2010年衡阳市中考真题数学试卷(含答案)
-等腰三角形与勾股定理

2010年中考数学复习试题汇编之17.2-等腰三角形与勾股定理11.(2009年衡阳市)如图,△ABC 中,AB =AC ,AD 、AE 分别是∠BAC 和∠BAC 和外角的平分线,BE ⊥AE . (1)求证:DA ⊥AE ;(2)试判断AB 与DE 是否相等?并证明你的结论. 【关键词】等腰三角形、矩形【答案】解:(1)证明:AE DA DAE BAF BAC ⊥⇒︒=∠⇒︒=︒⨯=∠+∠∠+∠⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫︒=∠+∠∠∠⇒∠∠∠⇒∠909018021)(21BAE BAD 180BAF BAC BAF 21BAE BAF AE BAC 21BAD BAC AD ==平分=平分(2)AB =DE ,理由是:DE AB D AE DAE AEB AE BE ADB BC AD BAC AD AC AB =⇒⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫︒=∠︒=∠⇒⊥︒=∠⇒⊥⇒⎭⎬⎫∠=是矩形四边形平分B 90 90 9012.(山东省临沂市)如图,A ,B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,B 村在A 村的南偏东45方向上. (1)求出A ,B 两村之间的距离; (2)为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺规在图中作出点P 的位置(保留清晰的作图痕迹,并简要写明作法).A B CD E解:(1)方法一:设AB 与CD 的交点为O ,根据题意可得45A B ∠=∠=°. ACO ∴△和BDO △都是等腰直角三角形.AO ∴=,BO = ∴A B ,两村的距离为AB AO BO =+==km ). 方法二:过点B 作直线l 的平行线交AC 的延长线于E . 易证四边形CDBE 是矩形, ∴2CE BD ==.在Rt AEB △中,由45A ∠=°,可得3BE EA ==.∴AB ==km ) ∴A B ,两村的距离为.(2)作图正确,痕迹清晰.作法:①分别以点A B ,为圆心,以大于12AB 的长为 半径作弧,两弧交于两点M N ,, 作直线MN ;②直线MN 交l 于点P ,点P 即为所求. (7分 13.(四川省泸州市)在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时 (即350米/秒),并在离该公路100米处设置了一个监测点A .在如图8所示的直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在A 的北偏西60°方向上,点C 在A 的北偏东45°方向上,另外一条高等级公路在y 轴上,北东BACDlBA CDlN MOPAO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(参考数据:7.13≈)(3)若一辆大货车在限速路上由C 处向西行驶,一辆小汽车在高等级公路上由A 处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?解:在Rt ΔAOB 中,OA =100,∠BAO =60° 所以OB =OA ·tan ∠BAO =Rt ΔAOC 中,∠CAO =45° 所以OC =OA =100,所以(100,0) (2)BC =BO+CO =18≈18>503, 所以这辆车超速了。
2010年中考模拟试卷 数学卷

2010年中考模拟试卷 数学卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2.答题时,必须在答题卷密封区内写明校名、姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案。
1、2008年9月25日晚9时10分许,中国自行研制的第三艘载人飞船神舟七号,在酒泉卫星发射中心载人航天发射场由“长征二号F”运载火箭发射升空。
神七发射从起飞时的0速度很快加速,根据第一宇宙速度是7.9km/s 不难得知,神七必须大于或等于它,神七的入轨飞行速度约为7820.185米/秒。
这入轨飞行速度用科学记数法表示(保留三个有效数字) 正确的是( )A. 310820.7⨯米/秒B. 31082.7⨯米/秒C. 2102.78⨯米/秒D. 410782.0⨯米/秒 2、在2009年的世界无烟日(5月31日),我校学习小组为了解本地区大约有多少成年人吸烟,随机调查了1000个成年人,结果其中有150个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是( ).A .调查的方式是普查B .本地区约有15%的成年人吸烟C .样本是150个吸烟的成年人D .本地区只有850个成年人不吸烟 3.点P (3,-5)和点Q (a ,5)的连线垂直于x 轴,则a 的值为( )A . 3B .-3C .-5D .5 4、如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若B A AC ''⊥,则BAC ∠是( ) A 、50° B 、60° C 、70° D 、80°(第4题)5.如图,已知⊙O 的圆心角∠AOB =80°,则圆周角∠ACB 的度数等于( )。
衡阳中考数学试题及答

衡阳中考数学试题及答————————————————————————————————作者:————————————————————————————————日期:2013衡阳市中考数学试题及答案解析一、选择题(本大题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2013•衡阳)﹣3的相反数是()A.3B.﹣3 C.D.﹣考点:相反数分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•衡阳)如图,AB平行CD,如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°考点:平行线的性质.分析:根据平行线性质得出∠C=∠B,代入求出即可.解答:解:∵AB∥CD,∠B=20°,∴∠C=∠B=20°,故选B.点评:本题考查了平行线性质的应用,注意:两直线平行,内错角相等.3.(3分)(2013•衡阳)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件考点:随机事件.分析:根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.解答:解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选A.点评:用到的知识点为:必然事件指在一定条件下一定发生的事件.4.(3分)(2013•衡阳)如图,∠1=100°,∠C=70°,则∠A的大小是()A.10°B.20°C.30°D.80°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解答:解:∵∠1=100°,∠C=70°,∴∠A=∠1﹣∠C=100°﹣70°=30°.故选C.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.(3分)(2013•衡阳)计算的结果为()A.B.C.3D.5考点:二次根式的乘除法;零指数幂.专题:计算题.分析:原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.解答:解:原式=2+1=3.故选C点评:此题考查了二次根式的乘除法,以及零指数幂,熟练掌握运算法则是解本题的关键.6.(3分)(2013•衡阳)如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D.100°考点:圆周角定理.分析:因为同弧所对圆心角是圆周角的2倍,即∠AOC=2∠ABC=100°.解答:解:∵∠ABC=50°,∴∠AOC=2∠ABC=100°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(3分)(2013•衡阳)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③考点:全面调查与抽样调查分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.(3分)(2013•衡阳)下列几何体中,同一个几何体的主视图与俯视图不同的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.解答:解:A、圆柱的主视图与俯视图都是矩形,错误;B、正方体的主视图与俯视图都是正方形,错误;C、圆锥的主视图是等腰三角形,而俯视图是圆和圆心,正确;D、球体主视图与俯视图都是圆,错误;故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图.9.(3分)(2013•衡阳)下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5C.a8•a2=a4D.(2a2)3=﹣6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.10.(3分)(2013•衡阳)下列命题中,真命题是()A.位似图形一定是相似图形B.等腰梯形既是轴对称图形又是中心对称图形C.四条边相等的四边形是正方形D.垂直于同一直线的两条直线互相垂直考点:命题与定理分析:根据位似图形的定义、等腰梯形的性质、正方形的判定、两直线的位置关系分别对每一项进行分析即可.解答:解:A、位似图形一定是相似图形是真命题,故本选项正确;B、等腰梯形既是轴对称图形,不是中心对称图形,原命题是假命题;C、四条边相等的四边形是菱形,原命题是假命题;D、同一平面内垂直于同一直线的两条直线互相垂直,原命题是假命题;故选A.点评:此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.(3分)(2013•衡阳)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128 B.168(1﹣x)2=128 C.168(1﹣2x)=128D.168(1﹣x2)=128考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.解答:解:根据题意得:168(1﹣x)2=128,故选B.点评:此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.12.(3分)(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.考点:动点问题的函数图象.专题:动点型.分析:本题考查动点函数图象的问题.解答:解:由图中可知:在开始的时候,阴影部分的面积最大,可以排除B,C.随着圆的穿行开始,阴影部分的面积开始减小,当圆完全进入正方形时,阴影部分的面积开始不再变化.应排除D.故选A.点评:本题应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.二、填空题(本大题共8个小题,每小题3分,满分24分)13.(3分)(2013•衡阳)计算=2.考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣4)×(﹣)=4×=2.故答案为:2.点评:本题考查了有理数的乘法运算,熟记运算法则是解题的关键,要注意符号的处理.14.(3分)(2013•衡阳)反比例函数y=的图象经过点(2,﹣1),则k的值为﹣2.考点:待定系数法求反比例函数解析式.分析:将此点坐标代入函数解析式y=(k≠0)即可求得k的值.解答:解:将点(2,﹣1)代入解析式可得k=2×(﹣1)=﹣2.故答案为:﹣2.点评:本题比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点内容.15.(3分)(2013•衡阳)如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=70°.考点:旋转的性质.专题:探究型.分析:直接根据图形旋转的性质进行解答即可.解答:解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°.故答案为:70.点评:本题考查的是旋转的性质,熟知图形旋转前后对应边、对应角均相等的性质是解答此题的关键.16.(3分)(2013•衡阳)某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89、92、92、95、95、96、97、,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为94.考点:算术平均数.分析:先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可.解答:解:由题意知,最高分和最低分为97,89,则余下的分数的平均数=(92×2+95×2+96)÷5=94.故答案为:94.点评:本题考查了算术平均数,关键是根据平均数等于所有数据的和除以数据的个数列出算式.17.(3分)(2013•衡阳)计算:=a﹣1.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==a﹣1.故答案为:a﹣1点评:此题考查了分式的加减法,分式的加减运算关键是通分,通分的关键是找最简公分母.18.(3分)(2013•衡阳)已知a+b=2,ab=1,则a2b+ab2的值为2.考点:因式分解的应用.专题:计算题.分析:所求式子提取公因式化为积的形式,将各自的值代入计算即可求出值.解答:解:∵a+b=2,ab=1,∴a2b+ab2=ab(a+b)=2.故答案为:2点评:此题考查了因式分解的应用,将所求式子进行适当的变形是解本题的关键.19.(3分)(2013•衡阳)如图,要制作一个母线长为8cm,底面圆周长是12πcm 的圆锥形小漏斗,若不计损耗,则所需纸板的面积是48πcm2.考点:圆锥的计算.专题:计算题.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:圆锥形小漏斗的侧面积=×12π×8=48πcm2.故答案为48πcm2.点评:本题考查了圆锥的计算,圆锥的侧面积=×底面周长×母线长20.(3分)(2013•衡阳)观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):a n=﹣.考点:规律型:数字的变化类.分析:根据题意可知a1=1﹣,a2=﹣,a3=﹣,…故a n=﹣.解答:解:通过分析数据可知第n个等式为:a n=﹣.故答案为:﹣.点评:本题考查了数字变化规律,培养学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.三、解答题(本大题共8个小题,满分60分,解答应写出文字说明,证明过程或演算步骤.)21.(6分)(2013•衡阳)先化简,再求值:(1+a)(1﹣a)+a(a﹣2),其中.考点:整式的混合运算—化简求值.分析:原式第一项利用平方差公式化简,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将a的值代入计算即可求出值.解答:解:原式=1﹣a2+a2﹣2a=1﹣2a,当a=时,原式=1﹣1=0.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.22.(6分)(2013•衡阳)解不等式组:;并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式的解集,再根据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式①得:x≥1,解不等式②得:x>2,∴不等式组的解集为x>2,在数轴上表示不等式组的解集为.点评:本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.23.(6分)(2013•衡阳)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)考点:解直角三角形的应用-仰角俯角问题.分析:易得DE=AB,利用BC长和60°的正弦值即可求得CD长,加上DE长就是此时风筝离地面的高度.解答:解:依题意得,∠CDB=∠BAE=∠ABD=∠AED=90°,∴四边形ABDE是矩形,(1分)∴DE=AB=1.5,(2分)在Rt△BCD中,,(3分)又∵BC=20,∠CBD=60°,∴CD=BC•sin60°=20×=10,(4分)∴CE=10+1.5,(5分)即此时风筝离地面的高度为(10+1.5)米.点评:考查仰角的定义,能借助仰角构造直角三角形并解直角三角形是仰角问题常用的方法.24.(6分)(2013•衡阳)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为600.家长表示“不赞同”的人数为80;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是60%;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.考点:条形统计图;扇形统计图;概率公式.分析:(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)根据扇形统计图即可得到恰好是“赞同”的家长的概率;(3)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解.解答:解:(1)调查的家长总数为:360÷60%=600人,很赞同的人数:600×20%=120人,不赞同的人数:600﹣120﹣360﹣40=80人;(2)“赞同”态度的家长的概率是60%;(3)表示家长“无所谓”的圆心角的度数为:×360°=24°.故答案为:600,80;60%.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)(2013•衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是108元;(2)第二档的用电量范围是180<x≤450;(3)“基本电价”是0.6元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?考点:一次函数的应用.分析:(1)通过函数图象可以直接得出用电量为180千瓦时,电费的数量;(2)从函数图象可以看出第二档的用电范围;(3)运用总费用÷总电量就可以求出基本电价;(4)结合函数图象可以得出小明家8月份的用电量超过450千瓦时,先求出直线BC的解析式就可以得出结论.解答:解:(1)由函数图象,得当用电量为180千瓦时,电费为:108元.故答案为:108;(2)由函数图象,得设第二档的用电量为x°,则180<x≤450.故答案为:180<x≤450(3)基本电价是:108÷180=0.6;故答案为:0.6(4)设直线BC的解析式为y=kx+b,由图象,得,解得:,y=0.9x﹣121.5.y=328.5时,x=500.答:这个月他家用电500千瓦时.点评:本题考查了运用函数图象求自变量的取值范围的运用,待定系数法求一次函数的解析式的运用,由解析式通过自变量的值求函数值的运用,解答时读懂函数图象的意义是关键.26.(8分)(2013•衡阳)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.考点:正方形的性质;二次函数的最值;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(1)由已知∠AEB=∠BFC=90°,AB=BC,结合∠ABE=∠BCF,证明△ABE≌△BCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16为常数;(2)设AP=x,则PD=4﹣x,由已知∠DPM=∠PAE=∠ABP,△PDM∽△BAP,列出关于x的一元二次函数,求出DM的最大值.解答:解:(1)由已知∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,∵在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=16为常数;(2)设AP=x,则PD=4﹣x,由已知∠DPM=∠PAE=∠ABP,∴△PDM∽△BAP,∴=,即=,∴DM==x﹣x2,当x=2时,DM有最大值为1.点评:本题主要考查正方形的性质等知识点,解答本题的关键是熟练掌握全等三角形的判定定理以及三角形相似等知识,此题有一定的难度,是一道不错的中考试题.27.(10分)(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.(1)求抛物线对应的函数关系式;(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q 作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPQ为矩形;②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.考点:二次函数综合题分析:(1)利用顶点式、待定系数法求出抛物线的解析式;(2)①当四边形OMPQ为矩形时,满足条件OM=PQ,据此列一元二次方程求解;②△AON为等腰三角形时,可能存在三种情形,需要分类讨论,逐一计算.解答:解:(1)根据题意,设抛物线的解析式为:y=a(x+1)2+k,∵点A(1,0),B(0,3)在抛物线上,∴,解得:a=﹣1,k=4,∴抛物线的解析式为:y=﹣(x+1)2+4.(2)①∵四边形OMPQ为矩形,∴OM=PQ,即3t=﹣(t+1)2+4,整理得:t2+5t﹣3=0,解得t=,由于t=<0,故舍去,∴当t=秒时,四边形OMPQ为矩形;②Rt△AOB中,OA=1,OB=3,∴tanA=3.若△AON为等腰三角形,有三种情况:(I)若ON=AN,如答图1所示:过点N作ND⊥OA于点D,则D为OA中点,OD=OA=,∴t=;(II)若ON=OA,如答图2所示:过点N作ND⊥OA于点D,设AD=x,则ND=AD•tanA=3x,OD=OA﹣AD=1﹣x,在Rt△NOD中,由勾股定理得:OD2+ND2=ON2,即(1﹣x)2+(3x)2=12,解得x1=,x2=0(舍去),∴x=,OD=1﹣x=,∴t=;(III)若OA=AN,如答图3所示:过点N作ND⊥OA于点D,设AD=x,则ND=AD•tanA=3x,在Rt△AND中,由勾股定理得:ND2+AD2=AN2,即(x)2+(3x)2=12,解得x1=,x2=﹣(舍去),∴OD=1﹣x=1﹣,∴t=1﹣.综上所述,当t为秒、秒,(1﹣)秒时,△AON为等腰三角形.点评:本题考查了二次函数的图象与性质、待定系数法、解一元二次方程、勾股定理、解直角三角形、矩形性质、等腰三角形的性质等知识点,综合性比较强,有一定的难度.第(2)问为运动型与存在型的综合性问题,注意要弄清动点的运动过程,进行分类讨论计算.28.(10分)(2013•衡阳)如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)过点B作⊙M的切线l,求直线l的解析式;(3)∠BOA的平分线交AB于点N,交⊙M于点E,求点N的坐标和线段OE 的长.考点:圆的综合题.专题:综合题.分析:(1)根据圆周角定理∠AOB=90°得AB为⊙M的直径,则可得到线段AB 的中点即点M的坐标,然后利用勾股定理计算出AB=10,则可确定⊙M的半径为5;(2)点B作⊙M的切线l交x轴于C,根据切线的性质得AB⊥BC,利用等角的余角相等得到∠BAO=∠CBO,然后根据相似三角形的判定方法有Rt△ABO∽Rt△BCO,所以=,可解得OC=,则C点坐标为(﹣,0),最后运用待定系数法确定l的解析式;(3)作ND⊥x轴,连结AE,易得△NOD为等腰直角三角形,所以ND=OD,ON=ND,再利用ND∥OB得到△ADN∽△AOB,则ND:OB=AD:AO,即ND:6=(8﹣ND):8,解得ND=,所以OD=,ON=,即可确定N点坐标;由于△ADN∽△AOB,利用ND:OB=AN:AB,可求得AN=,则BN=10﹣=,然后利用圆周角定理得∠OBA=OEA,∠BOE=∠BAE,所以△BON∽△EAN,再利用相似比可求出ME,最后由OE=ON+NE计算即可.解答:解:(1)∵∠AOB=90°,∴AB为⊙M的直径,∵A(8,0),B(0,6),∴OA=8,OB=6,∴AB==10,∴⊙M的半径为5;圆心M的坐标为((4,3);(2)点B作⊙M的切线l交x轴于C,如图,∵BC与⊙M相切,AB为直径,∴AB⊥BC,∴∠ABC=90°,∴∠CBO+∠ABO=90°,而∠BAO=∠ABO=90°,∴∠BAO=∠CBO,∴Rt△ABO∽Rt△BCO,∴=,即=,解得OC=,∴C点坐标为(﹣,0),设直线BC的解析式为y=kx+b,把B(0,6)、C点(﹣,0)分别代入,解得,∴直线l的解析式为y=x+6;(3)作ND⊥x轴,连结AE,如图,∵∠BOA的平分线交AB于点N,∴△NOD为等腰直角三角形,∴ND=OD,∴ND∥OB,∴△ADN∽△AOB,∴ND:OB=AD:AO,∴ND:6=(8﹣ND):8,解得ND=,∴OD=,ON=ND=,∴N点坐标为(,);∵△ADN∽△AOB,∴ND:OB=AN:AB,即:6=AN:10,解得AN=,∴BN=10﹣=,∵∠OBA=OEA,∠BOE=∠BAE,∴△BON∽△EAN,∴BN:NE=ON:AN,即:NE=:,解得NE=,∴OE=ON+NE=+=7.点评:本题考查了圆的综合题:掌握切线的性质、圆周角定理及其推论;学会运用待定系数法求函数的解析式;熟练运用勾股定理和相似比进行几何计算.四、附加题(本小题满分0分,不计入总分)29.(2013•衡阳)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.考点:作图—应用与设计作图.专题:作图题.分析:(1)可把正方形分割为四个全等的正方形,作出这些正方形的对角线,把装置放在交点处,交点到其余各个小正方形顶点的距离相等通过计算看是否适合;(2)由(1)得到启示,把正方形分割为三个长方形,左边的一个矩形的对角线能辐射的最大直径为31,看能否把三个装置放在三个长方形的对角线的交点处.解答:解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为,每个转发装置都能完全覆盖一个小正方形区域,故安装4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.点评:考查应用与设计作图;解决本题的关键是先利用常见图形得到合适的计算方法和思路,然后根据类比方法利用覆盖的最大距离得到相类似的解.。
衡阳市初中毕业学业考试数学试卷(含答案)-

衡阳市2007年初中毕业学业考试试卷数 学考生注意:本学科试卷共六道大题,满分120分,考试时量120分钟.一、填空题(本题共8个小题,每小题3分,满分24分.把答案填入下面的答题栏内) 1.单项式313ab -的系数为 .2.计算:(1)(1)x x -+.3.数据232132,,,,,中,众数是. 4.半径分别是3cm 和4cm 的两圆外切,则它们的圆心距为 .5.双曲线ky x=经过点(21)-,,则k = .6.四边形的外角和为.7.若关于x 的一元二次方程220x x k -+=有实数根,则k 的取值范围是.8.如图,Rt AOB △的斜边OA 在y 轴上,且5OA =,4OB =.将Rt AOB △绕原点O 逆时针旋转一定的角度,使直角边OB 落在x 轴的负半轴上得到相应的Rt A OB ''△,则A '点的坐标是 .二、选择题(本题共10个小题,每小题3分,满分30分.每小题只有一个正确答案,将所选答案的序号填入括号中)9.下列长度的三条线段,能组成三角形的是( ) A.224,, B.225,, C.236,, D.245,,10.点(32)P ,关于原点对称的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 11.下列词语所描述的事件是随机事件的是( ) A.守株待兔 B.拔苗助长 C.刻舟求剑 D.竹篮打水 12.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是( )A.正方体 B.长方体 C.圆锥 D.三棱柱 13.小明做题一向粗心,下面计算,他只做对了一题,此题是( ) A.336a a a +=B.358a a a =C.326(2)2a a = D.222()a b a ab b -=-+主视图 左视图 俯视图14.若矩形的面积为10,矩形的长为x ,宽为y ,则y 关于x 的函数图像大致是( )15.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是( ) A.15B.25C.35D.4516.如图,一块呈三角形的草坪上,一小孩将绳子一端栓住兔子,另一端套在木桩A 处.若120BAC ∠=,绳子长3米(不包括两个栓处用的绳子),则兔子在草坪上活动的最大面积是( ) A.π米2B.2π米2C.3π米2D.9π米2(1)2(0)x x +>的值随着x 的增大越来越小 (2)12(0)x x +>的值有可能等于2(3)12(0)x x+>的值随着x 的增大越来越接近于2其中,推测正确的有( )A.3个 B.2个C.1个D.0个18.如图,点D E F ,,分别是()ABC AB AC >△各边的中点,下列说法中错误的是( ) A.AD 平分BAC∠B.12EF BC =C.EF 与AD 互相平分 D.DFE △是ABC △的位似图形三、(本题共2个小题,每小题6分,满分12分)19101(3)3-⎛⎫+--- ⎪⎝⎭.A. B. C. D.20.先化简,再求值:22111x xx x -⎛⎫- ⎪-⎝⎭,其中6x =. 四、(本题共2个小题,每小题8分,满分16分)21.已知,如图,ABCD 中,BE ,CF 分别是ABC ∠和BCD ∠的平分线,BE ,CF 相交于点O .(1)求证:BE CF ⊥(2)试判断AF 与DE 有何数量关系?并说明理由.(3)当BOC △为等腰直角三角形时,四边形ABCD 是何特殊四边形?(直接写出答案)22.某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg 到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示: 问:(1)辣椒和蒜苗各批发了多少kg ? (2)他当天卖完这些辣椒和蒜苗能赚多少钱?五、(本题共2个小题,每小题9分,满分18分)23.李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上(含80分)调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,如图. 请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些? (2)升入高中后,请你对他俩今后的发展给每人提一条建议. (3)扇形图中“优秀率”是多少? (4)“不及格”在扇形图中所占的圆心角是多少度?(5)请从扇形图中,写出你发现的一个现象并分析其产生的原因.24.国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度,某县根据本地的实际情况,制定了纳入医疗保险的农民医疗费用报销规定.享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销,医疗费的报销比例标准如下表:(1)设刘爷爷一年的实际医疗费为x 元(50010000x <≤),按标准报销的金额为y 元,试求y 与x 的函数关系式.(2)若刘爷爷一年内自付医疗费为2000元(自付医疗费=实际医疗费-按标准报销的金额),则刘爷爷当年实际医疗费为多少元?(3)若刘爷爷一年内自付医疗费不小于6250元,则刘爷爷当年实际医疗费至少为多少元? 六、(本题共2个小题,每小题10分,满分20分) 25.如图,点P 在y 轴上,P 交x 轴于A B ,两点,连结AP 并延长交P 于C 点,过点C 的直线2y x b =-+交x 轴于点D ,交y 轴于点E ,且P 4AB =.(1)求点P ,点C 的坐标. (2)求证:CD 是P 的切线. (3)若二次函数212y x mx n =-++的图象经过A C ,两点,求这个二次函数的解析式,并写出使函数值大于一次函数2y x b =-+值的x26.如图,在等腰ABC △中,5cm AB AC ==,6cm BC =,AD BC ⊥,垂足为点D .点P Q ,分别从B C ,两点同时出发,其中点P 从点B 开始沿BC 边向点C 运动,速度为1cm/s ,点Q 从点C 开始沿CA 边向点A 运动,速度为2cm/s ,设它们运动的时间为(s)x .(1)当x 为何值时,将PCQ △沿直线PQ 翻折180,使C 点落到C '点,得到的四边形CQC P '是菱形?(2)设PQD △的面积为2(cm )y ,当0 2.5x <<时,求y 与x 的函数关系式. (3)当0 2.5x <<时,是否存在x ,使得PDM △与MDQ △的面积比为5:3,若存在,求出x 的值;若不存在,请说明理由.衡阳市2007年初中毕业学业考试试卷数学参考答案及评分标准说明:(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分120分. (二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本《答案》中评分标准的精神,进行评分.(三)评卷时,要坚持每题评阅到底,勿因考生解答中出现错误而中断本题评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容与难度者,视影响程度来决定后面部分的得分,但原则上不超过后面部分应得分数的一半,如果有严重概念性错误,就不给分.二、选择题(本题满分30分,第小题6分)三、(本题满分12分,每小题6分)19.原式31=- ············································································· 4分2= ·························································································· 6分20.原式(2)121x x x x x x--==-- ······································································ 4分 当6x =时,24x -= ····················································································· 6分四、(本题满分16分,每小题8分) 21.(1)证明:四边形ABCD 是平行四边形AB CD ∴∥ 180ABC BCD ∴∠+∠= ········································ 1分又BE CF ,分别是ABC BCD ∠∠,的平分线90EBC FCB ∴∠+∠= 90BOC ∴∠=故BE CF ⊥ ············································································ 3分 (2)AF DE = 理由如下:AD BC ∥ A E B C B E∴∠=∠又BE 是ABC ∠的平分线,ABE CBE ∴∠=∠AEB ABE ∴∠=∠ A B A E ∴=同理CD DF = ··············································································· 5分又四边形ABCD 是平行四边形AB CD ∴= A E D F∴= A F D E ∴= ················································· 6分 (3)四边形ABCD 是矩形. ······································································ 8分22.方法一:(1)设该经营户从蔬菜市场批发了辣椒x kg ,则蒜苗(40)x -kg ,得1.6 1.8(40)70x x +-= ····················································· 4分 解得:10x = 4030x -= ··············································· 6分(2)利润:10(2.6 1.6)30(3.3 1.8)55-+-=答:该经营户批发了10kg 辣椒和30kg 蒜苗;当天能赚55元. ··········· 8分方法二:(1)设该经营户从蔬菜市场批发了辣椒x kg ,蒜苗y kg ,得401.6 1.870x y x y +=⎧⎨+=⎩ ···························································· 4分(2)利润:10(2.6 1.6)30(3.3 1.8)55⨯-+-=答:该经营户批发了10kg 辣椒和30kg 蒜苗;当天能赚55元. 五、(本题满分18分,每小题9分) 23.(1)小聪成绩是:72409840602080⨯+⨯+⨯=%%%(分) ··························· 1分小亮成绩是:90407540952085⨯+⨯+⨯=%%%(分) ···························· 2分∴小聪、小亮成绩都达到了“优秀毕业生”水平.小亮毕业成绩好些. ··········································································· 3分 (2)小聪要加强体育锻炼,注意培养综合素质. ············································· 4分小亮在学习文化知识方面还要努力,成绩有待进一步提高. ·························· 5分 (3)优秀率是:3100650⨯=%% ·································································· 6分 (4)“不及格”在扇形中所占的圆心角是:360(161836)144⨯---=%%% ····················································· 8分 (5)现象:体育成绩优秀学生太少,不及格人数太多. 产生原因:①学校不重视体育,只注意文化成绩 ②学生不爱运动,喜欢看电视、上网等 ③学生作业负担较重,无时间锻炼④有些体育老师不负责任,没有宣传锻炼身体的好外⑤体育场地、设施不够好 ························································ 9分(只要写得合理,都可给分,答案不一,以上只供参考)24.(1)1(500)50250(50010000)2y x x x =-⨯=-<%≤ ······························ 3分 (2)方法一:设实际医疗费用为x 元,依题意得125020002x x ⎛⎫--=⎪⎝⎭解得 3500x = 方法二:设实际医疗费用为x 元,依题意得500(500)502000x +-⨯=% 解得3500x =答:刘爷爷当年实际医疗费用是3500元. ············································· 6分(3)5000.5(10000500)52506250+⨯-=< ····································· 7分 ∴刘爷爷实际医疗费用超过了10000元.方法一:设刘爷爷实际医疗费用为x 元,依题意得500(10000500)50(10000)(160)6250x +-⨯+--%%≥ 解得 12500x ≥ 方法二:设法相同(10000500)50(10000)606250x x --⨯--⨯%%≥解得 12500x ≥答:刘爷爷实际医疗费用至少是12500元时,自付费用不少于6250元. ········ 9分六、(本题满分20分,每小题10分) 25.(1)如图,连结CBOP AB ⊥ 2O B O A ∴== ······························································· 1分 222OP AO AP += 2541OP ∴=-=,1OP = ··································· 2分AC 是P 的直径 90ABC ∴∠=(也可用勾股定理求得下面的结论)C P P A= B O O A = 22BC PO ∴== (01)(22)P C ∴,,, ················································································ 3分(2)方法一:2y x b =-+过C 点 6b ∴=26y x ∴=-+ ··················································································· 4分 当0y =时,3x = (30)D ∴, 1BD ∴= 2OA BC == 1P O B D == A O P C B D∠=∠ AOP CBD ∴△≌△ P A O D C B∴∠=∠90PAO ACB ∠+∠= 90ACB DCB ∴∠+∠=90ACD ∴∠= DC ∴是P 的切线. ········································································· 6分方法二:直线2y x b =-+过C 点(22),26y x ∴=-+·················································································· 4分 又直线26y x =-+交x 轴于点D ,y 轴于点E(30)(06)D E ∴,,, 3OD ∴= 6OE = 2O E A OO D O P∴== 又AOP EOD ∠=∠ ~A O P E O D ∴△△ A P O E D O∴∠=∠ 又90APO PAO ∠+∠= 90EDO PAO ∴∠+∠=90ACD ∴∠=CD ∴是O 的切线.········································································· 6分 (3)212y x mx n =-++过(20)A -,和(22)C ,220222m n m n --+=⎧∴⎨-++=⎩ 解得123m n ⎧=⎪⎨⎪=⎩∴这个二次函数的解析式为211322y x x =-++ ······································ 8分可求二次函数211322y x x =-++与一次函数26y x =-+的交点(22)C ,和(30)D ,.由此可知,满足条件的x 的取值范围为23x <<. ··································· 10分26.解:(1)6PC x =-,2CQ x =要使四边形CQC P '是菱形,则PC CQ =即62x x -= 得2x =∴当2x =时,四边形CQC P '是菱形. ············································ 3分 (2)过点Q 作QE BC ⊥,垂足为E 5AB AC ==cm ,6BC =cm ,ADBC ⊥4AD ∴=(cm )QE AD ∥ ~Q E C A D C∴△△ QE CQ AD CA ∴= 即245QE x = 85Q E x ∴=又3PD x =- 118(3)225y P D D E x x∴==-即2412(0 2.5)55y x x x =-+<<. ·················································· 6分(3)存在.理由如下:过点Q 作QF AD ⊥,垂足为F:5:3PDM MDQ S S =△△ :5:3P D Q F ∴=在Rt QEC △中,65EC x == 635Q F D E x ==- (也可由Rt ~Rt AFQ ADC △△,求得QF ) ····································· 8分 356335x x -∴=- 解得2x = ∴当2x =时,:5:3PDM MDQ S S =△△. ············································· 10分。
2010年湖南省岳阳市中考数学试题及答案(word版)

2010年初中毕业班综合测试数学答案及评分标准一.选择题:本大题共10小题, 每小题3分, 满分30分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.二.填空题:本大题共6小题,每小题3分,满分18分.1. 6- 12.> 13.120O14.16 15.20y x= 16.7,16(第一空2分,第二空1分)三.解答题:本大题共9题,满分102分. 解答须写出说明、证明过程和演算步骤 17.(本小题满分9分)先化简,后计算:2)1(2)1(2-+-+x x ,其中2=x解法1:2)1(2)1(2-+-+x x222122---++=x x x ---------4分 32-=x --------6分 将2=x 得,1323)2(2-=-=- --------9分(其它解法酌情评分) 解法2:2)1(2)1(2-+-+x x3141)2)(2(1]3)1][(1)1[(13)1(2)1(222-=+-=+-+=+-+++=+-+-+=x x x x x x x x将2=x 得,1323)2(2-=-=-解法3:2)1(2)1(2-+-+x x3212)1)(1(2]2)1)[(1(22-=--=--+=--++=x x x x x x将2=x 得,1323)2(2-=-=-解法4:2)1(2)1(2-+-+x x2(1)2(1)13x x =+-++- 2[(1)1]3x =+--23x =-将2=x得,23231-=-=-18.(本小题满分9分)解:(1) ∵2(444)y x x =--+- --------2分2(2)4x =--+ --------4分∴1,2,4a h k =-== --------7分 (2)函数24y x x =-+图像的顶点坐标为(2,4) ,--------8分 对称轴方程为2x = --------9分19.(本小题满分10分)证明:∵ABCD 是等腰梯形∴AB DC =, --------2分ABC DCB ∠=∠ --------4分∵,E F 分别为,AB CD 的中点 ∴BE CF = --------6分 ∴BCF C ∆≅∆BE --------8分 ∴BF CE = --------10分20.(本小题满分10分)解:(1)(2)-得,22x a a =- --------2分 ∴223a a -=,解得121,3a a =-= ---------4分将11,3a x =-=代入(2)得32y +=-,5y =-,即15m =-, ---------6分将23,3a x ==代入(2)得323y +=⨯,0y =,即23m = --------8分∴11,a =-15m =-23,a =23m = --------10分21.(本小题满分12分)解:组成的所有坐标列树状图为:1 1 -12 -2(1,1)(1,-1)(1,2)(1,-2) -11 -1 2-2(-1,1) (-1,-1)(-1,2) (-1,-2) 第一次...第二次----------8分 或列表为:(1)根据已知的数据,点(,)m n 在函数y x =的图像上的概率为41164= --------10分 (2)根据已知的数据,点(,)m n 不在第二象限的概率为123164= --------12分 22.(本小题满分12分)解:(1),A B 点的坐标分别为(0,4),(2,0)A B ------2分 线段AB 2224+ ------3分== ------4分(此步有任意一个等号都给1分) (2)两个交叉点 -------各1分;垂直平分线 -------1分;连接OP ------1分; (3)两段圆弧------各1分;连接AM 、CM 各1分其它作法酌情评分21 -12 -2(2,1)(2,-1)(2,2)(2,-2) -21 -12 -2 (-2,1) (-2,-2) (-2,2) (-2,-2)第一次...第二次23. (本小题满分12分)(1)连接OC, ------2分∵PC 切⊙O 于点C ,∴PC OC ⊥, ------3分又30P ο∠=,∴12OA OB OC OP ===------5分 ∴22PB OB AB == ------6分(2) 在Rt POC ∆中,由(1)可知60POC ο∠=,又OB OC =, ------7分∴OBC ∆是正三角形,∴60ABC ο∠= ------8分 ∵AB 是⊙O 的直径,∴ABC ∆是直角三角形 ------9分∴sin 60ACABο=, ------10分 343=解得8AB = ------11分 ∴⊙O 的半径142r AB cm == ------12分 24.(本小题满分14分)解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得------2分 解得345350x ≤≤ ------4分 因为x 是整数,所以有6种生产方案. ------5分 (2)(602)(804)(500)2242000y x x x =+++-=-+ ------8分220-<,y 随x 的增大而减少.∴当350x =时,y 有最小值. ------10分 ∴当生产A 型桌椅350套、B 型桌椅150套时,总费用最少.此时最少费用为223504200034300-⨯+=(元) ------12分(3)有剩余木料,最多还可以解决3名同学的桌椅问题. ------14分25.(本小题满分14分)(2)根据题意,得,8AE t OE OA EA t ==-=-∴点Q 的纵坐标为5(8)4t -,点P 的纵坐标为33(8)644t t --+=, ∴53(8)10244PQ t t t =--=-.当MN 在AD 上时,102t t -=,∴103t =.当100t 3<≤时,()2S t 102t S 2t 10t.AE PQ =⨯=-=-+,即当10t 53≤<时,()222S 102t S 4t 40t 100.PQ ==-=-+,即 --------8分 (3)当100t 3<≤时, 2525S 2t )22=--+(,∴5t 2=时, 25S 2=最大值.当10t 53≤<时,()2S 4t 5=-,∵t 5<时,S 随t 的增大而减小, ∴10t 3=时, 100S 9=最大值.∵225>9100,∴S 的最大值为225. --------12分(4)224t 5<<或t 6>. --------14分(4)的答案供教师参考)图12易知:3(8,)4P t t -, 5(8,10)4Q t t --①当05t <<时,102PQ t =-,M 5(183,10)4t t --,则可得6t > 综上所述:2245t <<或6t >.。
中考湖南衡阳数学试卷真题

中考湖南衡阳数学试卷真题一、选择题(共20题,每题2分,共40分)1. 设函数"y=2sin(x-π/6)"的一个周期为T,下列表示中正确的是()A. T=2πB. T=π/2C. T=πD.T=4π2. 一根长36cm的线段,两端分别固定在两个顶点A和B,线段可以在A,B两个顶点之间来回摆动,A,B两个顶点之间的距离是()A. 36cmB. 18cmC. 72cmD. 9cm3. 已知直线L1:y=-2x+1与直线L2:kx-y-3=0相交于点P,且点P到x轴的距离是4,那么k的值是()A. 1B. 2C. 3D. 44. 已知在一个算式中,每个数字都用它的平方代替,让原算式的值减少137,这个算式的值原来是()A. 169B. 156C. 144D. 1005. 在平面直角坐标系中,点A(0,2)和点B(a,1)都在直线y=3x-1上,那么点B的坐标是()A. (1,2)B. (2,5)C. (1,2)D. (3,8)6. 二次函数y=ax²+bx+c(a>0)的图像与x轴相交于P,Q两点,如果PQ的中点坐标是(2,0),则a的值是()A. 2B. 4C. 1D. 0.57. 在直立的正方体ABCD-A'B'C'D'中,垂直于ABCD区域的平面与矩形ABCD的交线与⊙O交于点P,连接OP,如图所示,∠BOP的弧度值是()A. π/4B. π/3C. π/2D. 2π/38. 几何平面中,已知△ABC中,m∠BAC=30°,△ABD平动到△ACE,使得点D运动到点E,∠BAE的度数是()A. 30°B. 45°C. 60°D. 90°9. AB为直径的⊙O,P为⊙O上一点,PA,PB分别与⊙O交于点A',B',且PA'=PB',则A'B'平行于AB的充分必要条件是()A. P在直径的一侧B. P在⊙O的内部C. P在⊙O的外部D. P 是⊙O的圆心10. 设两条直线L1:x-y+2=0和L2:2x+y-2=0的交点为P,交点到x轴距离的平方与交点到y轴距离的平方之和是()A. 1B. 2C. 4D. 811. 下列运算关系中,错的是:()A. 7-11=7-7+4B. 7÷(11-7)=7C. 7-(11-7)=0D. 7-11=-(11-7)12. 水桶已装了640升水,如果再加满40%的容积,水桶就溢满。
2010年湖南衡阳中考数学模拟试卷

2010年湖南衡阳中考数学模拟试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,满分共130分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题:(本大题共10小题,每小题3分,共30分.在每一题给出的四个选项中,只有一项是符合题目要求的)1.-2的绝对值是 ( )A.-2B.2C.21D.212.16的平方根是( )A.4B.±4C.2D.±23. 方程x 2-6x -7 = 0 配方可化为( )A.(x +3)2=9B.(x -5)2 = 6C.(x -3)2 =16D.(x +6)2 = 254. 已知两圆的半径分别是3和4,圆心距是7,那么这两个圆的位置关系是( )A. 外切B. 相交C.内切D. 外离 5.左边圆锥体的俯视图是( )6. 下列说法正确的是( )A.直径是弦,弦是直径B.圆的对称轴是直径C.不在同一直线上的三点确定一个圆D.平分弦的直径垂直于弦7.计算:sin 2600 + cos 2600 - tan450的值是( )A.0B.1C.3D.1-2 8.二次函数y=ax 2+2x -3 的图象开口向下,那么a 的取值范围是( ) A.a >0 B.a <0 C.a ≥0 D.a ≤09.如右图:点O 是三角形△ABC 的外心,∠BOC=1420,那么∠A 的度数是( )A.1040B.710C.780D.96 010.函数y=-x 31(x <0)的大致图象是( ) A BO CA. B. C. D.第Ⅱ卷 (非选择题 共100分)二.填空题:(本大题共5小题,每小题3分,共15分。
把答案填在题中横线上). 11. 找一个与3是同类二次根式是 .12. 方程 x 2= x 的解是 .13.在菱形ABCD 中,其中对角线的长分别为6和8.则它的面积是 . 14. 三角形的三边为3、4、5. 那么它的外接圆的直径是 . 15. 圆锥体的母线长为3 ,底面圆的半径为4,那么圆锥体的全.面积是 . 三. 解答题:(要有必要的解题步骤,每小题6分,共30分)16. 关于x 的方程x 2+mx +9=0的一个根是-1.求m 的值和方程的另一个根.17. 在压力不变的情况下,某物体承受的压强p (pa )是它的受力面积s (m 2)的反比例函数,其图象如图所示:(1) 求p 与s 之间的函数关系式; (2)求当s=0.5m 2时物体承受的压强;2)18.在平行四边形ABCD中,BF=DE.写出图中一对你认为全等的三角形,并说明理由.19、已知⊙o上有一点A,过点A作出⊙o的切线。
湖南省衡阳市中考数学试卷(含答案和解析)

湖南省衡阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的倒数是()A.B.C.2D.﹣2﹣2.下列图案中,不是轴对称图形的是()A.B.C.D.3.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为()A.2.5×10﹣5B.2.5×105C.2.5×10﹣6D.2.5×1064.若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.85.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟6.下列运算结果准确的是()A.x2+x3=x5B.x3•x2=x6C.x5÷x=x5D.x3•(3x)2=9x57.不等式组的解集在数轴上表示为()A.B.C.D.8.下列因式分解中,准确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个9.如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A.B.C.D.10.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD 的长度为()A.26米B.28米C.30米D.46米11.圆心角为120°,弧长为12π的扇形半径为()A.6B.9C.18 D.3612.下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形二、填空题(本大题共8小题,每小题3分,共24分)13.函数中,自变量x的取值范围是_________ .14.化简:(﹣)= _________ .15.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为_________ .16.甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:=10.5,=10.5,=0.61,=0.50,则成绩较稳定的是_________ (填“甲”或“乙”).17.如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为_________ .18.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m= _________ n(填“>”“<”或“=”号).19.分式方程=的解为x= _________ .20.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为_________ .三、解答题(本大题共8小题,满分60分)21.先化简,再求值.(a+b)(a﹣b)+b(a+2b)﹣b2,其中a=1,b=﹣2.22.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本实行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这个年(365天)达到优和良的总天数.23.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.24.学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.25.某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.26.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.27.(10分)(2014•衡阳)如图,已知直线AB分别交x轴、y轴于点A(﹣4,0)、B(0,3),点P从点A出发,以每秒1个单位的速度沿直线AB向点B移动,同时,将直线y=x以每秒0.6个单位的速度向上平移,分别交AO、BO于点C、D,设运动时间为t秒(0<t<5).(1)证明:在运动过程中,四边形ACDP总是平行四边形;(2)当t取何值时,四边形ACDP为菱形?且指出此时以点D为圆心,以DO长为半径的圆与直线AB的位置关系,并说明理由.28.(10分)(2014•衡阳)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y 轴交于点C(0,﹣3m)(其中m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△BOC相似?2014年湖南省衡阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•衡阳)﹣2的倒数是()C.2D.﹣2A.B.﹣考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.故选:B.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2014•衡阳)下列图案中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2014•衡阳)环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为()A.2.5×10﹣5B.2.5×105C.2.5×10﹣6D.2.5×106考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)(2014•衡阳)若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.8考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选C.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)(2014•衡阳)小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟考点:函数的图象.分析:A.从4分钟到8分钟时间增加而离家的距离没变,所以这段时间在看报;B.4分钟时散步到了报栏,据此知公共阅报栏距小明家200米;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米;D.据图知小明从出发到回家共用时16分钟.解答:解:A.小明看报用时8﹣4=4分钟,本项错误;B.公共阅报栏距小明家200米,本项正确;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米,本项正确;D.据图知小明从出发到回家共用时16分钟,本项正确.故选:A.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.6.(3分)(2014•衡阳)下列运算结果正确的是()A.x2+x3=x5B.x3•x2=x6C.x5÷x=x5D.x3•(3x)2=9x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;单项式乘单项式.分析:根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据单项式乘单项式,可判断D.解答:解:A、指数不能相加,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相减,故C错误;D、x3(3x)2=9x5,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.7.(3分)(2014•衡阳)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.8.(3分)(2014•衡阳)下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.解答:解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.点评:此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.9.(3分)(2014•衡阳)如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A.B.C.D.考点:简单组合体的三视图.分析:根据几何体组成,结合三视图的观察角度,进而得出答案.解答:解:根据立方体的组成可得出:A、是几何体的左视图,故此选项错误;B、是几何体的三视图,故此选项正确;C、是几何体的主视图,故此选项错误;D、是几何体的俯视图,故此选项错误;故选:B.点评:此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.10.(3分)(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米考点:解直角三角形的应用-坡度坡角问题.分析:先根据坡比求得AE的长,已知CB=10m,即可求得AD.解答:解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选D.点评:此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.11.(3分)(2014•衡阳)圆心角为120°,弧长为12π的扇形半径为()A.6B.9C.18 D.36考点:弧长的计算.分析:根据弧长的公式l=进行计算.解答:解:设该扇形的半径是r.根据弧长的公式l=,得到:12π=,解得r=18,故选:C.点评:本题考查了弧长的计算.熟记公式是解题的关键.12.(3分)(2014•衡阳)下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形考点:命题与定理.分析:利用特殊的四边形的判定和性质定理逐一判断后即可确定正确的选项.解答:解:A、四条边都相等的是菱形,故错误,是假命题;B、菱形的对角线互相垂直但不相等,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形但不一定是正方形,故错误,是假命题;D、正确,是真命题.故选D.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2014•攀枝花)函数中,自变量x的取值范围是x≥2.考点:函数自变量的取值范围.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.14.(3分)(2014•衡阳)化简:(﹣)=2.考点:二次根式的混合运算.分析:首先将括号里面化简,进而合并,即可运用二次根式乘法运算法则得出即可.解答:解:(﹣)=×(2﹣)=×=2.故答案为:2.点评:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.15.(3分)(2014•衡阳)如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为10.考点:矩形的性质.分析:根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.解答:解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=5,∴BD=2BO=10,故答案为:10.点评:本题考查了等边三角形的性质和判定,矩形性质的应用,注意:矩形的对角线相等且互相平分.16.(3分)(2014•衡阳)甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:=10.5,=10.5,=0.61,=0.50,则成绩较稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的定义,方差越小数据越稳定.解答:解:因为S甲2=0.61>S乙2=0.50,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为:乙.点评:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(3分)(2014•衡阳)如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为65°.考点:圆周角定理.分析:根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.解答:解:∵AB为⊙O直径∴∠ADB=90°∵∠B=∠ACD=25°∴∠BAD=90°﹣∠B=65°.故答案为:65°.点评:考查了圆周角定理的推论.构造直径所对的圆周角是圆中常见的辅助线之一.18.(3分)(2014•衡阳)若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m=<n (填“>”“<”或“=”号).考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.解答:解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.19.(3分)(2014•衡阳)分式方程=的解为x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2=x2﹣x+2x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(3分)(2014•衡阳)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O 逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为21007.考点:规律型:点的坐标.专题:规律型.分析:根据点M0的坐标求出OM0,然后判断出△OM0M1是等腰直角三角形,然后根据等腰直角三角形的性质求出OM1,同理求出OM2,OM3,然后根据规律写出OM2014即可.解答:解:∵点M0的坐标为(1,0),∴OM0=1,∵线段OM0绕原点O逆时针方向旋转45°,M1M0⊥OM0,∴△OM0M1是等腰直角三角形,∴OM1=OM0=,同理,OM2=OM1=()2,OM3=OM2=()3,…,OM2014=OM2013=()2014=21007.故答案为:21007.点评:本题是对点的坐标变化规律的考查,主要利用了等腰直角三角形的判定与性质,读懂题目信息,判断出等腰直角三角形是解题的关键.三、解答题(本大题共8小题,满分60分)21.(6分)(2014•衡阳)先化简,再求值.(a+b)(a﹣b)+b(a+2b)﹣b2,其中a=1,b=﹣2.考点:整式的混合运算—化简求值.分析:先利用平方差公式和整式的乘法计算,再合并化简,最后代入求得数值即可.解答:解:原式=a2﹣b2+ab+2b2﹣b2=a2+ab,当a=1,b=﹣2时原式=1+(﹣2)=﹣1.点评:此题考查代数式求值,注意先利用整式的乘法化简,再代入求得数值.22.(6分)(2014•衡阳)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,即可得出被抽取的总天数;(2)利用轻微污染天数是50﹣32﹣8﹣3﹣1﹣1=5天;表示优的圆心角度数是360°=57.6°,即可得出答案;(3)利用样本中优和良的天数所占比例得出一年(365天)达到优和良的总天数即可.解答:解:(1)∵扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2)轻微污染天数是50﹣32﹣8﹣3﹣1﹣1=5天;表示优的圆心角度数是360°=57.6°,如图所示:;(3)∵样本中优和良的天数分别为:8,32,∴一年(365天)达到优和良的总天数为:×365=292(天).∴估计该市一年达到优和良的总天数为292天.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(6分)(2014•衡阳)如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.考点:全等三角形的判定.专题:证明题.分析:首先根据AB=AC可得∠B=∠C,再由DE⊥AB,DF⊥AC,可得∠BED=∠CFD=90°,然后再利用AAS定理可判定△BED≌△CFD.解答:证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C,在△BED和△CFD中,,∴△BED≌△CFD(AAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.(6分)(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.考点:一元二次方程的应用.专题:增长率问题.分析:设这两年的年平均增长率为x,根据题意列出方程,求出方程的解即可得到结果.解答:解:设这两年的年平均增长率为x,根据题意得:5000(1+x)2=7200,即(1+x)2=1.44,开方得:1+x=1.2或x+1=﹣1.2,解得:x=0.2=20%,或x=﹣2.2(舍去).答:这两年的年平均增长率为20%.点评:考查了一元二次方程的应用,本题为增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.25.(8分)(2014•衡阳)某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.考点:列表法与树状图法;二元一次方程的应用.分析:(1)首先由题意可得:2x+y=15,继而求得y与x之间的关系式;(2)根据每种奖品至少买1件,即可求得所有可能的结果;(3)由买到的中性笔与笔记本数量相等的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:(1)根据题意得:2x+y=15,∴y=15﹣2x;(2)购买方案:x=1,y=13;x=2,y=11,x=3,y=9;x=4,y=7;x=5,y=5;x=6,y=3,x=7,y=1;∴共有7种购买方案;(3)∵买到的中性笔与笔记本数量相等的只有1种情况,∴买到的中性笔与笔记本数量相等的概率为:.点评:本题考查了列举法求概率的知识.注意用到的知识点为:概率=所求情况数与总情况数之比.26.(8分)(2014•衡阳)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.考点:旋转的性质;相似三角形的判定与性质.分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得CD=AD=BD=AB,根据等边对等角求出∠ACD=∠A,再求出∠ADC=120°,再根据∠ADE=∠ADC﹣∠EDF计算即可得解;(2)根据同角的余角相等求出∠PDM=∠CDN,再根据然后求出△BCD是等边三角形,根据等边三角形的性质求出∠BCD=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CPD=60°,从而得到∠CPD=∠BCD,再根据两组角对应相等,两三角形相似判断出△DPM和△DCN相似,再根据相似三角形对应边成比例可得=为定值.解答:解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°,∴的值不随着α的变化而变化,是定值.点评:本题考查了旋转的性质,相似三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并判断出相似三角形是解题的关键,也是本题的难点.27.(10分)(2014•衡阳)如图,已知直线AB分别交x轴、y轴于点A(﹣4,0)、B(0,3),点P从点A出发,以每秒1个单位的速度沿直线AB向点B移动,同时,将直线y=x以每秒0.6个单位的速度向上平移,分别交AO、BO于点C、D,设运动时间为t秒(0<t<5).(1)证明:在运动过程中,四边形ACDP总是平行四边形;(2)当t取何值时,四边形ACDP为菱形?且指出此时以点D为圆心,以DO长为半径的圆与直线AB的位置关系,并说明理由.考点:一次函数综合题.分析:(1)设直线AB的解析式为y=kx+b,由待定系数法就可以求出直线AB的解析式,再由点的坐标求出AO,BO的值,由勾股定理就可以得出AB的值,求出sin∠BAO的值,作PE⊥AO,表示出PE的值,得出PE=DO,就可以得出结论;(2)由三角函数值表示CO的值,由菱形的性质可以求出菱形的边长,作DF⊥AB于F由三角函数值就可以求出DO,DF的值,进而得出结论.解答:解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得:,∴y=x+3.∴直线AB∥直线y=x.∵A(﹣4,0)、B(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理,得AB=5.∴sin∠BAO=,tan∠DCO=.作PE⊥AO,∴∠PEA=∠PEO=90°∵AP=t,∴PE=0.6t.∵OD=0.6t,∴PE=OD.∵∠BOC=90°,∴∠PEA=∠BOC,∴PE∥DO.∴四边形PEOD是平行四边形,∴PD∥AO.∵AB∥CD,∴四边形ACDP总是平行四边形;(2)∵AB∥CD,∴∠BAO=∠DCO,∴tan∠DCO=tan∠BAO=.∵DO=0.6t,∴CO=0.8t,∴AC=4﹣0.8t.∵四边形ACDP为菱形,∴AP=AC,∴t=4﹣0.8t,∴t=.∴DO=,AC=.∵PD∥AC,∴∠BPD=∠BAO,∴sin∠BPD=sin∠BAO=.作DF⊥AB于F.∴∠DFP=90°,∴DF=.∴DF=DO.∴以点D为圆心,以DO长为半径的圆与直线AB相切.点评:本题考查了待定系数法求函数的将诶相似的运用,勾股定理的运用,三角函数值的运用,平行四边形的判定及性质的运用,菱形的性质的运用,解答时灵活运用平行四边形的性质是关键.28.(10分)(2014•衡阳)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y 轴交于点C(0,﹣3m)(其中m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△BOC相似?考点:二次函数综合题.分析:(1)利用交点式求出抛物线的解析式;(2)如答图2,求出S的表达式,再根据二次函数的性质求出最值;(3)△ACD与△BOC相似,且△BOC为直角三角形,所以△ACD必为直角三角形.本问分多种情形,需要分类讨论,避免漏解.解答:解:(1)∵抛物线与x轴交点为A(﹣3,0)、B(1,0),∴抛物线解析式为:y=a(x+3)(x﹣1).将点C(0,﹣3m)代入上式,得a×3×(﹣1)=﹣3m,∴m=a,∴抛物线的解析式为:y=m(x+3)(x﹣1)=mx2+2mx﹣3m.(2)当m=2时,C(0,﹣6),抛物线解析式为y=2x2+4x﹣6,则P(x,2x2+4x﹣6).设直线AC的解析式为y=kx+b,则有,解得,∴y=﹣2x﹣6.如答图①,过点P作PE⊥x轴于点E,交AC于点F,则F(x,﹣2x﹣6).∴PF=yF﹣yP=(﹣2x﹣6)﹣(2x2+4x﹣6)=﹣2x2﹣6x.S=S△PFA+S△PFC=PF•AE+PF•OE=PF•OA=(﹣2x2﹣6x)×3∴S=﹣3x2﹣9x=﹣3(x+)2+∴S与x之间的关系式为S=﹣3x2﹣9x,当x=﹣时,S有最大值为.(3)∵y=mx2+2mx﹣3m=m(x+1)2﹣4m,∴顶点D坐标为(﹣1,﹣4m).如答图②,过点D作DE⊥x轴于点E,则DE=4m,OE=1,AE=OA﹣OE=2;过点D作DF⊥y轴于点F,则DF=1,CF=OF﹣OC=4m﹣3m=m.由勾股定理得:AC2=OC2+OA2=9m2+9;CD2=CF2+DF2=m2+1;AD2=DE2+AE2=16m2+4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年湖南省衡阳市初中学业水平暨高级中等学校招生考试试卷
数 学
注意事项:
1.本试卷共8页,三大题,满分100分,考试时间100分钟。
请用钢笔或圆珠笔
直接答在试卷上。
2.答卷前将密封线内的项目填写清楚
参考公式
:
y=ax 2+bx+c(
a ≠0)图像的
一选择题(每小题3分,共18分)
下列各小题均有四个答案,其中只有一个正确答案,请把正确答案写
在题后的括号内。
1.2
1
-
的绝对值是 A. 2- B. 2 C. 2
1-
D. 21
2.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是
1
2
,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 3.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50°
B .30°
C .20°
D .15°
4.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=70o ,∠c=50o , 那么sin ∠AEB 的值为( ) A. 2
1 B.
33 C.22 D. 2
3
第3题 第4题
第一题 第二题 第三题 总分
题 号 1-6 7-15 16 17 18 19 20 21 22 23 得 分
得分 评卷人
⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22顶点坐标是: 1
2
3
5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是( ) A 、182)1(502=+x B .182)1(50)1(50502=++++x x C 、50(1+2x)=182
D .182)21(50)1(5050=++++x x
6.如图6,在
ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线
于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为(
) A.8 B.9.5 C.10 D.11.5
二填空题(每空3分,共27分)
7.3的绝对值是
8.1若523m x y +与3n x y 的和是单项式,则m n = .。
9.据统计,去年我国粮食产量达10570亿斤,这个数用科学记数法可表示为 亿斤. 10.某校九年级(2)班(1)组女生的体重(单位:kg )为:38,40,35,36,65,42,42,则这组数据的中位数是 .
11.如图所示,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E 的度数为_______________. 12.如图,已知双曲线)0k (x
k y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.
第11题 第12题
得分 评卷人
13.如图,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD )
量零件的内孔直径AB .若OC ∶OA=1∶2,量得CD =10mm ,则零件的厚度_____x mm =.
第13题 第14题
14.如图7,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC .BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)
15.如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.
-
三解答题(本大题8个小题,共75分)
16.(8分) 先化简再求值:244
()33
x x x x x ---÷--,其中5x =.
得分
评卷人
(1)
(2)
(3)
…… C
A
B
17.
(9分)已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长
线上取一点E ,使 CE = CD .求证:BD = DE .
18.(9分)在“首届中国西部(银川)房·车生活文化节”期间,某汽车经
销商推出A B C D 、、、四种型号的小轿车共1000辆进行展销.C 型号轿车销售的成交率为50%,其它型
号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中. (1)参加展销的D 型号轿车有多少辆? (2)请你将图2的统计图补充完整;
(3)通过计算说明,哪一种型号的轿车销售情况最好?
(4)若对已售出轿车进行抽奖,现将已售出A B C D 、、、四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A 型号轿车发票的概率.
得分 评卷人
得分 评卷人
19.(9分)为申办2010年冬奥会,须改变哈尔滨市的交通状况。
在大直街拓
宽工程中,要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB等长
的圆形危险区,现在某工人站在离B点3米远的D处,从C点测得树的顶端A 点的仰角为60°,树的底部B点的俯角为30°.
问:距离B点8米远的保护物是否在危险区内?9分
20.(9分)如图,Rt ABC
△中,90
ABC
∠=°,以AB为直径的O
⊙交AC 于点D,过点D的切线交BC于E.
(1)求证:
1
2
DE BC
=;
(2)若
5
tan2
2
C DE
==
,,求AD的长.
得分评卷人
得分评卷人
︒
60
︒
30
B D
C
A
21.(10分).如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上移动,
但A 到EF 的距离AH 始终保持与AB 长相等,问在E 、F 移动过程中: (1)∠EAF 的大小是否有变化?请说明理由.
(2)△ECF 的周长是否有变化?请说明理由.
22.(10分)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240
辆。
由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些
新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。
生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车? (2)如果工厂招聘n (0<n <10)名新工人,使得招聘的新工人和抽调的熟练工刚好..能完成一年的安装任务,那么工厂有哪几种...
新工人的招聘方案? (3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W (元)尽可能的少?
得分 评卷人
得分 评卷人
23.(11分)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN
在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,
点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.
(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.
C
P
Q A M N
C P
Q A
M
N C P Q
B
A M
N。