第二课时一次函数的性质(二)
八年级数学下册 第二十一章 一次函数 21.2 一次函数的图像和性质 第2课时 一次函数的性质课件

21.2 一次函数的图像(tú 和性质 xiànɡ)
第一页,共二十四页。
第21章 一次函数
第2课时(kèshí) 一次函数的性质
知识目标 目标突破 总结反思
第二页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
知识(zhī shi)目标
1.经历(jīnglì)观察图像探索一次函数的增减性的过程,会应用一次函 数的增减性解决字母参数问题. 2.经历探索一次函数的图像和k,b的关系的过程,会运用一次函数的 图像和比例系数的关系求解字母参数.
D.k<0,b<0
[解析] ∵一次函数y=kx+b的图像(tú xiànɡ)经过一、三象限,∴k>0.又∵ 该图像与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.
第八页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
(2)2017·广安当k<0时,一次函数y=kx-k的图像不经过( )
第十六页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
【归纳总结】一次函数的其他性质:
(1)一次函数 y=kx+b(k≠0,k,b 为常数)与 x 轴的交点坐
b 标为(-k,0),与
y
轴的交点坐标为(0,b);
(2)一次函数与不等式的关系:可以根据函数关系式将一个变
量满足的不等关系,转变为另一个变量满足的不等关系,从而确
第二十一页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ) 2.已知直线y=2x+m不经过第二象限,求m的取值范围.
解:∵k=2>0,
∴直线经过第一、三象限. ∵直线不经过第二象限,
∴直线经过第一、三、四象限,故m<0.
2021年八年级下册一次函数的图像和性质(二)----增减性(含解析)

一次函数的图像和性质(二)----增减性一、单选题(共21题;共42分)1.(2020八上·中宁期中)下列一次函数中,y随x的增大而减小的是()A. y=10x+4B. y=x-3C. y=-2xD. y=0.3x2.(2020八下·醴陵期末)下列一次函数中,y随x值的增大而减小的是()A. y=3﹣2xB. y=3x+1C. y= x+6D. y=(﹣2)x3.(2020八下·来宾期末)下列一次函数中,y随x值的增大而减小的是( )A. y=2x+1B. y=3-4xC. y= x+2D. y=( -2)x4.(2021八下·杭州开学考)在一次函数的图象上,随的增大而减小,则的取值范围是()A. B. C. D.5.(2021八上·连云港期末)已知一次函数,函数值随自变量的增大而减小,那么m 的取值范围是()A. B. C. D.6.(2020八下·江阴月考)已知一次函数y=kx+b,y随x的增大而减小,那么反比例函数满足()A. 当x>0时,y>0B. y随x的增大而增大C. 图象分布在第一、三象限D. 图象分布在第二、四象限7.(2021八上·建邺期末)若一次函数的图象经过点,且函数值随着增大而减小,则点的坐标可能为()A. B. C. D.8.(2020八上·潜山期末)下列一次函数中,的值随着的值增大而减小的是()A. B. C. D.9.(2020八上·慈溪月考)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B. C. D.10.(2021八上·甘州期末)正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx﹣k 的图象大致是()A. B. C. D.11.(2020八上·平阴期末)已知函数中y随的增大而减小,则一次函数的图象大致是()A. B. C. D.12.(2020八上·运城期中)如果一次函数的图象随的增大而减小,且图象经过第三象限,则下列函数符合上述条件的是()A. B. C. D.13.(2020八下·商州期末)下列一次函数中,y随x值增大而增大的是()A. B. C. D.14.(2020八上·庐阳期末)在一次函数中,随的增大而增大,那么的值可以是()A. 1B. 0C.D.15.(2021八上·丹徒期末)一次函数的图象过点(0,4),且y随x的增大而增大,则m的值为()A. ﹣2B. ﹣2或2C. 1D. 216.(2020八下·永春期末)在一次函数中,随的增大而增大,则的取值范围是()A. B. C. D.17.(2021七上·莱州期末)正比例函数()的函数值y随x的增大而减小,则一次函数的图象大致是()A. B. C. D.18.(2020八下·金昌期末)已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A. m<2B.C.D. m>019.(2020·珠海模拟)在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限20.(2019八上·辽阳期中)一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是()A. B. C. D.21.(2020八上·龙泉驿期末)正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B.C. D.二、填空题(共11题;共11分)22.(2021八上·海州期末)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值________.23.(2021八下·上海期中)已知一次函数的函数值随着自变量的值增大而减小,那么实数的取值范围是________.24.(2020八下·巴中月考)一次函数y=4x﹣2的函数值y随自变量x值的增大而________(填“增大”或“减小”).25.(2020八下·焦作期末)写出一个具体的y随x的增大而减小的一次函数解析式________26.(2021·成都模拟)已知一次函数y=kx+k,若y随x的增大而增大,则它的图象经过第________象限.27.(2020八上·镇海期中)写一个经过点(-1,0),且y随x增大而增大的一次函数________.28.(2021九下·盐城月考)若一次函数的函数值y随自变量x的增大而增大,则实数k的取值范围是________.29.(2021八下·浦东期中)已知一次函数y=kx+b的图象不经过第三象限,那么函数值y随自变量x的值增大而________(填“增大”或“减小”).30.(2020·成都模拟)若一次函数y=(1-m)x+2,函数值y随x的增大而减小,则m的取值范围是________.31.(2020八下·西华期末)如果一次函数(是常数,)的图象过点,那么的值随的增大而________(填“增大”或“减小”).32.(2020八下·西吉期末)写出同时具备下列两个条件:(1)y随着x的增大而减小;(2)图象经过点(0,-3)的一次函数表达式(写出一个即可)________.答案解析部分一、单选题1.【答案】C【解析】【解答】解:在y=10x+4、y=x-3和y=0.3x中k分别为10,1,0.3,y随x的增大而增大;在y=-2x中,k=-2,y随x的增大而减小.故答案为:C.【分析】形如“y=kx+b(k,b为常数,且k≠0)”的函数就是一次函数,一次函数中k大于0的时候,y随x 的增大而增大;k小于0的时候,y随x的增大而减小,从而即可一一判断得出答案.2.【答案】A【解析】【解答】A.∵k=-2<0,∴y随x的增大而减小,故本选项符合题意;B.∵k=3>0,∴y随x的增大而增大,故本选项不符合题意;C.∵k= >0,∴y随x的增大而增大,故本选项不符合题意;D.∵k= ﹣2>0,∴y随x的增大而增大,故本选项不符合题意.故答案为:A.【分析】根据一次函数的性质对各选项进行逐一分析即可.关键看x的系数的正负.3.【答案】B【解析】【解答】解:A、y=2x+1,k=2,y随x的增大而增大,故A不符合题意;B、y=3-4x,k=-4<0,y随x的增大而减小,故B符合题意;C、y= x+2 ,k=>0,y随x的增大而增大,故C不符合题意;D、y=( -2)x ,k=-2>0,y随x的增大而增大,故D不符合题意;故答案为:B.【分析】根据直线y=kx+b,当k>0时y随x的增大而增大,当k<0时,y随x增大而减小;再对各选项逐一判断,可得答案。
5.4一次函数的图象与性质(2)课件-浙教版数学八年级上册

(1)若k 0,则k( x2 x1) 0,即y2 y1 0, y2 y1
∴y随x的增大而增大.
(2)若k 0,则k( x2 x1) 0,即y2 y1 0, y2 y1
◆运用新知
例1 我国某地区现有人工造林面积12万公顷,规划今后10年每年新 增造林面积大致相同,约为0.61~0.62万公顷,请估算6年后该地区 的造林总面积达到多少万公顷.
解:设P表示今后10年平均每年造林的公顷数,则0.61≤P≤0.62. 设6年后该地区的造林面积为S公顷,
则 S=6P+12
∴y随x的增大而减小.
y
y2
x1
o x2 x
y1
k>0
y
y1
x1
x2
o
x
y2
k<0
活动3:做一做
1.设下列两个函数,当x=x1时,y=y1;当x=x2时,y=y2 .用
“>”或“<”号填空:
1 (1)对于函数y 2,x若x2>x1,则y2
y>1.
(2)对于函数y
3 4
x,若 3x2
____
x1,>则y2<y1.
而
减小.因为0≤x≤70,所以当x=70时,y的值最小.
甲仓库
乙仓库
A地
x
70-x
B地
100-x
10+x
将x=70代入表中的各式可知,当甲仓库向A,B两工地各运送70 吨和30吨,乙仓库不向A工地运送水泥,而只向B工地运送80吨 时,总运费最省,最省的总运费为-3×70+3920=3710(元).
◆巩固练习
14.2.2 一次函数(第二课时)

14.2.2 一次函数(第二课时)主备人:王彦东一、学习目标:1.会用简单方法画一次函数图象.2.理解一次函数图象特征与解析式的联系规律.正确理解k、b的几何意义.3. 利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.重点:1.一次函数图象的画法.2.一次函数图象特征与k、b联系规律.难点:一次函数图象特征与k、b联系规律.二、预习提纲:活动一、自我回顾上节课所学习的知识。
1、什么叫做正比例函数、一次函数?它们之间有什么关系?2、正比例函数的图象形状是什么样的?3、正比例函数y=kx(k是常数,k≠0)中,k的正负数对函数的图象有什么影响?活动二、画图:用描点法在同一坐标系中画出函数y=-6x,y=—6x+5的图象。
第一步:列表第二步:第三步:观察上面两个函数图象的相同点与不同点,与同学交流一下,谈谈自己的见解。
相同点:这两个函数的图象形状都是,并且倾斜程度。
不同点:函数y=-6x的图象经过原点,而函数y= -6x+5的图象没有经过原点,但与y轴交于点,即它可以看作由直线y= -6x向平移个单位长度而得到。
活动三、猜想、验证、归纳1、所有的一次函数图象都是直线吗?2、直线y=kx与直线y=kx+b的图象存在什么样的位置关系?3、由直线y=kx可经过怎样的平移得到直线y=kx+b?活动四、讨论:1.根据作图,观察、讨论这些函数的图象是什么形状?2.几个点确定一条直线?画一次函数图象时,只要取几个点?活动五、例:在同一直角坐标系中,画出下列函数的图象:y=2x-1与y=-0.5x+1活动六、探究:试比较下列各对一次函数的图象有什么共同点,有什么不同点?(1)y=x+1与y=-x+1; (2)y=2x+1与y=-2x+1;能否从中发现一些规律?对于直线y=kx+b(k 、b 是常数,k ≠0),常数k 、b 的取值对于直线的位置各有什么影响?规律:当k>0时,直线y=kx+b 由左至右 ;当k<0时,直线y=kx+b 由左至右 . 当k>0时,y 随x 增大而 . 当k<0时,y 随x 增大而 .由此可以得到直线)0(≠+=k b kx y 中,k ,b 的取值决定直线的位置:(1)⇔>>0,0b k 直线经过___________象限;(2)⇔<>0,0b k 直线经过___________象限;(3)⇔><0,0b k 直线经过___________象限;(4)⇔<<0,0b k 直线经过___________象限;三、讨论与交流要求:以小组为单位对预习提纲的内容展开交流,并准备展示内容。
专题20.2 一次函数的图像与性质(第2课时)(解析版)

第二十章一次函数专题20.2 一次函数的图像与性质(第2课时)基础巩固一、单选题(共6小题)1.如图,直线y1=x+b与y2=kx﹣1相交于点P,若点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集是()A.x≥﹣1B.x>﹣1C.x≤﹣1D.x<﹣1【答案】B【分析】观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b >kx﹣1的解集为x>﹣1.【解答】解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选:B.【知识点】一次函数与一元一次不等式2.下列四个函数中,y随x的增大而减小的是()A.y=3x B.y=1+2x C.y=1﹣2x D.y=﹣1+x【答案】C【分析】根据k小于零时,y随x的增大而减小,可得答案.【解答】解:A、k=3>0,y随x的增大而增大,故A不符合题意;B、k=2>0,y随x的增大而增大,故B不符合题意;C、k=﹣2<0,y随x的增大而减小,故C符合题意;D、k=1>0,y随x的增大而增大,故C不符合题意;故选:C.【知识点】一次函数的性质、正比例函数的性质3.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【答案】D【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三、四象限.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三、四象限,故选:D.【知识点】正比例函数的性质、一次函数的性质、一次函数的图象4.如图,一次函数y=kx+b的图象经过点(﹣3,0),则()A.b<0B.方程kx+b=0的解是x=﹣3C.k<0D.y随x的减小而增大【答案】B【分析】利用函数图象和一次函数的性质得到k>0,b>0,y随x的增大而增大,则可对A、C、D选项进行判断;利用自变量为﹣3对应的函数值为0可对B选项进行判断.【解答】解:∵一次函数图象经过第一、二、三象限,∴k>0,b>0,y随x的增大而增大,所以A、C、D选项错误;∵一次函数y=kx+b的图象经过点(﹣3,0),∴x=﹣3时,y=0,即x=﹣3为方程kx+b=0的解,所以B选项正确.故选:B.【知识点】一次函数图象与系数的关系、一次函数与一元一次方程5.在直角坐标系中,点A(2,﹣3)、B(4,3)、C(5,a)在同一条直线上,则a的值是()A.﹣6B.6C.6或3D.6或﹣6【答案】B【分析】根据点A,B的坐标,利用待定系数法可求出直线AB的解析式,再利用一次函数图象上点的坐标特征即可求出a的值.【解答】解:设直线AB的解析式为y=kx+b(k≠0).将A(2,﹣3),B(4,3)代入y=kx+b得:,解得:,∴直线AB的解析式为y=3x﹣9.当x=5时,y=3×5﹣9=6,∴a=6.故选:B.【知识点】一次函数图象上点的坐标特征、待定系数法求一次函数解析式6.若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1【答案】D【分析】先求出一次函数y=kx+3与y轴交点关于直线x=1的对称点,得到b的值,再求出一次函数y=2x+b与y轴交点关于直线x=1的对称点,代入一次函数y=kx+3,求出k的值即可.【解答】解:∵一次函数y=kx+3与y轴交点为(0,3),∴点(0,3)关于直线x=1的对称点为(2,3),代入直线y=2x+b,可得4+b=3,解得b=﹣1,一次函数y=2x﹣1与y轴交点为(0,﹣1),(0,﹣1)关于直线x=1的对称点为(2,﹣1),代入直线y=kx+3,可得2k+3=﹣1,解得k=﹣2.故选:D.【知识点】一次函数图象与几何变换二、填空题(共8小题)7.如图两条相交直线y1与y2的图象如图所示,当x时,y1<y2.【答案】>a【分析】观察函数图象,找出一次函数y1在y2的图象下方所对应的自变量的范围即可.【解答】解:观察图象得:当x>a时,y1<y2;故答案为>a.【知识点】一次函数与一元一次不等式8.已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象相交于点P(4,﹣6),则二元一次方程组的解是.【分析】两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【知识点】一次函数与二元一次方程(组)9.若关于x的一次函数y=kx+b的图象经过点A(﹣1,0),则方程k(x+2)+b=0的解为.【答案】-3【分析】把点A(﹣1,0)代入y=kx+b,求得b=k,所以方程变为k(x+2)+k=0,即可求得方程的解.【解答】解:∵关于x的一次函数y=kx+b的图象经过点A(﹣1,0),∴﹣k+b=0,∴b=k,∴方程k(x+2)+b=0化为方程k(x+2)+k=0,∴k(x+3)=0,∴x=﹣3.故答案为﹣3.【知识点】一次函数与一元一次方程10.点P(a,b)在函数y=3x+2的图象上,则代数式3a﹣b+1的值等于.【答案】-1【分析】把P(a,b)代入一次函数解析式得到b=3a+2,然后把b=3a+2代入3a﹣b+1后进行整式的加减运算即可.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,∴3a﹣b+1=3a﹣(3a+2)+1=3a﹣3a﹣2+1=﹣1.故答案为﹣1.【知识点】一次函数图象上点的坐标特征11.如图,将直线OA向上平移2个单位长度,则平移后的直线的表达式为.【答案】y=2x+2【分析】利用待定系数法确定直线OA解析式,然后根据平移规律填空.【解答】解:设直线OA的解析式为:y=kx,把(1,2)代入,得k=2,则直线OA解析式是:y=2x.将其上平移2个单位长度,则平移后的直线的表达式为:y=2x+2.故答案是:y=2x+2.【知识点】一次函数图象与几何变换12.点P为直线y=x+2上的任意一点,O为原点,则OP的最小值为.【分析】设直线y=x+2与y轴交于点A,与x轴交于点B,过点O作直线AB的垂线,垂足为点P,此时线段OP最小,分别将x=0、y=0代入一次函数解析式中求出与之对应的y、x值,进而即可得出OA、OB的长度,利用勾股定理即可得出AB的长度,再利用面积法即可求出OP的长度.【解答】解:设直线y=x+2与y轴交于点A,与x轴交于点B,过点O作直线AB的垂线,垂足为点P,此时线段OP最小.当x=0时,y=2,∴点A(0,2),∴OA=2;当y=0时,求得x=﹣2,∴点B(﹣2,0),∴OB=2,∴AB=2.∴OP===.故答案为.【知识点】一次函数图象上点的坐标特征、垂线段最短13.已知:a、b、c是三个非负数,并且满足3a+2b+c=6,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为.【分析】先把c看作已知数,分别用c表示出a和b,让a≥0,b≥0列式求出c的取值范围,再求得m用c表示的形式,结合c的取值范围即可求得s的值.【解答】解:3a+2b+c=6,2a+b﹣3c=1,解得a=7c﹣4,b=9﹣11c;∵a≥0、b≥0,∴7c﹣4≥0,9﹣11c≥0,∴≤c≤.∵m=3a+b﹣7c=3c﹣3,∴m随c的增大而增大,∵c≤.∴当c取最大值,m有最大值,∴m的最大值为s=3×﹣3=﹣.故答案为﹣.【知识点】解三元一次方程组、一次函数的性质14.已知y是x的函数,其函数图象经过(1,2),并且当x>0时,y随x的增大而减小.请写出一个满足上述条件的函数表达式:﹣.【答案】y=-x+3【分析】答案不唯一,根据已知写出一个即可.【解答】解:答案不唯一,如:y=﹣x+3,故答案为:y=﹣x+3.【知识点】反比例函数的性质、正比例函数的性质、一次函数的性质拓展提升三、解答题(共6小题)15.已知y=y1+y2,且y1与x成反比例,y2与x﹣2成正比例,当x=1时,y=1;当x=﹣3时,y=13,求:(1)y与x之间的函数解析式;(2)当x=3时,求y的值.【分析】(1)根据题意分别设出y1,y2,代入y=y1+y2,表示出y与x的解析式,将已知两对值代入求出k 与b的值,确定出解析式;(2)将x=3代入计算即可求出值.【解答】解:(1)根据题意设y1=,y2=b(x﹣2),即y=y1+y2=+b(x﹣2),将x=1时,y=1;x=﹣3时,y=13分别代入得:,解得:k=﹣,b=﹣,则y=﹣﹣(x﹣2);(2)当x=3时,y=﹣﹣=﹣3.【知识点】待定系数法求一次函数解析式、一次函数的性质16.已知点(﹣4,2)在正比例函数y=kx的图象上.(1)求该正比例函数的解析式;(2)若点(﹣1,m)在该函数的图象上,求出m的值.【分析】(1)把(﹣4,2)代入正比例函数y=kx即可得出k的值;(2)把点(﹣1,m)代入y=kx的图象上,即可求出m的值;【解答】解:(1)∵点(﹣4,2)在正比例函数y=kx的图象上,∴﹣4k=2,∴k=﹣;∴该正比例函数的解析式为y=﹣x;(2)∵点(﹣1,m)在函数y=﹣x的图象上,∴m=﹣×(﹣1),∴m=.【知识点】一次函数图象上点的坐标特征、待定系数法求正比例函数解析式17.小颖根据学习函数的经验,对函数y=|x﹣1|+1进行探讨.x…﹣2﹣101234…y…4321234…(1)若点A(m,6)和点B(b,6)是该函数图象上的两点,则a+b=.(2)在平面直角型标系中画出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)由图象可知,函数y=|x﹣1|+1的最小值是;(4)由图象可知,当y≤4时,x的取值范围是.【答案】【第1空】2【第2空】1【第3空】-2≤x≤4【分析】(1)把y=6代入=|x﹣1|+1,即可求出a、b的值;(2)画出该函数的图象即可;(3)观察函数图象,可知函数的最小值;(4)根据图象即可求出当y≤4时,x的取值范围.【解答】解:(1)把y=6代入=|x﹣1|+1,得6=|x﹣1|+1,解得x=﹣4或6,∵A(﹣4,6),B(6,6)为该函数图象上不同的两点,∴a=﹣4,b=6,∴a+b=2.故答案为2;(2)该函数的图象如图:(3)该函数的最小值为1;故答案为1;(4)∵y=4时,则4=|x﹣1|+1,解得,x=﹣2或x=4,由图象可知,当y≤4时,x的取值范围是﹣2≤x≤4.故答案为﹣2≤x≤4.【知识点】一次函数的性质、一次函数图象上点的坐标特征、一次函数的图象18.已知直线y=kx+b经过点(2,3)和(﹣4,1),求该直线的表达式.【分析】把点(2,3)和(﹣4,1)代入一次函数的解析式,列出方程组,解方程组便可求出其解析式.【解答】解:∵直线y=kx+b经过点(2,3)和(﹣4,1),∴,解得.故该直线的解析式为y=x+.【知识点】一次函数图象上点的坐标特征、待定系数法求一次函数解析式19.已知直线a过点M(﹣1,﹣4.5),N(1,﹣1.5).(1)求此直线的函数解析式;(2)求出此函数图象与x轴、y轴的交点A,B的坐标;(3)若直线a与b相交于点P(4,n),a,b与x轴围成的△P AC的面积为6,求出点C的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)在解析式中令x=0求得y,即可求得与y轴的交点坐标,在解析式中令y=0,求得x的值,即可求得与x轴的交点坐标;(3)设C的横坐标是m,利用三角形的面积公式即可得到关于m的方程,即可求解.【解答】解:(1)设直线a的解析式为y=kx+b,把M(﹣1,﹣4.5),N(1,﹣1.5)代入得:,解得:,则直线解析式为y=1.5x﹣3;(2)令x=0,得到y=﹣3;令y=0,得到x=2,则A(2,0),B(0,﹣3);(3)把P(4,n)代入y=1.5x﹣3得:n=3,即P(4,3),设C的横坐标是m,∵a,b与x轴围成的△P AC的面积为6,∴|m﹣2|×3=6,解得:m=﹣2,或m=6.则C的坐标是:(﹣2,0)或(6,0).【知识点】待定系数法求一次函数解析式、一次函数图象上点的坐标特征20.已知直线y=kx+b(k≠0)过点(1,2)(1)填空:b=(用含k代数式表示);(2)将此直线向下平移2个单位,设平移后的直线交x于点A,交y于点B,x轴上另有点C(1+k,0),使得△ABC的面积为2,求k值;(3)当1≤x≤3,函数值y总大于零,求k取值范围.【答案】2-k【分析】(1)把点(1,2)代入y=kx+b(k≠0),得出k+b=2,即b=2﹣k;(2)把b=2﹣k代入y=kx+b,得y=kx+2﹣k,根据上加下减的平移规律得出向下平移2个单位所得直线的解析式为y=kx﹣k,求出A(1,0),B(0,﹣k),根据△ABC的面积为2列出方程k2=2,解方程即可;(3)依题意,分两种情况讨论:ⅰ)当k>0时,y随x增大而增大,得出k+2﹣k=2>0;ⅱ)当k<0时,y随x增大而减小,得出3k+2﹣k=2k+2>0;分别解不等式即可.【解答】解:(1)∵直线y=kx+b(k≠0)过点(1,2),∴k+b=2,∴b=2﹣k.故答案为2﹣k;(2)由(1)可得y=kx+2﹣k,向下平移2个单位所得直线的解析式为y=kx﹣k,令x=0,得y=﹣k,令y=0,得x=1,∴A(1,0),B(0,﹣k),∵C(1+k,0),∴AC=|1+k﹣1|=|k|,∴S△ABC=AC•|y B|=|k|•|﹣k|=k2,∴k2=2,解得k=±2;(3)依题意,当自变量x在1≤x≤3变化时,函数值y的最小值大于0.分两种情况:ⅰ)当k>0时,y随x增大而增大,∴当x=1时,y有最小值,最小值为k+2﹣k=2>0,∴当k>0时,函数值总大于0;ⅱ)当k<0时,y随x增大而减小,∴当x=3时,y有最小值,最小值为3k+2﹣k=2k+2,由2k+2>0得k>﹣1,∴﹣1<k<0.综上,当k>0或﹣1<k<0时,函数值y总大于0.【知识点】一次函数图象与几何变换、一次函数图象上点的坐标特征。
八年级数学 一次函数的性质教案

八年级数学一次函数的性质第一课时一次函数的性质(一)教学目标1、探索一次函数图象观察、分析等过程,提高学生数形结合意识,培养数形结合的能力.2、掌握一次函数y=kx+b的性质。
教学过程一、观察、分析一次函数图象特点1.画出一次函数y=23x+1的图象.让学生动手画出一次函数,y=23x+l的图象,复习一次函数的怍图方法.教师在黑板上画出一次函数y=23x+1的图象。
2.观察,分析函数y=23x+l图象的变化规律.师生共同观察分析,当一个点在直线上从左向右移动(自变量x从小到大)时,它的位置也在逐渐从低到高变化(函数y的值也从小到大)问题2中的函数y=50+12x是否这样?这就是说,函数值y随自变量x增大而_______在同一直角坐标系中画出函数y=3x-2的图象(如图中的虚线)是否也有这种现象.进—步引导学生观察、分析得出与上面相同的结论.3、画出函数y=-x+2和y=-32x-1的图象。
学生动手画出以上一次函数图象,教师指导并纠正学生可能出现的错误画法.同时,教师在黑板面出这两个一次函数的图象.4、观察、分析函数y=-x+2和y=-32x-1图象的变化规律.问题l:仿照以上研究方法,研究它们是否也有相应的性质,有什么不同?你能否发现什么规律?让学生分组讨论.发表意见,教师评析并归纳为:当一个点在直线上从左到右(自变量x变量x的增大而减小.再联想问题1中的函数y=570-95t,是否也有这样的规律,发表你的看法.让学生讨论回答,问题1中的函数y=570-95t也有与上面得出的同样规律。
二、归纳、概括根据以上研究的结果,你能表述一次函数y=kx+b的性质吗?让学生归纳、概括、表述如下性质:1.当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;2.当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.这些性质在P40问题1和P41问题2中,反映怎样的实际意义?让学生思考后回答.三、做一做画出函数y=-2x+2的图象,结合图象回答下列问题:1.这个函数中,随着x的增大y将增大还是减小?它的图象从左到右怎样变化?2.当x取何值时,y=0?3.当x取何值时,y>0?四、课堂练习P45页练习l、2.五、小结一次函数y=kx+b有哪些性质?六、作业P47页习题17.3 8、9(1)第二课时一次函数的性质(二) 教学目标1.使学生理解待定系数法。
7.4 一次函数的图象和性质(2)--

·
· ·
x
函数y=kx+b可以看做是函数 函数y=kx+b可以看做是函数 y=kx+b y=kx向 或向下平移︱ y=kx向上或向下平移︱b︱个 单位长度得到的。 单位长度得到的。
-2
-3
(当b>0时,向上平移;当b<0时,向下平移) b>0时 向上平移; b<0时 向下平移)
个单位, 象,再向下平行移动5个单位,得到一次 再向下平行移动5个单位 1 的图象. 函数 y = x − 2 的图象. 2
y=2x+3
. . . . . . . . . . . . . . .
3 y=2x+3 b+3 y=2x +0 b-3 y=2x-3
2
·
y
y=2x
· ·
y=2x-3
1
. . . . . . . . . . . . . . . -2 -1 0 2 1
·
· ·
x
-1
-2
-3
你发现这三个 函数图象有什 么相同点和不 同点吗? 同点吗?
)、点 +3上 3、点A(-3,y1)、点B(2,y2)都在直线y=–4x+3上, A(的关系是( D 则y1与y2的关系是( ) A y1 ≤ y2 B y1 = y2 C y 1< y 2 D y 1 >y 2
4、设下列两个函数当 x = x1时,y = y1; 、 当x = x 2时,y = y2,用“<”或“>”号填空 或 号填空 ①对于函数y= 1x,若x2>x1,则y2___y1 对于函数 2 若 则 >
相同点: 相同点:
3
y=2x+3
人教版八年级数学下册19.2.2 一次函数(第2课时)

性质
与y轴的交点是(0,b),
与x轴的交点是(
b k
,0),
当k>0, b>0时,经过一、二、三象限;
当k>0 ,b<0时,经过一、三、四象限;
当k<0 ,b>0时,经过 一、二、四象限;
当k<0 ,b<0时,经过二、三、四象限.
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
人教版 数学 八年级 下册
19.2 一次函数 19.2.2 一次函数
第2课时
导入新知
我们最快捷、最正确地画出正比例函数的图象 时,通常在直角坐标系中选取哪两个点?
答:画正比例函数y=kx(k≠0)的图象,一般地, 过原点和点(1,k). 【思考】能用这种方法作出一次函数的图象吗?
学习目标
3. 能灵活运用一次函数的图象与性质解答有关 问题. 2.能从图象角度理解正比例函数与一次函数的 关系.
1且m
1. 2
(3)由题意得1-2m<0且m-1<0,解得
1 m 1. 2
巩固练习
已知一次函数y=(2m+2)x+(3-n),根据下列条件,请你求出 m,n的取值范围. (1)y随x的增大而增大; (2)直线与y轴交点在x轴下方; (3)图象经过第二、三、四象限.
巩固练习
解:(1)由y随x的增大而增大可知2m+2>0,所以当m>-1时,y随
探究新知
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观
察结果并与同伴交流.
这两个函数的图象形状都 是一条直线,并且倾斜程度相同 .函 数y=-6x的图象经过原点,函数 y=-6x+5的图象与y轴交于点(0,5), 即它可以看作由直线y=-6x向 上 平 移 5 个单位长度得到.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.一次函数的性质
第二课时 一次函数的性质(二)
教学目标 知识技能目标
1.进一步掌握一次函数y =kx +b (k ≠0)的性质.
2.能灵活利用一次函数的有关性质解决简单的实际问题.
3.学会利用一次函数的图象解决一次方程、一次不等式问题. 过程性目标
1.提高学生运用知识解决问题的能力,培养数形结合能力. 教学重点与难点
教学重点:灵活利用一次函数的有关性质解决简单的实际问题. 教学难点
利用一次函数的图象解决一次方程、一次不等式问题. 教学方法 讲授法 教学过程: 一,复习引入:
1、一次函数y =kx +b 有哪些性质?
2.某个一次函数的图象位置大致如下图所示,试分别确定k 、b 的符号,并说出函数的性质.
二新课教学
例1 已知一次函数y =(2m -1)x +m +5,当m 是什么数时,函数值y 随x 的增大而减小? 分析 一次函数y =kx +b (k ≠0),若k <0,则y 随x 的增大而减小. 解 因为一次函数y =(2m -1)x +m +5,函数值y 随x 的增大而减小. 所以,2m -1<0,即2
1<
m
.
例2 已知一次函数y =(1-2m )x +m -1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.
分析 一次函数y =kx +b (k ≠0),若函数y 随x 的增大而减小,则k <0,若函数的图象经过二、三、四象限,则k <0,b <0. 解 由题意得:⎩
⎨
⎧<-<-010
21m m ,
解得,
12
1
<<m 练习1.已知函数m x m y m m
+-=--1
2
)1(,当m 为何值时,这个函数是一次函数.并且图象经过第二、
三、四象限?
2.已知关于x 的一次函数y =(-2m +1)x +2m 2
+m -3.
(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m 的值; (2)若一次函数的图象经过点(1,-2),求m 的值.
例3 已知一次函数y =(3m -8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数. (1)求m 的值;(2)当x 取何值时,0<y <4?
分析 一次函数y =kx +b (k ≠0)与y 轴的交点坐标是(0,b ),而交点在x 轴下方,则b <0,而y 随x 的增大而减小,则k <0.
解 (1)由题意得:⎩
⎨⎧<-<-01083m m ,
解之得,3
8
1<
<
m ,又因为m 为整数,所以m =2. (2)当m =2时,y =-2x -1. 又由于0<y <4.所以0<-2x -1<4. 解得:2
125<<-
m . 例4 画出函数y =-2x +2的图象,结合图象回答下列问题:
(1)这个函数中,随着x 的增大,y 将增大还是减小?它的图象从左到右怎样变化? (2)当x 取何值时,y =0? (3)当x 取何值时,y >0?
分析 (1)由于k =-2<0,y 随着x 的增大而减小.
(2) y =0,即图象上纵坐标为0的点,所以这个点在x 轴上. (3) y >0,即图象上纵坐标为正的点,这些点在x 轴的上方.
解 (1)由于k =-2<0,所以随着x 的增大,y 将减小. 当一个点在直线上从左向右移动时,点的位置也在逐步从高到低变化,即图象从左到右呈下降趋势. (2)当x =1时, y =0 . (3)当x <1时, y >0.
练习;1已知函数
2+-=x y (1)画出其图像
(2)根据图像求①当x 取何值时 y ≥2 ②当x 取何值时 y =0 ③当x 取何值时 y ≤0 ④当x 取何值时 0 ≤ y ≤2 三课内小结: (1)一次函数的性质. (2)方法归纳
利用函数图象归纳函数的性质或解决方程、•不等式问题是我们经常使用的方法,是数形结合的具体体现.
四作业: 1已知函数
()()436-++=n x m y 求
(1)当m 时,y 随x 的增大而减小。
(2)当m n ;时它是正比例函数,切过一 三象限。
(3)当m n 时它它的图像过二 四象限,交x 轴下方。
(4)当m =-1 n=-2时,求图像与坐标轴围成的三角形的面积 五板书设计: 教学后记:。