(x ,y )与点(a ,b )连线的斜率.yx y -bx -a (3)当目标函数中含有参数时,要根据临界位置确定参数所满足的条件.跟踪训练 (1)已知实数x ,y 满足约束条件Error!则z =的取值范围为( )y -3x -2A. B.(-∞,-12](-∞,-13]C. D.[-12,-13][-13,+∞)答案 B解析 不等式组所表示的平面区域如图中阴影部分所示,z =表示点D (2,3)与平面区域内的点(x ,y )之间连线的斜率.因为点D (2,3)与点B (8,1)连y -3x -2线的斜率为-且C 的坐标为(2,-2),故由图知,z =的取值范围为,故选13y -3x -2(-∞,-13]B.(2)已知x ,y 满足约束条件Error!若z =ax +y 的最大值为4,则a 等于( )A .3 B .2C .-2 D .-3答案 B解析 根据已知条件,画出可行域,如图阴影部分所示.由z =ax +y ,得y =-ax +z ,直线的斜率k =-a .当0<k ≤1,即-1≤a <0时,无选项满足此范围;当k >1,即a <-1时,由图形可知此时最优解为点(0,0),此时z =0,不合题意;当-1≤k <0,即0<a ≤1时,无选项满足此范围;当k <-1,即a >1时,由图形可知此时最优解为点(2,0),此时z =2a +0=4,得a =2.题型三 线性规划的实际应用问题典例 某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润ω(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?解 (1)依题意每天生产的伞兵个数为100-x -y ,所以利润ω=5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为Error!整理得Error!目标函数为ω=2x +3y +300,作出可行域,如图阴影部分所示,作初始直线l0:2x+3y=0,平移l0,当l0经过点A时,ω有最大值,由Error!得Error!∴最优解为A(50,50),此时ωmax=550元.故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.思维升华解线性规划应用问题的一般步骤(1)审题:仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,借助表格或图形理清变量之间的关系.(2)设元:设问题中起关键作用(或关联较多)的量为未知量x,y,并列出相应的不等式组和目标函数.(3)作图:准确作出可行域,平移找点(最优解).(4)求解:代入目标函数求解(最大值或最小值).(5)检验:根据结果,检验反馈.跟踪训练(2016·全国Ⅰ)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.答案 216 000解析 设生产A产品x件,B产品y件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为Error!目标函数z=2 100x+900y.作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max=2100×60+900×100=216 000(元).线性规划问题考点分析线性规划是高考重点考查的一个知识点.这类问题一般有三类:①目标函数是线性的;②目标函数是非线性的;③已知最优解求参数,处理时要注意搞清是哪种类型,利用数形结合解决问题.典例若实数x,y满足约束条件Error!则z=2x+y的取值范围是( )A.[3,4]B.[3,12]C.[3,9]D.[4,9]解析 画出Error!表示的可行域(如图阴影部分所示),由Error!得A(1,1),由Error!得B(3,3),平移直线y=-2x+z,当直线经过A,B时分别取得最小值3,最大值9,故z=2x+y的取值范围是[3,9],故选C.答案 C1.下列二元一次不等式组可表示图中阴影部分平面区域的是( )A.Error!B.Error!C.Error!D.Error!答案 C解析 将原点坐标(0,0)代入2x -y +2,得2>0,于是2x -y +2≥0所表示的平面区域在直线2x -y +2=0的右下方,结合所给图形可知C 正确.2.(2018届贵州黔东南州联考)已知实数x ,y 满足Error!则z =3x -4y +3的取值范围是( )A. B.[43,13)(43,13]C.D .(3,13)[43,3)答案 A解析 画出不等式组Error!表示的可行域如图阴影部分所示.由z =3x -4y +3,得y =x +,343-z4平移直线y =x ,当经过点A (2,-1),B 时,z 的取值为13,,所以z ∈,故选34(13,23)43[43,13)A.3.直线2x +y -10=0与不等式组Error!表示的平面区域的公共点有( )A .0个 B .1个 C .2个 D .无数个答案 B解析 由不等式组画出可行域的平面区域如图阴影部分所示.直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-,即直线2x +y -10=0与平43面区域仅有一个公共点A (5,0).4.若不等式组Error!表示的平面区域为三角形,且其面积等于,则m 的值为( )43A .-3 B .1 C. D .343答案 B解析 不等式组表示的平面区域如图阴影部分,则图中A 点纵坐标y A =1+m ,B 点纵坐标y B =,2m +23C 点横坐标x C =-2m ,∴S △ABD =S △ACD -S △BCD =×(2+2m )×(1+m )-×(2+2m )×==,12122m +23(m +1)2343∴m =1或m =-3,又∵当m =-3时,不满足题意,应舍去,∴m =1.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800元 B .2 400元C .2 800元 D .3 100元答案 C解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x ,y 满足的约束条件为Error!设获利z 元,则z =300x +400y .画出可行域如图阴影部分.画出直线l :300x +400y =0,即3x +4y =0.平移直线l ,从图中可知,当直线l 过点M 时,目标函数取得最大值.由Error!解得Error! 即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).故选C.6.已知实数x ,y 满足约束条件Error!则ω=的最小值是( )y +1x A .-2 B .2 C .-1 D .1答案 D解析 作出不等式组对应的平面区域如图阴影部分所示,ω=的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当y +1x P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=的最小值为=1.故选D.y +1x -1-00-17.(2017·开封一模)若x ,y 满足约束条件Error!且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .[-4,2] B .(-4,2)C .[-4,1] D .(-4,1)答案 B解析 作出不等式组表示的平面区域如图中阴影部分所示,直线z =ax +2y 的斜率为k =-,从图中可看出,当-1<-<2,即-4<a <2时,仅在点a 2a2(1,0)处取得最小值,故选B.8.(2017·河北“五个一名校联盟”质检)已知点P 的坐标(x ,y )满足Error!过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是________.答案 4解析 根据约束条件画出可行域,如图中阴影部分所示,设点P 到圆心的距离为d ,则求最短弦长,等价于求到圆心的距离d 最大的点,即为图中的P 点,其坐标为(1,3),则d ==,12+3210此时|AB |min =2=4.14-109.(2017·全国Ⅲ)若x ,y 满足约束条件Error!则z =3x -4y 的最小值为________.答案 -1解析 不等式组Error!表示的可行域如图阴影部分所示.由z =3x -4y ,得y =x -z .3414平移直线y =x ,易知经过点A 时,直线在y 轴上的截距最大,z 有最小值.34由Error!得Error!∴A (1,1).∴z min =3-4=-1.10.(2018·广州模拟)若满足不等式组Error! 的点(x ,y )组成的图形的面积是5,则实数a 的值为________.答案 3解析 不等式组化为Error!或Error!画出平面区域如图所示,平面区域为△ABC ,△ADE ,A (1,2),B (a ,a +1),C (a,3-a ),面积为S =(2a -2)(a -1)+×2×1=5,1212解得a =3或a =-1(舍去).11.(2017·衡水中学月考)若直线y =2x 上存在点(x ,y )满足约束条件Error!则实数m 的最大值为____________.答案 1解析 约束条件Error! 表示的可行域如图中阴影部分所示.当直线x =m 从如图所示的实线位置运动到过A 点的虚线位置时,m 取最大值.解方程组Error!得A 点坐标为(1,2).∴m 的最大值为1.12.已知x ,y 满足不等式组Error!则z =x 2+y 2+2x -2y +2的最小值为________.答案 2解析 画出二元一次不等式组所表示的平面区域(阴影部分所示),目标函数z =x 2+y 2+2x -2y +2=(x +1)2+(y -1)2表示可行域内一点到点A (-1,1)的距离的平方,根据图象可以看出,点A (-1,1)到可行域内一点距离的最小值为点A (-1,1)到直线x -y =0的距离d ==,则d 2=2,则z =x 2+y 2+2x -2y +2的最小值为2.|-1-1|2213.(2017·石家庄二模)在平面直角坐标系中,不等式组Error!(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =的最小值为( )x +y+1x +3A .-1 B .-52+17C. D .-1375答案 D解析 作出不等式组表示的平面区域,如图阴影部分所示,由题意,知πr 2=π,解得r =2.14z ==1+,易知表示可行域内的点(x ,y )与点P (-3,2)的连线的斜率,由图x +y +1x +3y -2x +3y -2x +3可知,当点(x ,y )与点P 的连线与圆x 2+y 2=r 2相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有=2,解得k =-或k =0(舍),所以|3k +2|k 2+1125z min =1-=-,故选D.1257514.(2018届衡水联考)已知x ,y 满足约束条件Error!其中t >,若sin(x +y )的最大值与最小π2值分别为1,,则实数t 的取值范围为________.12答案 [5π6,7π6]解析 作出可行域如图阴影部分所示,设z =x +y ,作出直线l :x +y =z ,当直线l 过点B 时,z 取得最小值;当直线l 过点(π6,0)π6A 时,z 取得最大值t -.即≤x +y ≤t -,当x +y =时,sin(x +y )=1.(π6,t -π2)π3π6π3π2当x +y =或时,sin(x +y )=.π65π612所以≤t -≤,解得≤t ≤.π2π35π65π67π615.(2018届江苏常州名校联考)已知f (m )=(3m -1)a +b -2m ,当m ∈[0,1]时,f (m )≤1恒成立,则a +b 的最大值是________.答案 73解析 f (m )=(3m -1)a +b -2m =(3a -2)m -a +b ,∵当m ∈[0,1]时,f (m )≤1恒成立,∴Error!即Error!画出不等式组表示的可行域如图阴影部分,由Error!解得Error!所以点A 的坐标为.(23,53)令z =a +b ,则b =-a +z ,由图可知,当直线b =-a +z 过点A 时,直线在y 轴上的截距最大,即z 有最大值,且z max =+=,即a +b 的最大值是.2353737316.(2017·湖北七市联考)已知实数x ,y 满足Error!则的最小值为________.yx 答案 13解析 不等式组Error!表示的平面区域如图中阴影部分所示,表示可行域内的点(x ,y )与原点连线的斜率,设k =,由可行域可知,k 取得最小值时曲线yx yx y =x 4+与直线y =kx 相切,设此时切点为P (x 0,y 0),11214由y =x 4+,可得y ′=x 3,所以切线方程为y -y 0=x (x -x 0),又y 0=x +,所以112141313301124014切线方程可化为y =x x -x +x +,即y =x x -x +,又该切线过原点O (0,0),1330134011240141330144014所以x =1,40所以x 0=1,切线的斜率为x =,则min =.133013(y x )13。
2019版高考文科数学大一轮复习人教A版文档:第七章 不等式7.1

∴-4<x-y<2.
由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,
∴1<3x+2y<18. 思维升华 (1)判断不等式是否成立的方法
①判断不等式是否成立,需要逐一给出推理判断或反例说明.
②在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性
质进行判断.
(2)求代数式的取值范围
B.c(b-a)<0 D.ac(a-c)>0
答案 A
解析 由 c<b<a 且 ac<0,知 c<0 且 a>0.
由 b>c,得 ab>ac 一定成立.
(2)设 a>b>1,c<0,给出下列三个结论: cc
①a>b;②ac<bc;③logb(a-c)>loga(b-c). 其中所有正确结论的序号是( )
§7.1 不等关系与不等式
最新考纲
考情考向分析
1.了解现实世界和日常生活中存在着大量 以理解不等式的性质为主,本节在高考中主要
的不等关系.
以客观题形式考查不等式的性质;以主观题形
2.了解不等式(组)的实际背景.
式考查不等式与其他知识的综合.
1.两个实数比较大小的方法 (1)作差法Error! (a,b∈R) (2)作商法Error! (a∈R,b>0) 2.不等式的基本性质
方法三 由Error!确定的平面区域如图阴影部分所示,
( )3 1 , 当 f(-2)=4a-2b 过点 A 2 2 时, 31 取得最小值 4×2-2×2=5, 当 f(-2)=4a-2b 过点 B(3,1)时, 取得最大值 4×3-2×1=10, ∴5≤f(-2)≤10. 答案 [5,10] 纠错心得 在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到, 会导致范围扩大.
2019届高考数学人教A版理科第一轮复习课件:第七章 不等式、推理与证明 7.4

直接证明与间接证明
知识梳理
双基自测
1 2
1.直接证明
内 综合法 容 分析法
从要证明的结论出发,逐步寻求 利用已知条件和某些数学定 使它成立的 充分 条件,直到 定 义、公理、定理等,经过一系 最后,把要证明的结论归结为判 义 列的推理论证,最后推导出所 定一个明显成立的条件(已知条 要证明的结论 成立 件、定理、定义、公理等)为止
关闭
因为“方程x3+ax+b=0至少有一个实根”等价于“方程x3+ax+b=0的实根的
个数大于或等于1”,所以要做的假设是“方程x3+ax+b=0没有实根”. A
-8解析
关闭
答案
知识梳理
双基自测
1 2 3 4 5
5.(教材习题改编P15T(2))用反证法证明“100个球放在90个盒子里, 至少有一个盒子里不少于两个球”应假 设 .
-10-
考点1
考点2
考点3
证明:(1)因为3an-2Sn=2, 所以3an+1-2Sn+1=2, 所以3an+1-3an-2(Sn+1-Sn)=0. 所以{an}是等比数列. 当n=1时,3a1-2S1=2, 又S1=a1,所以a1=2. 所以{an}的通项公式an=2×3n-1.
-11-
考点1
关闭
A
-7解析
答案
知识梳理
双基自测
1 2 3 4 5
4.用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个 实根”时,要做的假设是( ) A.方程x3+ax+b=0没有实根 B.方程x3+ax+b=0至多有一个实根 C.方程x3+ax+b=0至多有两个实根 D.方程x3+ax+b=0恰好有两个实根
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.1 不等关系与不等式1.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b a -b =0⇔a =ba -b <0⇔a <b(a ,b ∈R )(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b ab =1⇔a =ba b <1⇔a <b(a ∈R ,b >0)2.不等式的基本性质3.不等式的一些常用性质 (1)倒数的性质 ①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >bd.④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质 若a >b >0,m >0,则①b a <b +m a +m ;b a >b -m a -m (b -m >0). ②a b >a +m b +m ;a b <a -m b -m(b -m >0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若ab>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × ) (4)a >b >0,c >d >0⇒a d >bc.( √ )(5)若ab >0,则a >b ⇔1a <1b .( √ )题组二 教材改编2.[P74T3]若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A 解析a -b >0⇒a >b⇒a >b ⇒a 2>b 2,但由a 2-b 2>0⇏a -b >0.3.[P75B 组T1]若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b解析 ∵0<a <b 且a +b =1, ∴a <12<b <1,∴2b >1且2a <1,∴a <2b ·a =2a (1-a )=-2a 2+2a =-2⎝⎛⎭⎫a -122+12<12. 即a <2ab <12,又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12,a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1), 又2b -1>0,b -1<0,∴a 2+b 2-b <0, ∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b .题组三 易错自纠4.若a >b >0,c <d <0,则一定有( ) A.a c -bd>0 B.a c -b d<0C.a d >b cD.a d <b c答案 D解析 ∵c <d <0,∴0<-d <-c ,又0<b <a ,∴-bd <-ac ,即bd >ac , 又∵cd >0,∴bd cd >ac cd ,即b c >ad.5.设a ,b ∈R ,则“a >2且b >1”是“a +b >3且ab >2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若a >2且b >1,则由不等式的同向可加性可得a +b >2+1=3,由不等式的同向同正可乘性可得ab >2×1=2.即“a >2且b >1”是“a +b >3且ab >2”的充分条件;反之,若“a +b >3且ab >2”,则“a >2且b >1”不一定成立,如a =6,b =12.所以“a >2且b >1”是“a +b >3且ab >2”的充分不必要条件.故选A.6.若-π2<α<β<π2,则α-β的取值范围是__________.答案 (-π,0)解析 由-π2<α<π2,-π2<-β<π2,α<β,得-π<α-β<0.题型一 比较两个数(式)的大小1.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A .c ≥b >a B .a >c ≥b C .c >b >a D .a >c >b答案 A解析 ∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0, ∴b >a ,∴c ≥b >a .2.若a =ln 33,b =ln 44,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 B解析 方法一 易知a ,b ,c 都是正数, b a =3ln 44ln 3=log 8164<1, 所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln xx ,y ′=1-ln x x 2,易知当x >e 时,函数f (x )单调递减. 因为e<3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .思维升华 比较大小的常用方法 (1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系.题型二 不等式的性质典例 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2 D .ac (a -c )>0答案 A解析 由c <b <a 且ac <0,知c <0且a >0. 由b >c ,得ab >ac 一定成立.(2)设a >b >1,c <0,给出下列三个结论: ①c a >cb;②a c <b c ;③log b (a -c )>log a (b -c ).其中所有正确结论的序号是( ) A .① B .①② C .②③ D .①②③答案 D解析 由不等式性质及a >b >1,知1a <1b ,又c <0,∴c a >cb ,①正确;构造函数y =x c ,∵c <0,∴y =x c 在(0,+∞)上是单调递减的, 又a >b >1,∴a c <b c ,②正确; ∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),③正确.思维升华 解决此类问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件. 跟踪训练 若1a <1b <0,给出下列不等式:①1a +b <1ab;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式是( ) A .①④ B .②③ C .①③ D .②④答案 C解析 方法一 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误; 因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0, 所以④错误.综上所述,可排除A ,B ,D. 方法二 由1a <1b<0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确;②中,因为b <a <0,所以-b >-a >0.故-b >|a |, 即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.题型三 不等式性质的应用命题点1 应用性质判断不等式是否成立 典例 已知a >b >0,给出下列四个不等式:①a 2>b 2;②2a >2b -1;③a -b >a -b ; ④a 3+b 3>2a 2b .其中一定成立的不等式为( ) A .①②③ B .①②④ C .①③④ D .②③④答案 A解析 方法一 由a >b >0可得a 2>b 2,①成立;由a >b >0可得a >b -1,而函数f (x )=2x 在R 上是增函数, ∴f (a )>f (b -1),即2a >2b -1,②成立;∵a >b >0,∴a >b , ∴(a -b )2-(a -b )2 =2ab -2b =2b (a -b )>0, ∴a -b >a -b ,③成立;若a =3,b =2,则a 3+b 3=35,2a 2b =36, a 3+b 3<2a 2b ,④不成立. 故选A.方法二 令a =3,b =2,可以得到①a 2>b 2,②2a >2b -1,③a -b >a -b 均成立,而④a 3+b 3>2a 2b 不成立,故选A.命题点2 求代数式的取值范围典例 已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2, ∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.思维升华 (1)判断不等式是否成立的方法①判断不等式是否成立,需要逐一给出推理判断或反例说明.②在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.(2)求代数式的取值范围利用不等式性质求某些代数式的取值范围时,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径. 跟踪训练 (1)若a <b <0,则下列不等式一定成立的是( ) A.1a -b >1b B .a 2<ab C.|b ||a |<|b |+1|a |+1 D .a n >b n答案 C解析 (特值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确; C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |, ∵a <b <0,∴|b |<|a |成立,故选C.(2)已知-1<x <y <3,则x -y 的取值范围是________. 答案 (-4,0)解析 ∵-1<x <3,-1<y <3, ∴-3<-y <1,∴-4<x -y <4. 又∵x <y ,∴x -y <0,∴-4<x -y <0, 故x -y 的取值范围为(-4,0).利用不等式变形求范围典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 错解展示:由⎩⎪⎨⎪⎧1≤f (-1)≤2,2≤f (1)≤4, 得⎩⎪⎨⎪⎧1≤a -b ≤2,①2≤a +b ≤4. ② ①+②得32≤a ≤3,②-①得12≤b ≤1.由此得4≤f (-2)=4a -2b ≤11. 所以f (-2)的取值范围是[4,11]. 错误答案 [4,11] 现场纠错解析 方法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法三 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A ⎝⎛⎭⎫32,12时, 取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]纠错心得 在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.1.(2018·济宁模拟)若a <0,ay >0,且x +y >0,则x 与y 之间的不等关系是( ) A .x =y B .x >y C .x <y D .x ≥y答案 B解析 由a <0,ay >0,可知y <0,又由x +y >0, 可知x >0,所以x >y .2.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A .f (x )=g (x ) B .f (x )>g (x )C .f (x )<g (x )D .随x 值的变化而变化答案 B解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0, 则f (x )>g (x ).3.若a ,b ∈R ,且a +|b |<0,则下列不等式中正确的是( ) A .a -b >0 B .a 3+b 3>0 C .a 2-b 2<0 D .a +b <0答案 D解析 由a +|b |<0知,a <0,且|a |>|b |, 当b ≥0时,a +b <0成立,当b <0时,a +b <0成立,∴a +b <0成立.故选D.4.(2018·乐山调研)若6<a <10,a 2≤b ≤2a ,c =a +b ,那么c 的取值范围是( )A .9≤c ≤18B .15<c <30C .9≤c ≤30D .9<c <30答案 D解析 ∵c =a +b ≤3a 且c =a +b ≥3a2,∴9<3a2≤a +b ≤3a <30.5.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由(a -b )·a 2<0,可知a ≠0且a <b ,∴充分性成立;由a <b ,可知a -b <0,当0=a <b 时,推不出(a -b )·a 2<0,必要性不成立.6.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是( ) A.⎝⎛⎭⎫0,5π6 B.⎝⎛⎭⎫-π6,5π6 C .(0,π) D.⎝⎛⎭⎫-π6,π 答案 D解析 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.7.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A .ax +by +cz B .az +by +cx C .ay +bz +cx D .ay +bx +cz答案 B解析 令x =1,y =2,z =3,a =1,b =2,c =3. A 项:ax +by +cz =1+4+9=14; B 项:az +by +cx =3+4+3=10; C 项:ay +bz +cx =2+6+3=11; D 项:ay +bx +cz =2+2+9=13.故选B.8.(2018·济南调研)若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b答案 A解析 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x在(0,1]上单调递减,在[1,+∞)上单调递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立,故选A.9.已知a 1≤a 2,b 1≥b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是__________________. 答案 a 1b 1+a 2b 2≤a 1b 2+a 2b 1解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2),因为a 1≤a 2,b 1≥b 2,所以a 1-a 2≤0,b 1-b 2≥0,于是(a 1-a 2)(b 1-b 2)≤0,故a 1b 1+a 2b 2≤a 1b 2+a 2b 1. 10.已知a ,b ,c ,d 均为实数,有下列命题: ①若ab >0,bc -ad >0,则c a -db >0;②若ab >0,c a -db >0,则bc -ad >0;③若bc -ad >0,c a -db >0,则ab >0.其中正确的命题是________.(填序号) 答案 ①②③解析 ∵ab >0,bc -ad >0, ∴c a -d b =bc -ad ab >0,∴①正确; ∵ab >0,又c a -db >0,即bc -ad ab >0,∴bc -ad >0,∴②正确;∵bc -ad >0,又c a -db >0,即bc -ad ab >0,∴ab >0,∴③正确.故①②③都正确.11.(2018·青岛调研)设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小关系是________.(用“>”连接) 答案 z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x . 同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20, z =26,故z >y >x .12.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是____________. 答案 ⎝⎛⎭⎫-32,232 解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎨⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232.13.设实数x ,y 满足0<xy <4,且0<2x +2y <4+xy ,则x ,y 的取值范围是( ) A .x >2且y >2 B .x <2且y <2 C .0<x <2且0<y <2 D .x >2且0<y <2 答案 C解析 由题意得⎩⎪⎨⎪⎧ xy >0,x +y >0,则⎩⎪⎨⎪⎧x >0,y >0,由2x +2y -4-xy =(x -2)·(2-y )<0,得⎩⎪⎨⎪⎧x >2,y >2或⎩⎪⎨⎪⎧ 0<x <2,0<y <2,又xy <4,可得⎩⎪⎨⎪⎧0<x <2,0<y <2.14.若x >y ,a >b ,则在①a -x >b -y ;②a +x >b +y ;③ax >by ;④x -b >y -a ;⑤a y >bx 这五个式子中,恒成立的不等式的序号是________. 答案 ②④解析 令x =-2,y =-3,a =3,b =2. 符合题设条件x >y ,a >b .∵a -x =3-(-2)=5,b -y =2-(-3)=5. ∴a -x =b -y ,因此①不成立.∵ax =-6,by =-6,∴ax =by ,因此③不成立. ∵a y =3-3=-1,b x =2-2=-1, ∴a y =bx ,因此⑤不成立. 由不等式的性质可推出②④成立.15.(2018·江门模拟)设a ,b ∈R ,定义运算“⊗”和“”如下:a ⊗b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若m ⊗n ≥2,p q ≤2,则( )A .mn ≥4且p +q ≤4B .m +n ≥4且pq ≤4C .mn ≤4且p +q ≥4D .m +n ≤4且pq ≤4答案 A解析 结合定义及m ⊗n ≥2可得⎩⎪⎨⎪⎧ m ≥2,m ≤n 或⎩⎪⎨⎪⎧n ≥2,m >n ,即n ≥m ≥2或m >n ≥2,所以mn ≥4;结合定义及p q ≤2,可得⎩⎪⎨⎪⎧ p ≤2,p >q 或⎩⎪⎨⎪⎧q ≤2,p ≤q ,即q <p ≤2或p ≤q ≤2, 所以p +q ≤4.16.(2017·合肥质检)已知△ABC 的三边长分别为a ,b ,c ,且满足b +c ≤3a ,则ca 的取值范围为( ) A .(1,+∞) B .(0,2) C .(1,3) D .(0,3)答案 B解析 由已知及三角形三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >b a,∴⎩⎨⎧1<b a +ca≤3,-1<c a -ba <1,两式相加,得0<2×ca <4,∴ca 的取值范围为(0,2).。