新人教版八年级上数学-第11章《全等三角形》单元测试题[1]

合集下载

新人教版八年级数学上册《第11章三角形》单元测试(有答案)

新人教版八年级数学上册《第11章三角形》单元测试(有答案)

新人教版八年级数学上册《第11章三角形》单元测试考试分值:120分;考试时间:100分钟一.选择题(共10小题,满分30分,每小题3分)1.六边形共有几条对角线()A.6 B.7 C.8 D.92.已知线段AC=3,BC=2,则线段AB的长度()A.一定是5 B.一定是1 C.一定是5或1 D.以上都不对3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④ C.①④ D.①②④4.如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为()A.2 B.3 C.4 D.65.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是()A.n2+4n+2 B.6n+1 C.n2+3n+3 D.2n+46.下列叙述正确的是()①三角形的中线、角平分线都是射线②三角形的三条高线交于一点③三角形的中线就是经过一边中点的线段④三角形的三条角平分线交于一点⑤三角形的中线将三角形分成面积相等的两个小三角形.A.②④⑤ B.①②④ C.②④ D.④7.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A. B.C. D.8.一个三角形的三个内角的度数之比为1:2:3,这个三角形一定是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法判定9.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二.填空题(共8小题,满分16分,每小题2分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.如图,∠CAD和∠CBD的平分线相交于点P.设∠CAD、∠CBD、∠C、∠D的度数依次为a、b、c、d,用仅含其中2个字母的代数式来表示∠P的度数:.13.一个多边形的一个外角为α,且该多边形的内角和与α的和等于840°,则这个多边形的边数为,α=度.14.如图所示:在△AEC中,AE边上的高是.15.如果一个多边形的内角和等于1800°,则这个多边形是边形;如果一个n边形每一个内角都是135°,则n= ;如果一个n边形每一个外角都是36°,则n= .16.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为.17.已知三角形的三边长都是整数,最长边长为8,则满足上述条件的互不全等的三角形的个数为.18.一个正多边形的每个外角为60°,那么这个正多边形的内角和是.三.解答题(共2小题,满分8分,每小题4分)19.(4分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?20.(4分)已知:三角形的两个外角分别是α°,β°,且满足(α﹣50)2=﹣|α+β﹣200|.求此三角形各角的度数.四.解答题(共3小题,满分15分,每小题5分)21.(5分)如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E= °;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH 满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.22.(5分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.23.(5分)如图,△ABC 中,AB=AC ,且AC 上的中线BD 把这个三角形的周长分成了12cm 和6cm 的两部分,求这个三角形的腰长和底边的长.五.解答题(共3小题,满分21分,每小题7分)24.(7分)如图:∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE平分∠ACD ,且BE 、CE 交于点E ,求证:∠E=∠A .25.(7分)已知a ,b ,c 是△ABC 的三边长,a=4,b=6,设三角形的周长是x .(1)直接写出c 及x 的取值范围; (2)若x 是小于18的偶数 ①求c 的长;②判断△ABC 的形状.26.(7分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?六.解答题(共3小题,满分30分,每小题10分)27.(10分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.28.(10分)(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B向右移动到AC上,那么还能求出∠A+∠DBE+∠C+∠D+∠E的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点B向右移动到AC的另一侧时,上面的结论还成立吗?(4)如图4,当点B、E移动到∠CAD的内部时,结论又如何?根据图3或图4,说明你计算的理由.29.(10分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.参考答案一.选择题1.D.2.D.3.C.4.A.5.B.6.A.7.C.8.A.9.D.10.B.二.填空题11.3.12..13.六;120.14.CD.15.十二,8,10.16.2cm.17.20.18.720°.三.解答题19.解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.20.解:∵(α﹣50)2=﹣|α+β﹣200|,∴α﹣50=0,α+β﹣200=0,∴α=50,β=150°,∴与∠α,∠β相邻的三角形的内角分别是130°,30°,∴三角形另一内角的度数=180°﹣130°﹣30°=20°.四.解答题21.解:(1)如图1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案为:45;(2)①如图2所示,②如图2,∵CF平分∠ECB,∴∠ECF=y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+y ①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=②,把②代入①得:45°+=∠F+y,∴∠F=67.5°,即∠AFC=67.5°;(3)如图3,设∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=∠AFC=×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+∠FCH+∠FPH,②把①代入②得:∠FPH=,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n,解得:m=2,n=﹣3.22.解:(1)由正n边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n边形的每一个内角为:60°,90°,108°,120°,…(n﹣2)•180°÷n;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)如:正方形和正八边形(如图),设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m•90°+n•135°=360°的正整数解.即2m+3n=8的正整数解,只有m=1,n=2一组,∴符合条件的图形只有一种.23.解:设AD=CD=x,AB=AC=2x,BC=y,当AB+AD=12时,,解得;当AB+AD=6时,,解得(不合题意,舍去).答:这个三角形的腰长是8,底边长是2.五.解答题(共3小题,满分21分,每小题7分)24.证明:∵∠ACD=∠A+∠ABC,∴∠3=(∠A+∠ABC).又∵∠4=∠E+∠2,∴∠E+∠2=(∠A+∠ABC).∵BE平分∠ABC,∴∠2=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.26.解:当点A、P、Q、B共线时,即点P、Q在△OAB的边AB上,两侧开挖的隧道在同一条直线上,∵∠A+∠B+∠AOB=180°,∴∠B=180°﹣28°﹣100°=52°,即∠QBO应等于52度才能确保BQ与AP在同一条直线上.六.解答题(共3小题,满分30分,每小题10分)27.解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.28.解:(1)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)如图,由三角形的外角性质,∠A+∠D=∠1,∵∠1+∠DBE+∠C+∠E=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°;(3)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(4)如图,延长CE与AD相交,由三角形的外角性质,∠A+∠C=∠1,∠B+∠E=∠2,∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.29.解:(1)如图,连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠DPE=∠α=50°,∠C=90°,∴∠1+∠2=50°+90°=140°,故答案为:140°;(2)连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠C=90°,∠DPE=∠α,∴∠1+∠2=90°+∠α;(3)如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.。

八年级数学上册最新每章的单元测试题_附答案

八年级数学上册最新每章的单元测试题_附答案

八年级数学上册《第十一章全等三角形》单元测试题一、选择题:*1. 如图,在①AB=AC,②AD=AE,③∠B=∠C,④BD=CE四个条件中,能根据“SSS”证明△ABD与△ACE全等的条件顺序是()A. ①②③B. ②③④C. ①②④D. ①③④*2. 如图,AC、BD交于点O,BO=DO,AO=CO,那么下列判断中正确的是()A. 只能证明△AOB≌△CODB. 只能证明△AOD≌△COBC. 只能证明△ABD≌△CBDD. 能证明四对三角形全等3. 在下列条件中,不能判定直角三角形全等的是()A. 两条直角边分别对应相等B. 斜边和一个锐角分别对应相等C. 两个锐角分别对应相等D. 斜边和一条直角边分别对应相等4. 如图,已知AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,则图中的全等三角形有()A. 1对B. 2对C. 3对D. 4对5. 如图18,已知△ABC的六个元素如图所示,则甲、乙、丙三个三角形中和△ABC全等的是()A. 甲、乙B. 乙、丙C. 只有乙D. 只有丙二、填空题:6. 如图,AB=AC ,BE=CD ,要使△ABE ≌△ACD ,依据“SSS ”,则还需添加条件: 。

**7. 如图,AD 和A ’D ’分别是锐角△ABC 和锐角△A ’B ’C ’中BC 和B ’C ’边上的高,且BC=B ’C ’,AD=A ’D ’,若使△ABC ≌△A ’B ’C ’,请你补充条件 。

(填一个你认为适当的条件)三、解答题:9. 已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,。

求证:(1)△OAB ≌△OCD ;(2)AB CD =。

《第十二章 轴对称》单元测试题一选择题:(每小题3分,共24分) 1、下列说法正确的是 ( )A 轴对称涉及两个图形,轴对称图形涉及一个图形B 如果两条线段互相垂直平分,那么这两条线段互为对称轴C 所有直角三角形都不是轴对称图形D 有两个内角相等的三角形不是轴对称图形2、若等腰三角形的一边长为10,另一边长为7,则它的周长为 ( ) A 17 B 24 C 27 D 24或273、若一个三角形的三个外角的度数之比为5∶4∶5,则这个三角形是( ) A 等腰三角形,但不是等边三角形,也不是等腰直角三角形 B 直角三角形,但不是等腰三角形 C 等腰直角三角形 D 等边三角形4、等腰三角形底边长为5cm,一腰上的中线分其周长的两部分的差为3cm ,则腰长为 ( ) A 2cm B 8cm C 2cm 或8cm D 以上答案都不对5、下列说法正确的个数有( )⑴等边三角形有三条对称轴 ⑵四边形有四条对称轴 ⑶等腰三角形的一边长为4,另一边长为9,则它的周长为17或22 ⑷一个三角形中至少有两个锐角 A 1个 B 2个 C 3个 D 4个6、若一个三角形一条边上的中点到其他两边的距离相等,那么这个三角形一定是( ) A 等边三角形 B 等腰三角形 C 不等边三角形 D 不确定 在平面直角坐标系中,直线y=2x-3关于x 轴对称的直线是( ) A y=2x+3 B y=-2x+3 C y=-2x-3 D y=-3x+27、如图,∠BAC=90o ,AD ⊥BC ,DE ⊥AC ,DF ⊥AB ,AC=12BC,除图中AC 和BC 外,关系形如a=12b 的线段对还有( )A 2对B 4对C 6对D 7对 二、填空题:(每小题3分,共24分)1、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________. 2.点A (3,-12),B (3,12)关于_______轴对称,点C (-5.4,-10),D (5.4,-10)关于________轴对称。

人教版八年级上学期数学《全等三角形》单元检测卷含答案

人教版八年级上学期数学《全等三角形》单元检测卷含答案
21.如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在B A和C A上取BE=CG;②在B C上取B D=CF;③量出DE的长为Am,FG的长为Bm.如果A=B,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?
22.如图,在 中, , 是 的平分线, 于点 ,点 在 上, ,求证: .
A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:5
[答案]C
[解析]
[分析]
直接根据角平分线的性质即可得出结论.
[详解]∵O是△A B C三条角平分线的交点,A B、B C、A C的长分别12,18,24,∴S△OA B:S△OB C:S△OA C=A B:OB:A C=12:18:24=2:3:4.
∴∠A′C B′=∠A C B=10k,
在△A B C中,∠B′C B=∠A+∠B=3k+5k=8k,
∴∠A′C B=∠A′C B′-∠B′C B′=10k-8k=2k,
∴∠B C A′:∠B C B′=2k:8k=1:4.
故选D.
6.如图,已知∠A B C=∠D C B,下列所给条件不能证明△A B C≌△D C B的是()
①是根据边边边(SSS);
②是根据两边夹一角(SAS);
③是根据两角夹一边(ASA)都成立.
根据三角形全等的判定,都可以确定唯一的三角形;
而④则不能.
故选A.
8.如图,在△A B C中,∠B=42°,A D⊥B C于点D,点E是B D上一点,EF⊥A B于点F,若ED=EF,则∠AEC的度数为( )
人教版八年级上册《全等三角形》单元测试卷
(时间:120分钟 满分:150分)

八年级(上)第十一章全等三角形(参考答案及评分标准)

八年级(上)第十一章全等三角形(参考答案及评分标准)

八年级(上)第十一章全等三角形章测试题参考答案及评分标准一、选择题1~ 5 题:C 、C 、A 、B 、D 6~10 题:C 、B 、C 、D 、B 二、填空题11、AC=AE ,12、95°,13、6.5cm ,14、∠D AB=CO ,AD=CD ,BD=OD ,AO=CB ,15、12,16、3 ,△ABO ≌△CDO ,17、115O ,18、30O ,19、AC 的中点,20、375 三、解答题21、(1)BE=CF ……2分 (2)证明:∵BE=CF∴BE+EC=CF+EC ,即BC=EF ……3分 ∵AB//DE,∴∠B =∠DEF ……4分在△ABC 和DEF 中⎪⎩⎪⎨⎧=∠=∠=DE AB DEF B EF BC∴△ABC ≌△DEF ……8分 22、证明:在△ABC 和DCB 中⎪⎩⎪⎨⎧===DB AC BC BC DC AB ∴ △ABC ≌△DCB ∴ ∠A= ∠D , ……4分 在△ABO 和DCO 中⎪⎩⎪⎨⎧=∠=∠∠=∠DC AB DOC AOB D A ∴ △ABO ≌ △DCO ……7分∴∠1=∠2 ……8分 23、(1)答:共2对,△DEG ≌ △BFH 和△AEH ≌ △CFG ……2分 (2)证明: △DEG ≌ △BFH ∵四边形ABCD 是平行四边形 ∴AD ∥CB , AB ∥CD∴∠E=∠F ,∠HGC=∠GHA ……4分 又∵∠DGE=∠HGC ,∠FHB=∠GHA∴∠DGE=∠FHB , ……6分在△DGE 和BFH 中⎪⎩⎪⎨⎧=∠=∠∠=∠BF DE FHB DGE BFH DEG ∴△DEG ≌△BFH ……10分 24、(1)证明:∵AD 是高 ∴∠ADB =∠ADC=90° 在Rt△ABD 和Rt△ACD 中⎩⎨⎧==ADAD AC AB∴Rt△ABD ≌Rt△ACD ……2分 ∴BD=CD 即 2BD=BC在Rt△ACD 中 ∠DA C+∠C=90°∴∠EBC=∠DAC ……3分 在△AEH 和△BEC 中⎪⎩⎪⎨⎧=∠=∠=∠=∠O BEC AEB BE AE DAC EBC 90∴△AEH ≌△BEC(ASA) ……6分 ∴AH=BC 又∵2BD=BC∴AH=2BD ……7分(2)成立(提示:在Rt△AHE 和Rt△ACD 中,先证∠ACD =∠AHE ,再证Rt△AHE ≌Rt△BCE ,得到AH=BC,得出AH=2BD ) ……10分 25、解:(1)已知:⑤,③,④ 求证:①,②证明:在AB 上截取一点F ,使AF=AD在△ADE 和△AFE 中⎪⎩⎪⎨⎧=∠=∠=AE AE EAB EAD AD AF ∴△ADE ≌△AFE ……3分 ∴ED=EF ,∠AFE=∠D∵AD+BC=AB ,∴BF=BC ……4分 在△BEF 和△BEC 中⎪⎩⎪⎨⎧=∠=∠=BE BE CBE ABE BC BF ∴△BEF ≌△BEC ,∴∠BFE=∠C ,EF=EC∴ED=EC ……7分 ∵∠BFE+∠AFE=180O ,∴∠C+∠D=180O ,∴AD ∥BC ……8分AB CDEF(2)命题一,已知:①,③,④求证:②,⑤ ……10分命题二,已知:①,②,③求证:④,⑤ ……12分26、解:(1)EF 与FD 之间的数量关系为FE=FD ……2分 (2)(1)中的结论FE=FD 仍然成立。

人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)

人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)
解:如图,取CG的中点H,连接EH,
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中, ,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
所以,由题意可得180(n-2)=2×360º
解得:n=6
16.十边形的外角和是_____°.
【答案】360
【解析】
【分析】
根据多边形外角和等于360°性质可得.
【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.
【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.
17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.
考点:找规律-图形的变化
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
C. 一个等腰三角形一定不是锐角三角形
D. 一个等边三角形一定不是钝角三角形
【答案】
【解析】
【分析】
根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).
【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;
A.4cm2B.6cm2C.8cm2D.9cm2
【答案】A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.

(完整)新人教版八年级数学上册第十一章三角形单元测试题含答案,推荐文档

(完整)新人教版八年级数学上册第十一章三角形单元测试题含答案,推荐文档

初中数学八(上)学习过程评价题 班级: 内容:第11章三角形 姓名: 得分: 一、选择题(30分). 1. 从五边形的一个顶点出发的对角线,把这个五边形分成 A.5B.4C.3 2. 以下列各组线段长为边能组成三角形的是 (). A.lcm , 2cm, 4cm B.2cm , 4cm, 6cm C.4cm ,个三角形. D.24. 一个三角形的三条角平分线的交点在 (). A.三角形内 B.三角形外 C. 三角形的某边上5. 某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板, 是()• A.正三角形 B.矩形 C.正六边形6. 能把一个任意三角形分成面积相等的两部分的是 ( A.角平分线 B.中线 C.高 D.以上二种情形都有可能 他购买的瓷砖形状不可以 D. 正八边形 ). D.A7. 一个角的两边与另一个角的两边互相垂直,且这两个角之差为为(). A.70。

和 110° B.80 。

和 120° C.40 。

和 140° 8. 一个三角形三个内角的度数之比为 2:3:7,这个三角形一 A .直角三角形B.等腰三角形 C •锐角三角形 9. ( n+1)边形的内角和比 n 边形的内角和大(). A.180 ° B.360 °C.n • 180° 40 B 、C 都可以,那么这两个角分别 D.100 定是(). D .钝角三角形 和 140°D.n • 360°10.如图,把△ ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则/ A 与/ 1 + Z 2之间 有一种数量关系始终保持不变,试着找一找这个规律 .你发现的规律是().C. / A=2 (/ 1 + Z 2)D. 第11题图二、填空题. 11.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条 是 (每题2分,共16 分)12. 某一个三角形的外角中有一个角是锐角,那么这个三角形是 ____________ 角三角形•13. 一个多边形的内角和是外角和的一半,则它的边数是—14. 如图所示:(1 )在厶ABC中,BC边上的高是_______ ;(2)在厶AEC中,AE边上的高是.15. 如图,正方形ABCD中,截去/ B、/ D后,/ 1、/ 2、/ 3、/ 4的和为16. 若一个等腰三角形的两边长分别是 3 cm和5 cm,则它的周长是cm~17. 三角形的三边长分别为5, 1+2x , 8,则x的取值范围是 ___________ .18. 一个四边形的四个内角中最多有 ________ 个钝角,最多有______ 个锐角?三、解答题(2X 4/=8/).19. 一个多边形的内角和等于它的外角和的6倍,这是一个几边形.20. 已知三角形的两个外角分别是久° , 3°,且满足(a—50)2=—|a +^—200|.求此三角形各角的度数.四、解答题(3X 5/=15/).21. △ ABC中,/ ABC / ACB的平分线相交于点0.(1)若/ ABC = 40 °,/ ACB = 50 °,则/ BOC = __________(2)若/ ABC +/ ACB =116°,则/ BOC = _________ .(3)_______________________________ 若/ A = 76 °,则/ BOC = .(4)_______________________________ 若/ BOC = 120°,则/ A = .22.如图的四边形是某地板厂加工地板时剩下的边角余料嵌吗?请说明理由.,用这种四边形的木板可以进行镶(5)你能找出/ A与/ BOC之间的数量关系吗?23. 已知等腰三角形中,AB= AC, —腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.四、解答题(3X 7/=21/).24. 如图,已知△ ABC D在BC的延长线上,E在CA的延长线上, F在AB上,试比较/ 1与/ 2的大小.25. 已知:如图,AC和BD相交于点0,说明:AC+BD>AB+CD.现测得/ A=145°, / B=75°, / C=85°Z D=55°,就断定这块模板是合格26.如图,它是一个大型模板,设计要求BA与CD相交成20°角, DA与CB相交成40°角, 的,这是为什么?五、解答题((3X 10/=30/)).27. 如图,四边形ABCD中,/ A=Z C= 90°, BE、DF分别是/ B/ D的平分线.(1)/ 1与/ 2大小有何关系,为什么?( 2) BE与DF有何关系?请说明理由C28. 如图1, / ACD>^ ABC的外角,BE平分/ ABC CE平分/ ACD且BE、CE交于点E.求证:⑴/ E= j / A;2(2)若BE、CE是厶ABC两外角的平分线且交于点E,则/ E与/ A又有什么关系?并说明理由29. 如图,/ ECM 90° ,线段AB的端点分别在CE和CF上,BD平分/ CBA并与/ CAB的外角平分线AG所在的直线交于一点 D. (1)Z D与/ C有怎样的数量关系?(2)点A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.参考答案1C ; 2.C ; 3.C ; 4.A ; 5.D ; 6.B ; 7.A ; 8.D ; 9.A ; 10.A ; 11.三角形具有稳定性; 12.钝;13.3 ; 14.AB 、CD 15.540 ° ; 16.11 或 13; 17.1 V x V 6; 18.3、3;22.能进行镶嵌;理由:由镶嵌的条件知,在一个顶点处各个内角的和为 360 °时,就能镶嵌.而任意四边形的内角和是 360 °,只要放在同一顶点的 4个内角和为360 ° 故能进行镶嵌. 23.如图,根据题意得: AB=AC, AD=CD, 设 BC=xcm, AD=CD=ycm 则 AB=AC=2ycm,①若 AB+AD=15cm, BC+CD=6cm 则 2y y 15x y 6解得:x 1 5 y即 AB=AC=10cm, BC=1cm ;②若 AB+AD=6cm , BC+CD=15cm2y 6 则x y 15解得:x 13y 2即 AB=AC=4cm, BC=13cm,19.14;20.13030°、 20°21. /OBC )••• 4+4=8V 13,不能组成三角形,舍去;•••这个等腰三角形的底边的长为1cm.24.根据三角形的外角性质,在△ AEF中,/ BAC >/ 1, 在厶ABC 中,/ 2>Z BAC ,所以,/ 2>Z 1.25.证明:••• AO+BO > AB , DO+CO > CD ,•AO+BO+DO+CO > AB+ CD ,即AC+BD > AB+ CD .26. 解:延长DA、CB,相交于F,•••/ C+Z ADC=85° +55°=140°,•••/ F=180° -140 ° =40 ° ;延长BA、CD相交于E,•/Z C+Z ABC=85° +75°=160°,•Z E=180° -160 °=20 °,故合格.27.(1 )Z 1+ Z 2=90°;•/ BE , DF分别是Z ABC , Z ADC的平分线, • Z 1 = Z ABE , Z 2=Z ADF ,/Z A= Z C=9C° ,• Z ABC+ Z ADC=180 ,••• 2 (/ 1+ / 2) =180° , • BE // DF .28. (1)证明:•••/ ACD= Z A+ /ABC ,1 •••Z2= — (/A+ /ABC )2•••左+ 72= 1 (/A+ ZABC )2•••左+ 1 (/A+ ZACB ) + 1 (/A+ /ABC ) =180。

新人教版八年级数学第11章全等三角形单元试卷及参考答案.docx

新人教版八年级数学第11章全等三角形单元试卷及参考答案.docx

新人教版八年级数学第—章单元考试试卷一、选择题(每小题3分,共30分)1.在ZV1BC 中,ZB=ZC,与AABC 全等的三角形有一个角是100。

,那么在△ABC 中 与这100。

角对应相等的角是()4•如图,L1^AB = DC, AD = BC, E, F 在 DB 上两点J=L BF=DE,若ZAEB=120。

,ZADB = 30°,则 ZBCF=() A.15O 0 B.40° C.80°D.90°5. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.不相等C.互余或相等D.互补或相等6. 如图,丄BC, BE±AC t Z1 = Z2, AD=AB f 贝U ( )A.Z1 = ZEFDB.BE=EC C ・BF=DF=CD D.FD//BC7.如图所示,BE 丄AC 于点 且 =BD = ED,若ZABC=54°,则ZE=()A.25°B.27。

C.30°D.45°8. 如图所示,亮亮书上的三角形被黒迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ZAB.ZBC.ZCD.ZB 或ZC 2. 如图,在CD 上求一点P, 使它到O 久OB 的距离和等,则P 点是( A.线段CD 的中点C.OA 与CD 的中乖线的交点B.OA 与OB 的中垂线的交点 D.CZ )与ZAOB 的平分线的交点3.如图所示,竺△CDB,A.AABD 和△CDS 的面积和等 卜•面四个结论屮,不正确的是()B.AABD 和△CDB 的周长和等C.ZA+ZABD= ZC+ZCBDD.AD//BC, HAD=BCA. SSSB.SASC. AASD.ASA第3题图A第4题图 第7题图9. 如图,在厶ABC 中,4Q 平分ABAC,过B 作BE 丄AQ 于& 过E 作EF 〃AC 交AB 10•将一张长方形纸片按如图所示的方式折叠,BC 、BQ 为折痕,则ZCBD 的度数为()A. 60°B. 75°C. 90°D. 95°二、填空题(每题3分,共15分)11・能够 ___________________ 的两个图形叫做全等图形.12.已知,如图,AD=AC, BD=BC, O 为AB h 一点,那么,图屮共有 对全等三用形.ZBAD 二40。

【人教版】八年级上册数学:第11章三角形单元测试(含答案)

【人教版】八年级上册数学:第11章三角形单元测试(含答案)

第十一章三角形单元测试一、单选题(共10题;共30分)1、如图,小正方形边长为1,连结小正方形的三个顶点,可得△ABC,则AC边上的高是()A、 B、C、D、2、等腰三角形的两边分别为5cm、4cm,则它的周长是()A、14cmB、13cmC、16cm或9cmD、13cm或14cm3、若一个多边形有14条对角线,则这个多边形的边数是()A、10B、7C、14D、64、在四边形的内角中,直角最多可以有()A、1个B、2个C、3个D、4个5、一个多边形的内角和是720°,则这个多边形的边数为()A、4B、5C、6D、76、下列图形中有稳定性的是()A、正方形B、直角三角形C、长方形D、平行四边形7、八边形的对角线共有()A、8条B、16条C、18条D、20条8、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A、8条B、9条C、10条D、11条9、若一个多边形的外角和与它的内角和相等,则这个多边形是()A、三角形B、五边形C、四边形D、六边形10、如图,在证明“△ABC内角和等于180°”时,延长BC至D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是()A、数形结合B、特殊到一般C、一般到特殊D、转化二、填空题(共8题;共27分)11、一个等腰三角形的两边长分别为5厘米、9厘米,则这个三角形的周长为________.12、超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了________ .13、若一个多边形从一个顶点可以引8条对角线,则这个多边形的边数是________ ,这个多边形所有对角线的条数是________ .14、现要用两种不同的正多边形地砖铺地板,若已选用正三角形,则还可以选用正________ 边形与它搭配铺成无空隙且不重叠的地面(只需要写出一种即可)15、如果等腰三角形一个角是45°,那么另外两个角的度数为________16、已知一个多边形的内角和是1620°,则这个多边形是________边形.17、在格点图中,横排或竖排相邻两格点问的距离都为1,若格点多边形边界上有200个格点,面积为199,则这个格点多边形内有________个格点.18、一个多边形的每一个内角都是108°,你们这个多边形的边数是________.三、解答题(共5题;共32分)19、如图,已知,l1∥l2, C1在l1上,并且C1A⊥l2, A为垂足,C2, C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.20、如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.21、如图,在△ABC中,∠B=40°,∠C=62°,AD是△ABC的高,AE是△ABC的角平分线.求∠EAD的度数.22、如图,△ABC的中线AD、BE相交于点F.△ABF与四边形CEFD的面积有怎样的数量关系?为什么?23、如图,在7×8的方格纸中,已知图中每个小正方形的边长都为1,求图中阴影部分的面积.四、综合题(共1题;共11分)24、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案解析一、单选题1、【答案】 C【考点】三角形的面积,勾股定理【解析】【分析】以AC、AB、BC为斜边的三个直角三角形的面积分别为1、1、,因此△ABC的面积为;用勾股定理计算AC的长为,因此AC边上的高为.【解答】∵三角形的面积等于小正方形的面积减去三个直角三角形的面积,即S△ABC=4-×1×2-×1×1-×1×2=∵=,∴AC边上的高==,故选C.【点评】此题首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC的长,最后根据三角形的面积公式计算.2、【答案】 D【考点】三角形三边关系,等腰三角形的性质【解析】【分析】因为等腰三角形的两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.故选D.3、【答案】 B【考点】多边形的对角线【解析】【分析】根据多边形的对角线与边的关系,n边形的对角线条数为:(n≥3,且n为整数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每题3分,共24分) 1、下列说法中正确的是( )
A 、两个直角三角形全等
B 、两个等腰三角形全等
C 、两个等边三角形全等
D 、两条直角边对应相等的直角三角形全等
2、(易错易混点)如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )
A .C
B CD = B .BA
C DAC =∠∠ C .BCA DCA =∠∠
D .90B D ==︒∠∠
3. 如图所示, 将两根钢条AA ’、BB ’的中点O 连在一起, 使AA ’、BB ’可以绕着点O 自由旋转, 就做成了一个测量工件, 则A ’B ’的长等于内槽宽AB, 那么判定△OAB ≌△OA ’B ’的理由是( ) A. 边角边 B. 角边角 C. 边边边 D. 角角边
4、如图,△ABC 中,∠C=90º,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且CD=6cm ,则DE 的长为( )
A 、4cm
B 、6cm
C 、8cm
D 、10cm
5、(易错易混点)下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( )
A 、3个
B 、2个
C 、1个
D 、0个
6、(易错易混点)如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带( )去配。

A. ①
B. ②
C. ③
D. ①和②
7.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三
角形全等,给出的条件中至少要有一对边对应相等.正确的是( ) A .①和② B .②和③ C .①和③ D .①②③
8、如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠
C .OA OB =
D .AB 垂直平分OP
二、填空题(每题3分,共24分)
9、如图,若111ABC A B C △≌△,且
11040A B ∠=∠=°,°,则1C ∠= . 10、如图已知△ABD ≌△ACE ,且AB=8,BD=7,AD=6则BC=________________.
11、如图,已知AC=BD ,21∠=∠,那么△ABC ≌ , 其判定根据是_______。

12、(2009.湖南省怀化市)如图,已知AD AB =,DAC BAE ∠=∠, 要使 ABC △≌ADE △,可补充的条件是 (写出 一个即可).
13、 如图,ABC △的周长为32,且BC AD DC BD ⊥=,于D ,ACD △的周长为24,那么AD 的长为 .
14、如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于
15、如图,在Rt ABC △中,
90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知
10=∠BAE ,则C ∠的度数为
16.已知△ABC 中,AB=BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.
三、用心做一做(17题10分,18题12分,19-21题每题10分)
17、已知:如图,
三点在同一条直线上,


.求证:

18、小红家有一个小口瓶(如图5所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了。

她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由。

(木条的厚度不计)
19、(1);
(2)

20、如图,已知AC平分∠BAD,∠1=∠2,求证:AB=AD
21、如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC, 能否找出与AB+AD相等的线段,并说明理由.
参考答案
一、1、D 【解析】判定三角形全等的条件主要有“SSS ””、SAS ”、“AAS ”、“ASA ”以及直角三角形中的”HL ”,所以不难看出答案应选D.
2、C 【解析】题目中已知AB AD =,还有公共边AC=AC,所以可用“SSS ” “ SAS ”来判定ABC ADC △≌△,这样不难发现A 、B 适合,对于答案D 来说90B D ==︒∠∠,说明△ABC 和△ADC 是直角三角形,所以可用“HL ”来判定这两个三角形全等,由此可知答案选C.
易错分析:有些同学忘记了“HL ”能判定三角形全等的,因袭会误选答案D.
5、C 【解析】
只有(3)是正确的,答案选C.
易错分析:全等形的定义是形状和大小都相同,所以(1)是错误的,对于(2)中的两个三角形,必须是两个全等的三角形才可以,所以(2)是错误的,这也是本题容易出错的地方.
6、C :【解析】怎样做一个三角形与已知三角形全等,可依据全等三角形的判定条件来判断。

题中的一块三角形的玻璃被打碎成三块,其中:(1)仅留一角;(2)没边没角;(3)存在两角和夹边,可依据ASA ,不难做出与原三角形全等的三角形。

所以带③去就可以了.
易错分析:好多同学可能认为带①②去合适的,实际上那样还是不能确定三角形的形状.
二、 9、300
【解析】因为111ABC A B C △≌△,所以∠C=∠C 1,又因为
11040A B ∠=∠=°,°,所以∠C=∠C 1=300
.
10、2 【解析】 因为△ABD ≌△ACE ,所以AD=AC=6,又因为AB=8,所以BC=2. 11、△ABD SAS
12、AC=AE 或D B ∠=∠或E C ∠=∠【解析】由DAC BAE ∠=∠可得EAD BAC ∠=∠,又已知AB=AD,那么,由SAS 、ASA 、AAS 可补充的条件是AC=AE 或D B ∠=∠或E C ∠=∠.
14、48°【解
析】因为△CDE 沿DE 折叠,所以△CDE ≌△DEP ,所以∠CDE=∠EDP=480
,CD=DP,所以∠ADP =1800
-480
-480
=840
,又因为D E ,分别为ABC △的AC ,BC 边的中点,所以DA=DC=DP,所以APD ∠=48°.
15、
40【解析】因为ED 是AC 的垂直平分线,所以可知道△AED ≌△EDC,所以∠EAD=∠C,又因为
10=∠BAE ,所以C ∠的度数是 40.
16、7【解析】以AB 为公共边可以作出两个与△ABC 全等的三角形,同样以BC 为公共边也可以作出两个与△ABC 全等的三角形,而以AC 为公共边只可以作出一个与△ABC 全等的三角形。

三、17证明: ∵AC ∥DE,


又∵∠ACD=∠B ,

又∵AC=CE,,

19、证明:(1) ∵
AB=BA
∴△ABC ≌△DBA

(2)∵∠AOC=∠BOD ∠C=∠D ∴∠CAO=∠DBO ∵AC=BD ∴
20、证明:∵AC 平分∠BAD
∴∠BAC=∠DAC.
∵∠1=∠2
∴∠ABC=∠ADC.
在△ABC和△ADC中
,,BAC DAC ABC ADC AC AC ∠=∠⎧⎪
∠=∠⎨⎪=⎩
∴△ABC≌△ADC(AAS). ∴AB=AD.
⎪⎩

⎨⎧=∠=∠∠=∠EC DC EBC DAC BCE
ADC 所以△DAC ≌△BEC。

相关文档
最新文档