Light Weight Space Leaping Using Ray Coherence

合集下载

宏观傅里叶叠层技术远距离成像实验研究

宏观傅里叶叠层技术远距离成像实验研究

航天返回与遥感第44卷第6期38 SPACECRAFT RECOVERY & REMOTE SENSING2023年12月宏观傅里叶叠层技术远距离成像实验研究田芷铭赵明王森李剑(大连海事大学,大连116026)摘要傅里叶叠层是一新型的宽视场高分辨成像技术,但是其在宏观成像领域的应用中,成像模型在米级成像距离下通常仅有2 cm左右的成像视场,难以满足使用要求。

为了提高宏观傅里叶叠层技术的成像距离和视场,文章开展了远距离宏观反射式傅里叶叠层成像模型的理论研究,提出了一种新的宏观傅里叶叠层成像模型,该模型使用发散光束照明,通过球面波移位对目标傅里叶谱进行扫描重建高分辨率目标图像;此外,还分析了宏观相干成像机理和傅里叶成像模型近似条件,由此推导出模型的近似范围,为模型推广提供了理论基础;最后,利用搭建的实验系统对10 m外目标成像,使目标分辨率从1.4 mm提升到0.35 mm,分辨率提升4倍以上,验证了模型具有通过合成孔径技术提升目标成像分辨率的能力。

关键词宏观成像傅里叶叠层成像模型远距离成像超分辨技术傅里叶叠层实验中图分类号: TP391.41文献标志码: A 文章编号: 1009-8518(2023)06-0038-07 DOI: 10.3969/j.issn.1009-8518.2023.06.004Experimental Research on Long-Range Imaging Using MacroscopicFourier Ptychographic TechnologyTIAN Zhiming ZHAO Ming WANG Sen LI Jian(Dalian Maritime University, Dalian 116026, China)Abstract Fourier ptychography is a promising high-resolution imaging technique that has been gradually applied in the field of macroscopic imaging. However, its imaging model typically provides a limited field-of-view of around 2 cm at meter-level imaging distances, which often falls short of practical requirements. To enhance the imaging distance and field-of-view of macroscopic Fourier ptychography, this article conducted theoretical research on the long-distance macro reflection Fourier stack imaging model. The proposed model utilizes diverging light beams for illumination, scans the target Fourier spectrum using spherical wavefront shifting, and reconstructs high-resolution target images. The article analyzes the mechanism of macroscopic coherent imaging and the approximation conditions of the Fourier imaging model, deriving the approximate range of the model and establishing a theoretical foundation for its extension. Finally, the built experimental system was used to image a target 10 meters away, increasing the target resolution from 1.4 mm to 0.35 mm, a resolution increase of more than 4 times, verifying the model’s capability to improve target imaging resolution through the synthetic aperture technology.收稿日期:2023-06-20引用格式:田芷铭, 赵明, 王森, 等. 宏观傅里叶叠层技术远距离成像实验研究[J]. 航天返回与遥感, 2023, 44(6): 38-44.TIAN Zhiming, ZHAO Ming, WANG Sen, et al. Experimental Research on Long-Range Imaging Using Macroscopic Fourier Ptychographic Technology[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(6): 38-44. (in Chinese)第6期 田芷铭 等: 宏观傅里叶叠层技术远距离成像实验研究 39Keywords macroscopic imaging; Fourier ptychographic model; long-range imaging; super-resolution technology; Fourier ptychographic experiment0 引言目前,在监视、遥感等领域,高分辨率成像问题面临着重要挑战。

平流层飞艇总体性能与技术研究

平流层飞艇总体性能与技术研究

关键词:平流层飞艇,技术概述,参数化建模,外形优化,代理模型;Kriging
模型,参数分析
- II -
南京航空航大学硕士学位论文
Abstract
Airships as stratospheric platform have large value in telecommunication services and military applcaiton. Their have been closely attend for nearly thirty years in those strong military countries. With the background of the stratospheric platform R&D project in China, this dissertation summarizes characteristics, application, systems and some technology of airship. Then, the airship modeling, figuration optimization and parameter analysis are studied in this thesis. In the context, parametic modeling method is used for stratospheric airship geometric modeling, and it can save considerable amount time required for aerodynamics analysis and figuration design. At the same time, airship with lemniscate and roseline profile is also studied to analyze their characteristic of drag. It’s found that airship is fit to control and has enough buoyanch when its slenderness radio is approximately four. So an improved trilobal roseline is described as a good profile. Surrogate model is introduced in the progress of figuration optimization of the airship. With Latin Squares Experiment Design to show samples and Kriging Approximation Approaches, we build the surrogate model for aerodynamical analysis. And then the figuration of stratospheric airship is optimized to have minimal weight in Isight. Finally, in the base of figuration optimization, the affect to weight and size of airship as a result of improving of much technology such as driving, energy, and material is studied, and this article figure out the direction of technology about stratospheric airship which should be developed. Keywords: Stratospheric airship, Technology summarization, Parametic modeling, Figuration optimization, Surrogate model, Kriging model, Parameter analysis

微小卫星调姿偏置动量轮结构优化设计

微小卫星调姿偏置动量轮结构优化设计

微小卫星调姿偏置动量轮结构优化设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!微小卫星调姿偏置动量轮结构优化设计1. 引言随着微小卫星技术的快速发展,调姿偏置动量轮作为微小卫星的重要组成部分,其结构设计对卫星的姿态控制具有至关重要的影响。

大气散射模型在雾天图像增强和海面小目标检测中的应用

大气散射模型在雾天图像增强和海面小目标检测中的应用

大气散射模型在雾天图像增强和海面小目标检测中的应用大气散射模型在雾天图像增强和海面小目标检测中的应用引言:雾天对于图像处理和目标检测带来了许多挑战。

在雾天条件下,图像中的细节被模糊和遮蔽,同时海面上的小目标也因雾气的存在而变得难以识别。

为了克服这些问题,科学家们引入了大气散射模型,该模型可以帮助恢复被雾气所遮挡的图像信息,并提高海面小目标的检测率。

一、大气散射模型的原理大气散射模型是根据大气散射现象建立的数学模型。

在雾天条件下,光线与雾气中的微小颗粒相互作用,导致光线的散射现象。

根据散射模型,我们可以估计雾气对图像亮度和颜色的影响,进而利用这些信息进行图像增强和目标检测。

二、雾天图像增强1. 雾气的影响:在雾天条件下,由于光线的散射现象,图像的亮度和对比度会降低,同时出现色偏现象,使得图像细节难以辨认。

2. 大气散射模型在图像增强中的应用:大气散射模型可以估计图像中雾气的浓度和颜色参数,进而根据这些参数调整图像的亮度和对比度,减轻色偏现象。

通过该模型的应用,雾天图像的细节可以得到恢复,图像的视觉效果将更加清晰和自然。

三、海面小目标检测1. 雾气的影响:在海面上,雾气的存在会导致小目标在图像中的表示模糊,目标的边缘和纹理特征难以捕捉,从而给目标检测带来困难。

2. 大气散射模型在目标检测中的应用:大气散射模型可以帮助恢复由雾气导致的图像模糊,使得海面小目标的边缘和纹理特征得以增强。

在目标检测过程中,我们可以利用散射模型对原始图像进行预处理,将图像中的雾气效应去除后,再进行目标的特征提取和分类,从而提高小目标的检测率。

四、实验和应用科学家们通过实验验证了大气散射模型在雾天图像增强和海面小目标检测中的有效性。

他们使用了不同种类的雾天图像和海面小目标图像,通过调整大气散射模型的参数,成功地恢复了图像的细节并提高了小目标的识别率。

在实际应用中,大气散射模型的应用有着广泛的前景。

在军事上,利用该模型可以提高侦查和目标锁定的准确性;在海洋研究中,能够更好地识别和跟踪海洋中的小目标;在自动驾驶领域,可以增强汽车视觉系统在雾天条件下的图像处理能力。

低照度微小目标人体检测与轻量级姿态估计算法研究

低照度微小目标人体检测与轻量级姿态估计算法研究

低照度微小目标人体检测与轻量级姿态估计算法研究低照度微小目标人体检测与轻量级姿态估计算法研究近年来,随着计算机视觉技术的不断发展,人体检测和姿态估计成为了一个热门的研究领域。

在日常生活和工业应用中,低照度环境下的目标检测和姿态估计一直是一项具有挑战性的任务。

本研究旨在探索低照度环境下的微小目标人体检测与轻量级姿态估计算法。

低照度环境下的目标检测一直是计算机视觉领域的难点之一。

低照度条件下,光线稀缺,图像中的目标物体往往难以被准确检测和识别。

传统的目标检测算法通常基于亮度信息,然而在低照度环境中,目标的亮度往往非常低,导致传统算法的表现不佳。

因此,研究人员提出了一系列针对低照度环境的目标检测算法。

在本研究中,我们提出了一种基于深度学习的低照度微小目标人体检测算法。

首先,我们使用光线增强技术来增强低照度图像的亮度。

然后,我们训练一个卷积神经网络模型来检测低照度环境下的微小目标。

该模型结合了目标的颜色、纹理和形状等多种特征,能够在低照度条件下准确地检测微小目标。

实验结果表明,我们的算法在低照度环境下具有很好的检测性能。

除了目标检测,姿态估计也是计算机视觉中的重要任务。

姿态估计旨在从图像中估计出目标的三维位姿信息。

在低照度环境下,由于光线不足,目标的细节信息难以获取,使得姿态估计变得更加困难。

因此,在本研究中,我们提出了一种轻量级姿态估计算法。

我们的姿态估计算法基于卷积神经网络和深度学习技术。

首先,我们使用数据增强技术来扩充训练数据集,以提高算法的泛化能力。

然后,我们训练一个深度卷积神经网络模型来实现姿态估计。

该模型能够从图像中提取出目标的关键点,通过这些关键点的位置信息,可以准确地估计出目标的姿态。

实验证明,我们的算法在低照度环境下能够实现较好的姿态估计精度。

综上所述,本研究探索了低照度微小目标人体检测与轻量级姿态估计算法。

我们提出了一种基于深度学习的低照度目标检测算法,通过光线增强和多特征融合,实现了在低照度环境中准确检测微小目标的能力。

基于CNN-BiLSTM-CBAM的波浪能发电功率短期预测模型研究

基于CNN-BiLSTM-CBAM的波浪能发电功率短期预测模型研究

基于CNN-BiLSTM-CBAM的波浪能发电功率短期预测模型研究在科技领域,预测模型如同航海中的灯塔,为未来的探索提供方向与指引。

特别是对于波浪能发电这种绿色能源技术而言,准确的功率预测不仅关乎经济效益,更涉及能源调度和环境保护。

本文将介绍一种融合了卷积神经网络(CNN)、双向长短时记忆网络(BiLSTM)以及卷积块注意力模块(CBAM)的创新预测模型,并探讨其在波浪能发电功率短期预测中的应用潜力。

首先,让我们想象一下,海浪是大自然的乐章,每一波峰都是音符,而我们的目标是谱写出这首曲子的未来旋律。

传统的预测方法往往像是用单一的乐器演奏,难以捕捉到这复杂乐章的所有细节。

然而,CNN-BiLSTM-CBAM模型则如同一支交响乐团,通过不同的“乐器”来捕捉和理解这些细节。

CNN负责从波浪数据中提取空间特征,就像是乐团中的弦乐部分,能够细致地描绘出音乐的背景和纹理。

BiLSTM则在此基础上进一步挖掘时间序列中的依赖关系,犹如乐团中的管乐和打击乐,为乐曲增添了节奏和动感。

而CBAM的加入,则是指挥家的手笔,它能够动态地调整注意力,突出关键信息,使得整个乐团的演奏更加和谐而富有表现力。

夸张地说,这个模型就像是拥有了预知未来的能力。

它能够在众多复杂的数据中,准确地捕捉到那些对预测结果至关重要的信号,就像是在茫茫大海中找到了航向的北极星。

通过强调这些关键信号,模型能够大幅提高预测的准确性和效率。

然而,任何模型都不是完美的。

在实际应用中,我们必须面对诸如数据质量、模型过拟合以及计算资源限制等问题。

这些问题就像海上的风浪和暗礁,需要我们谨慎应对。

因此,在进行模型设计和优化时,我们需要像对待艺术品一样精心雕琢每一个细节。

形容词的使用在这里也显得尤为重要。

比如,当我们描述模型的性能时,可能会用到“精确”、“高效”、“鲁棒”等词汇,这些都是对模型能力的认可和赞扬。

同时,我们也会用“复杂”、“敏感”、“脆弱”来形容模型面临的挑战和风险,从而提醒我们在实际应用中要保持警惕。

前美国宇航局科学家为冬奥会选手提供帮助

前美国宇航局科学家为冬奥会选手提供帮助

前美国宇航局科学家为冬奥会选手提供帮助
王跃新
【期刊名称】《体育科研》
【年(卷),期】2006(27)1
【摘要】参加都灵冬奥会的美国奥运代表队的选手将在其正式赞助商希尔顿酒店集团的鼎立支持下,邀请前美国宇航局的科学家为美国冬奥会选手提供一系列的科技服务,其中之一是为运动员设计一套更为有效的睡眠模式,以便使美国运动员能在都灵冬奥会占据优势,取得更好的成绩。

【总页数】1页(P84-84)
【关键词】美国宇航局;冬奥会;科学家;选手;希尔顿酒店集团;科技服务;睡眠模式;运动员;赞助商
【作者】王跃新
【作者单位】
【正文语种】中文
【中图分类】G80-05;V476.4
【相关文献】
1.美国宇航局资助科学家设计“月球天梯” [J],
2.美国宇航局科学家称:宇宙的颜色像是一杯拿铁 [J], 梁杉
3.三维数字模型帮助美国宇航局获得火星探测上的成功 [J],
4.三维数字模型可帮助美国宇航局成功完成火星任务 [J],
5.美国宇航局科学家提出"绿化"火星具体方案火星上建工厂制造超级温室气体 [J], 欧阳
因版权原因,仅展示原文概要,查看原文内容请购买。

低频活动漂浮潜水船声探测系统(LFATS)说明书

低频活动漂浮潜水船声探测系统(LFATS)说明书

LOW-FREQUENCY ACTIVE TOWED SONAR (LFATS)LFATS is a full-feature, long-range,low-frequency variable depth sonarDeveloped for active sonar operation against modern dieselelectric submarines, LFATS has demonstrated consistent detection performance in shallow and deep water. LFATS also provides a passive mode and includes a full set of passive tools and features.COMPACT SIZELFATS is a small, lightweight, air-transportable, ruggedized system designed specifically for easy installation on small vessels. CONFIGURABLELFATS can operate in a stand-alone configuration or be easily integrated into the ship’s combat system.TACTICAL BISTATIC AND MULTISTATIC CAPABILITYA robust infrastructure permits interoperability with the HELRAS helicopter dipping sonar and all key sonobuoys.HIGHLY MANEUVERABLEOwn-ship noise reduction processing algorithms, coupled with compact twin line receivers, enable short-scope towing for efficient maneuvering, fast deployment and unencumbered operation in shallow water.COMPACT WINCH AND HANDLING SYSTEMAn ultrastable structure assures safe, reliable operation in heavy seas and permits manual or console-controlled deployment, retrieval and depth-keeping. FULL 360° COVERAGEA dual parallel array configuration and advanced signal processing achieve instantaneous, unambiguous left/right target discrimination.SPACE-SAVING TRANSMITTERTOW-BODY CONFIGURATIONInnovative technology achievesomnidirectional, large aperture acousticperformance in a compact, sleek tow-body assembly.REVERBERATION SUPRESSIONThe unique transmitter design enablesforward, aft, port and starboarddirectional transmission. This capabilitydiverts energy concentration away fromshorelines and landmasses, minimizingreverb and optimizing target detection.SONAR PERFORMANCE PREDICTIONA key ingredient to mission planning,LFATS computes and displays systemdetection capability based on modeled ormeasured environmental data.Key Features>Wide-area search>Target detection, localization andclassification>T racking and attack>Embedded trainingSonar Processing>Active processing: State-of-the-art signal processing offers acomprehensive range of single- andmulti-pulse, FM and CW processingfor detection and tracking. Targetdetection, localization andclassification>P assive processing: LFATS featuresfull 100-to-2,000 Hz continuouswideband coverage. Broadband,DEMON and narrowband analyzers,torpedo alert and extendedtracking functions constitute asuite of passive tools to track andanalyze targets.>Playback mode: Playback isseamlessly integrated intopassive and active operation,enabling postanalysis of pre-recorded mission data and is a keycomponent to operator training.>Built-in test: Power-up, continuousbackground and operator-initiatedtest modes combine to boostsystem availability and accelerateoperational readiness.UNIQUE EXTENSION/RETRACTIONMECHANISM TRANSFORMS COMPACTTOW-BODY CONFIGURATION TO ALARGE-APERTURE MULTIDIRECTIONALTRANSMITTERDISPLAYS AND OPERATOR INTERFACES>State-of-the-art workstation-based operator machineinterface: Trackball, point-and-click control, pull-down menu function and parameter selection allows easy access to key information. >Displays: A strategic balance of multifunction displays,built on a modern OpenGL framework, offer flexible search, classification and geographic formats. Ground-stabilized, high-resolution color monitors capture details in the real-time processed sonar data. > B uilt-in operator aids: To simplify operation, LFATS provides recommended mode/parameter settings, automated range-of-day estimation and data history recall. >COTS hardware: LFATS incorporates a modular, expandable open architecture to accommodate future technology.L3Harrissellsht_LFATS© 2022 L3Harris Technologies, Inc. | 09/2022NON-EXPORT CONTROLLED - These item(s)/data have been reviewed in accordance with the InternationalTraffic in Arms Regulations (ITAR), 22 CFR part 120.33, and the Export Administration Regulations (EAR), 15 CFR 734(3)(b)(3), and may be released without export restrictions.L3Harris Technologies is an agile global aerospace and defense technology innovator, delivering end-to-endsolutions that meet customers’ mission-critical needs. The company provides advanced defense and commercial technologies across air, land, sea, space and cyber domains.t 818 367 0111 | f 818 364 2491 *******************WINCH AND HANDLINGSYSTEMSHIP ELECTRONICSTOWED SUBSYSTEMSONAR OPERATORCONSOLETRANSMIT POWERAMPLIFIER 1025 W. NASA Boulevard Melbourne, FL 32919SPECIFICATIONSOperating Modes Active, passive, test, playback, multi-staticSource Level 219 dB Omnidirectional, 222 dB Sector Steered Projector Elements 16 in 4 stavesTransmission Omnidirectional or by sector Operating Depth 15-to-300 m Survival Speed 30 knotsSize Winch & Handling Subsystem:180 in. x 138 in. x 84 in.(4.5 m x 3.5 m x 2.2 m)Sonar Operator Console:60 in. x 26 in. x 68 in.(1.52 m x 0.66 m x 1.73 m)Transmit Power Amplifier:42 in. x 28 in. x 68 in.(1.07 m x 0.71 m x 1.73 m)Weight Winch & Handling: 3,954 kg (8,717 lb.)Towed Subsystem: 678 kg (1,495 lb.)Ship Electronics: 928 kg (2,045 lb.)Platforms Frigates, corvettes, small patrol boats Receive ArrayConfiguration: Twin-lineNumber of channels: 48 per lineLength: 26.5 m (86.9 ft.)Array directivity: >18 dB @ 1,380 HzLFATS PROCESSINGActiveActive Band 1,200-to-1,00 HzProcessing CW, FM, wavetrain, multi-pulse matched filtering Pulse Lengths Range-dependent, .039 to 10 sec. max.FM Bandwidth 50, 100 and 300 HzTracking 20 auto and operator-initiated Displays PPI, bearing range, Doppler range, FM A-scan, geographic overlayRange Scale5, 10, 20, 40, and 80 kyd PassivePassive Band Continuous 100-to-2,000 HzProcessing Broadband, narrowband, ALI, DEMON and tracking Displays BTR, BFI, NALI, DEMON and LOFAR Tracking 20 auto and operator-initiatedCommonOwn-ship noise reduction, doppler nullification, directional audio。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∗e-mail:{lsarang,ari}@
compute the data structure. Depending on the data structure used, the complexity and time required for the construction will vary.
The advantage of the data structure approach is that ray casting for every frame is accelerated. Almost all object space techniques use some kind of a data structure to store the transparency status of a voxel or a group of voxels. However, all such techniques require a large amount of memory that is proportional to the size of the dataset being rendered. The contents of the data structure are also dependent on the transfer function. A change in the transfer function requires rebuilding the data structure. This prohibits interactive transfer function changes, which are key to data exploration. Accessing a large data structure during ray casting may also be time consuming and therefore reduce the benefits of acceleration. Another disadvantage of this approach is the pre-processing needed to
CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation; I.3.4 [Computer Graphics]: Graphics Utilities; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism;
Keywords: Direct Volume Rendering, Space Leaping, Empty Space Skipping, Ray Coherence, Volume Rendering Acceleration
1 INTRODUCTION
In this work our focus is on accelerating volume rendering by efficiently skipping empty space in the volumetric data. The main idea of empty space skipping, or space leaping, is to skip empty voxels while traversing a ray. Empty voxels are those that have zero opacity and do not contribute to the volume rendering integral. Skipping empty voxels is beneficial because it avoids sampling data along the ray in the empty region, saving a substantial number of interpolations.
Light Weight Space Leaping using Ray Coherence
Sarang Lakare and Arie Kaufman∗
Center for Visual Computing (CVC) and Department of Computer Science Stony Brook University
Two approaches to space leaping have been well studied for ray casting volumetric data. One uses data structures to mark empty space so that during ray casting this empty space can be skipped [1, 5, 6, 10, 12]. The other exploits temporal coherence when rendering a sequence of images using ray casting [13]. There are also other techniques that combine the two approaches [11]. We analyze these techniques briefly in this section, and survey existing techniques in the next section.
The basic idea of our technique is to use ray coherence to skip over empty voxels. Often a group of rays from the image plane traverse the same distance before they intersect the object. Ray coherence has been used earlier for accelerating ray tracing of traditional surface models [3]. However, use of ray coherence for accelerating ray casting on volumetric datasets is not well studied.
2 EXISTING SPACE ING TECHNIQUES
In this section we discuss some of the existing space leaping techniques. We limit our discussion to techniques proposed recently and to those that do not make use of a special data structure for space leaping.
The main disadvantage of temporal coherence techniques is that the acceleration achieved depends on the coherence between frames. Hence, this technique cannot be used to accelerate images generated from different view points and view directions or for generation of images out of order. For example, construction of a mosaic may not get accelerated by this method [8].
Stony Brook, NY 11790-4400, USA
ABSTRACT
We present a space leaping technique for accelerating volume rendering with very low space and run-time complexity. Our technique exploits the ray coherence during ray casting by using the distance a ray traverses in empty space to leap its neighboring rays. Our technique works with parallel as well as perspective volume rendering, does not require any pre-processing or 3D data structures, and is independent of the transfer function. Being an image-space technique, it is independent of the complexity of the data being rendered. It can be used to accelerate both time-coherent and non coherent animation sequences.
In this paper, we present an ideal space leaping acceleration technique that assumes the best properties from all the previous techniques. In particular, our technique does not need any data structure or pre-processing. It has very small computational cost per frame. It accelerates each frame and does not use any temporal coherence. Our technique allows interactive transfer function changes. It also works with orthographic as well as perspective projection. Finally, our technique is extremely easy to implement and understand. The memory requirement and run-time complexity for our technique is only proportional to the image size.
相关文档
最新文档