【精选】四川省成都市温江区_八年级数学10月月考试题新人教版

合集下载

度八年级数学10月月考试题(含解析) 新人教版-新人教版初中八年级全册数学试题

度八年级数学10月月考试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省某某市通济实验学校2015-2016学年度八年级数学10月月考试题一、选择:1.在下列各数:0,,﹣2π,,3.14,,6.3010010001(两个1之间依次增加1个0),,无理数的个数是()A.1个B.2个C.3个D.4个2.下列计算正确的是()A.=±6B.=﹣3 C.﹣= D.+=3.下列三条线段能构成直角三角形的是()A.4,5,6 B.5,11,13 C.1.5,2,2.5 D.4.已知直角三角形的两条边长分别是3和4,则第三边为()A.5 B.C.5或D.不能确定5.如图,数轴上点P表示的数可能是()A.B.C.D.6.在平面直标坐标系中,点P(﹣3,﹣5)关于y轴对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3,﹣5)D.(5,﹣3)7.下列语句:①﹣1是1的平方根.②带根号的数都是无理数.③﹣1的立方根是﹣1.④的立方根是2.⑤(﹣2)2的算术平方根是2.⑥﹣125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有()A.2个B.3个C.4个D.5个8.+2在()之间.A.3和4 B.4和5 C.5和6 D.6和7二、填空9.的平方根是.(﹣25)2的算术平方根是..10.的相反数是,绝对值是,倒数是.11.已知+(y﹣2014)2=0,则x y=.12.比较大小:, 4.8.13.一个正方体,它的体积是棱长2厘米正方体体积的27倍,这个正方体棱长是厘米.14.满足<x<的整数x是.15.某数有两个平方根分别是a+3与a﹣7,求这个数.16.如图,有一个圆柱体,它的高等于12cm,底面半径等于3cm,一只蚂蚁在点A处,它要吃到上底面上与A点相对的点B处的食物,沿圆柱体侧面爬行的最短路程是cm(π的值取3).17.如图:折叠长方形ABCD(四个角都是直角,对边相等)的一边AD,点D落在BC边的F处,已知AB=8cm,BC=10cm,则EC=.18.如图,已知△ABC是腰长为1的等腰直角三形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2013个等腰直角三角形的斜边长是.三、计算19.(1)(2)(3)(4)(5)2﹣(6)(7).20.一架云梯长25m,如图那样斜靠在一面墙上,云梯底端离墙7m(1)这架云梯的顶端距底面有多高?(2)如果云梯的顶端下滑了4m,那么它的底部在水平方向也滑动了4m吗?21.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?三、解答题:22.在四边形ABCD中,AB=3cm,AD=4cm,DC=13cm,CB=12cm,∠A=90°,求四边形ABCD的面积.23.如图,每个小正方形边长都是1,以格点为要求画三角形.(1)使三角形三边长分别为;(2)求该三角形的面积.24.一棵32m的大树被暴风刮断,树顶C落在离树根B点16m处,研究人员要查看断痕A处,要在断处A架一个与树根相距5m的D点紧一梯子AD,求梯子的长度.某某省某某市通济实验学校2015~2016学年度八年级上学期月考数学试卷(10月份)参考答案与试题解析一、选择:1.在下列各数:0,,﹣2π,,3.14,,6.3010010001(两个1之间依次增加1个0),,无理数的个数是()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的概念进行判断即可.【解答】解:﹣2π,,6.3010010001(两个1之间依次增加1个0),是无理数,故选:D.【点评】本题考查的是无理数的认识,掌握无限不循环小数叫做无理数是解题的关键.2.下列计算正确的是()A.=±6B.=﹣3 C.﹣= D.+=【考点】实数的运算.【分析】直接利用平方根以及立方根的性质化简求出答案.【解答】解:A、=6,故此选项错误;B、=3,故此选项错误;C、﹣=,故此选项正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了实数运算,正确根据相关知识化简各数是解题关键.3.下列三条线段能构成直角三角形的是()A.4,5,6 B.5,11,13 C.1.5,2,2.5 D.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【解答】解:A、∵42+52=41≠62,∴4,5,6不能构成直角三角形,故本选项错误.B、∵52+112≠132,∴5,11,13不能构成直角三角形,故本选项错误;2+222,∴1.5,2,2.5能构成直角三角形,故本选项正确;D、∵()2+()2≠()2,∴,,不能构成三角形,故本选项错误;故选C.【点评】本题考查了勾股定理的逆定理;熟练掌握勾股定理的逆定理是解决问题的关键4.已知直角三角形的两条边长分别是3和4,则第三边为()A.5 B.C.5或D.不能确定【考点】勾股定理.【分析】此题要考虑两种情况:当第三边是斜边时;当第三边是直角边时.【解答】解:当第三边是斜边时,则第三边===5;当第三边是直角边时,则第三边===.故选C.【点评】考查了勾股定理,熟练运用勾股定理,注意此题的两种情况.5.如图,数轴上点P表示的数可能是()A.B.C.D.【考点】实数与数轴;估算无理数的大小.【分析】根据被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:由<<3<4<,点P表示的数大于3小于4,故C符合题意.故选:C.【点评】本题考查了估算无理数的大小,利用了被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大.6.在平面直标坐标系中,点P(﹣3,﹣5)关于y轴对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3,﹣5)D.(5,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点P(﹣3,﹣5)关于y轴对称点的坐标为(3,﹣5),故选:C.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.7.下列语句:①﹣1是1的平方根.②带根号的数都是无理数.③﹣1的立方根是﹣1.④的立方根是2.⑤(﹣2)2的算术平方根是2.⑥﹣125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有()A.2个B.3个C.4个D.5个【考点】无理数;平方根;算术平方根;立方根;实数与数轴.【专题】推理填空题.【分析】根据平方根的意义求出±(a≥0),即可判断①,根据无理数的意义即可判断②;根据立方根的意义求出,即可判断③④⑥,根据算术平方根求出(a≥0),即可判断⑤;根据实数和数轴上的点能建立一一对应关系,即可判断⑦.【解答】解:1的平方根是±1,∴①正确;如=2,但是有理数,∴②错误;﹣1的立方根是﹣1,∴③正确;=2,2的立方根是,∴④错误;(﹣2)2=4,4的算术平方根是=2,∴⑤正确;﹣125的立方根是﹣5,∴⑥错误;实数和数轴上的点一一对应,∴⑦错误;∴正确的有3个.故选B.【点评】本题考查了对无理数,平方根,算术平方根,立方根,实数和数轴等知识点的理解和运用,关键是考查学生能否根据这些定义求出数的平方根、立方根、算术平方根等等.8.+2在()之间.A.3和4 B.4和5 C.5和6 D.6和7【考点】估算无理数的大小.【分析】将13与9和16进行比较,即能得出3<<4,从而得出结论.【解答】解:∵32=9<13<16=42,∴3<<4,∴5<+2<6.故选C.【点评】本题考查了估算无理数的大小,解题的关键是知道3<<4.二、填空9.的平方根是±2.(﹣25)2的算术平方根是25 .﹣0.4 .【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根、立方根,即可解答.【解答】解;=4,4的平方根是±2.(﹣25)2的算术平方根是=25.﹣0.064的立方根是﹣0.4,故答案为:±2,25,﹣0.4.【点评】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根.10.的相反数是﹣,绝对值是,倒数是.【考点】实数的性质.【分析】根据相反数以及倒数和绝对值的性质分别得出答案即可.【解答】解:的相反数是﹣,绝对值是,倒数是.故答案为:﹣,,.【点评】此题主要考查了相反数以及倒数和绝对值的性质,正确把握定义是解题关键.11.已知+(y﹣2014)2=0,则x y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据算术平方根与平方的和是0,可得算术平方根,与平方同时为0,可得答案.【解答】解:+(y﹣2014)2=0,∴x+1=0,y﹣2014=0,x=﹣1,y=2014,∴x y=(﹣1)2014=1,故答案为:1.【点评】本题考查了算术平方根,注意算术平方根与平方的和为0,算术平方根,与平方同时为0是解题关键.12.比较大小:<,> 4.8.【考点】实数大小比较.【分析】由我们熟悉的2=23.04<24,可解决第二小题.【解答】解:∵>=2,∴>=;2=23.04<24,∴>4.8.故答案为:<;>.【点评】本题考查了实数的大小比较,解题的关键是熟悉>2,以及利用平方的形式,得出结论.13.一个正方体,它的体积是棱长2厘米正方体体积的27倍,这个正方体棱长是 6 厘米.【考点】立方根.【分析】首先根据题意求出正方体的体积,再求立方根即可得出结果.【解答】解:∵27×23=216,∴=6,即正方体棱长是6厘米.故答案为:6.【点评】本题考查了正方体的体积、立方根;熟练掌握立方根的概念,根据题意求出正方体的体积是解决问题的关键.14.满足<x<的整数x是﹣1,0,1,2 .【考点】估算无理数的大小.【分析】求出﹣,的X围,即可得出答案.【解答】解:∵﹣2<﹣<﹣1,2<<3,∴满足<x<的整数x有﹣1,0,1,2,故答案为:﹣1,0,1,2.【点评】本题考查了估算无理数的大小的应用,关键是确定﹣,的X围.15.某数有两个平方根分别是a+3与a﹣7,求这个数25 .【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:∵某数有两个平方根分别是a+3与a﹣7,∴a+3+a﹣7=0,∴a=2,∴a+3=2+3=5,∴这个数为52=25,故答案为:25.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.16.如图,有一个圆柱体,它的高等于12cm,底面半径等于3cm,一只蚂蚁在点A处,它要吃到上底面上与A点相对的点B处的食物,沿圆柱体侧面爬行的最短路程是15 cm(π的值取3).【考点】平面展开-最短路径问题.【专题】数形结合.【分析】A、B之间的最短路程为两直角边分别为圆柱的高,底面周长的一半的直角三角形的斜边长.【解答】解:底面周长的一半为:3π≈9cm,∵高等于12cm,∴最短路程为=15cm,故答案为15cm.【点评】考查最短路径问题;立体几何中的最短路径问题,通常整理为平面几何中两点之间距离问题.17.如图:折叠长方形ABCD(四个角都是直角,对边相等)的一边AD,点D落在BC边的F处,已知AB=8cm,BC=10cm,则EC= 3cm .【考点】翻折变换(折叠问题).【专题】数形结合.【分析】利用勾股定理可得BF的长,也就求得了FC的长,进而利用勾股定理可得EC的长.【解答】解:由折叠可知:AF=AD=BC=10,DE=EF.∵AB=8,∴BF==6,∴FC=4,EF=ED=8﹣EC,在Rt△EFC中,EC2+FC2=EF2,即EC2+42=(8﹣EC)2,解得EC=3.故答案为:3cm.【点评】考查有关折叠问题的应用;利用两次勾股定理得到所需线段长是解决本题的关键.18.如图,已知△ABC是腰长为1的等腰直角三形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2013个等腰直角三角形的斜边长是()2013.【考点】等腰直角三角形.【专题】压轴题;规律型.【分析】设等腰直角三角形一个直角边为1,根据等腰直角三角形的斜边长为直角边长度的倍,可以发现n个△,直角边是第(n﹣1)个△的斜边长,即可求出斜边长.【解答】方法一:解:设等腰直角三角形一个直角边为1,等腰直角三角形的斜边长为直角边长度的倍第一个△(也就是Rt△ABC)的斜边长:1×=;第二个△,直角边是第一个△的斜边长,所以它的斜边长:×=()2;…第n个△,直角边是第(n﹣1)个△的斜边长,其斜边长为:()n.则第2013个等腰直角三角形的斜边长是:()2013.故答案为:()2013.方法二:⇒q=,a1=,∴a n=,∴a2013=.【点评】此题主要考查学生对等腰直角三角形的理解和掌握,解答此题的关键是通过认真分析,根据等腰直角三角形的斜边长为直角边长度的倍,从中发现规律.此题有一定的拔高难度,属于中档题.三、计算19.(1)(2)(3)(4)(5)2﹣(6)(7).【考点】二次根式的混合运算.【分析】(1)按照二次根式的运算法则进行计算,再化简,即可得出结论;(2)将平方展开,再按照二次根式的运算法则进行计算,即可得出结论;(3)将二次根式化简,化简后按照实数加减法的运算法则进行计算,即可得出结论;(4)按照二次根式的运算法则进行计算,再化简,即可得出结论;(5)按照二次根式的运算法则进行计算,再化简,即可得出结论;(6)将二次根式化简,化简后按照实数加减法的运算法则进行计算,即可得出结论;(7)将二次根式化简,化简后按照实数加减法的运算法则进行计算,即可得出结论.【解答】解:(1)===2.(2)=++2=7+2.(3)3﹣4=6﹣16=﹣10.(4)(﹣)×=﹣=12﹣2=10.(5)2﹣=2﹣+=2﹣3+2=1.(6)﹣3+=4﹣+=.(7)×﹣21=﹣21=20﹣21=﹣1.【点评】本题考查了二次根式的混合运算,解题的关键是牢记二次根式的运算规则以及二次根式化简的方法.20.一架云梯长25m,如图那样斜靠在一面墙上,云梯底端离墙7m(1)这架云梯的顶端距底面有多高?(2)如果云梯的顶端下滑了4m,那么它的底部在水平方向也滑动了4m吗?【考点】勾股定理的应用.【分析】(1)在直角三角形ADE中,利用勾股定理即可求出AE的长;(2)首先求出A′E的长,利用勾股定理可求出D′E的长,进而得到DD′=ED′﹣ED的值.【解答】解:(1)在Rt△ADE中,由勾股定理得AE2+DE2=AD2,即AE2+72=252,所以AE=24(m),即这架云梯的顶端AE距地面有24 m高;(2)梯子的底端在水平方向滑动了8m.理由:∵云梯的顶端A下滑了4m至点A′,∴A′E=AE﹣AA′=24﹣4=20(m),在Rt△A′ED′中,由勾股定理得A′E2+DE′2=A′D′2,即202+D′E2=252所以D′E=15(m)DD′=ED′﹣ED=15﹣7=8(m),即梯子的底端在水平方向也滑动了8m.【点评】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.21.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?【考点】平面展开-最短路径问题.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB===25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB===5;∵25<5,∴蚂蚁爬行的最短距离是25.【点评】本题主要考查两点之间线段最短.三、解答题:22.在四边形ABCD中,AB=3cm,AD=4cm,DC=13cm,CB=12cm,∠A=90°,求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】连接AC,然后根据勾股定理求出AC的长度,再根据勾股定理逆定理计算出∠CBD=90°,然后根据四边形ABCD的面积=△ABD的面积+△BCD的面积,列式进行计算即可得解.【解答】解:连接AC,∵∠ABC=90°,AB=3cm,AD=4cm,∴DB===5(cm),∵DC=13cm,CB=12cm,∴BD2+BC2=52+122=25+144=169,CD2=132=169,∴BD2+BC2=CD2,∴△BCD的直角三角形,四边形ABCD的面积=△ABD的面积+△BCD的面积=AB•AD+BD•CB=×3×4+×5×12=6+30=36(cm2).答:四边形ABCD的面积为36cm2.【点评】本题考查了勾股定理,勾股定理逆定理,连接AC,构造出直角三角形是解题的关键.23.如图,每个小正方形边长都是1,以格点为要求画三角形.(1)使三角形三边长分别为;(2)求该三角形的面积.【考点】勾股定理.【专题】作图题.【分析】(1)由勾股定理得出,即可画出图形;(2)用矩形的面积减去三个直角三角形的面积即可得出所求三角形的面积.【解答】解:(1)由勾股定理得:BC==2,AC==,AB==,△ABC即为所求,如图所示;(2)△ABC的面积=4×3﹣×4×1﹣×2×2﹣×2×3=5.【点评】本题考查了勾股定理、三角形面积的计算方法;熟练掌握勾股定理,根据边长画出三角形是解决问题的关键.24.一棵32m的大树被暴风刮断,树顶C落在离树根B点16m处,研究人员要查看断痕A处,要在断处A架一个与树根相距5m的D点紧一梯子AD,求梯子的长度.【考点】勾股定理的应用.【分析】首先利用勾股定理求得AB的长,然后利用勾股定理求得斜边AD的长即可.【解答】解:设AB的长为x米,则AC=(32﹣x),根据题意得:x2+162=(32﹣x)2,解得:x=12,所以AB的长为12,因为BD=5米,所以AD=13米,所以梯子的长为13米.【点评】本题考查了勾股定理的应用,解题的关键是能够从实际问题中抽象出直角三角形,难度不大.。

八年级数学10月月考试题 新人教版 (2)

八年级数学10月月考试题 新人教版 (2)

2016-2017学年八年级(上)第一次月考数学试卷 时间(90分钟) 满分(120分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 一、选择题(每小题3分,共36分) 1等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) A .150° B .80° C .50°或80° D .70° 2.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cm B .6cm C .5cm D .4cm 3.在数学课上,同学们在练习画边AC 上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是( ) A . B . C . D . 4.下列叙述中: 如图,五角星的顶点为A 、B 、C 、D 、E ,∠A+∠B+∠C+∠D+∠E 的度数为( ) (4) (5) (6) A .90° B .180° C .270° D .360° 5.如图,∠BAC=90°,AD ⊥BC ,则图中互余的角有( ) A .2对 B .3对 C .4对 D .5对学校__________________班级____________________姓名_______________________考号_____________________6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.2;SAS B.4;ASA C.2;AAS D.4;SAS7.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A.1 B.2 C.3 D.48.如图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=30°,则∠EAC=()A.27°B.54°C.30°D. 55°9.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有().A.7条B.8条C.9条D.10条10.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()(10)(11)(12)A.90°B.120° C.160°D.180°11.如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BD=CE12.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2B.1cm2C.cm2D.cm2二、填空题(每小题4分,共32分)13.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是__________.(13)(14)(15)14.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC=_______度,∠BOC=_______度.15.已知图中的两个三角形全等,则∠α的度数是_______.16.如图,在△ABC中,AB=2013,AC=2010,AD为中线,则△ABD与△ACD的周长之差=_______.(16)(17)(19)(20)17.如图,已知AC=DB,再添加一个适当的条件_______,使△ABC≌△DCB.(只需填写满足要求的一个条件即可).18.如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是____________19.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=____ .20.如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=________,若BM、CM 分别平分∠ABC,∠ACB的外角平分线,则∠M=__________.三、综合题(共52分)21.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹,并分别写出结论)(6分)①用尺规作∠BAC的角平分线AE.②用三角板作AC边上的高BD.③用尺规作AB边上的垂直平分线MN.22.如图,AD⊥BD,AC⊥BC,AD与BC交于点O,AD=BC.(10分)求证:OC=OD.23. 如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BE=CD.(10分)24.四边形ABCD中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.求证:(1)∠1+∠2=90°;(12分)(2)BE∥DF.25.在△ABC中,∠AOB=90°,AO=BO,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D (14分)(1)当直线MN绕点O旋转到图①的位置时,求证:CD=AC+BD;(2)当直线MN绕点O旋转到图②的位置时,求证:CD=AC﹣BD;(3)当直线MN绕点O旋转到图③的位置时,试问:CD、AC、BD有怎样的等量关系?请写出这个等量关系,并加以证明.2016-2017学年八年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.C2.B3.C4.B5.C6.B7.C8.B9.C10.D11.D12.B二填空题13.三角形的稳定性14.7811015.50°16.317.AB=CD18.a>519.120°20..140°40°三.综合题21.22.证明:在Rt△ABD和Rt△BAC 中,AD=BCAB=AB∴Rt△ABD≌Rt△BAC∴AC=BD在Rt△AOC和Rt△BOD中∠C=∠D=90°;∠AOC=∠BOD;AC=BD,∴Rt△AOC≌Rt△BOD∴OC=OD23.解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△BAE≌△CAD(SAS),∴BE=CD.24.证明:(1)∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.25.解:(1)如图1,∵△AOB中,∠AOB=90°,∴∠AOC+∠BOD=90°,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,∴∠ACO=∠BDO=90°∴∠AOC+∠OAC=90°,∴∠OAC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴OC=BD,AC=OD,∴CD=AC+BD;(2)如图2,∵△AOB中,∠AOB=90°,∴∠AOC+∠BOD=90°,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,∴∠ACO=∠BDO=90°∴∠AOC+∠OAC=90°,∴∠OAC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴OC=BD,AC=OD,∴CD=OD﹣OC=AC﹣BD,即CD=AC﹣BD.(3)如图3,∵△AOB中,∠AOB=90°,∴∠AOC+∠BOD=90°,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,∴∠ACO=∠BDO=90°∴∠AOC+∠OAC=90°,∴∠OAC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴OC=BD,AC=OD,∴CD=OC﹣OD=BD﹣AC,精选教案即CD=BD﹣AC.可编辑。

【人教版】八年级(上)月考数学试卷(10月份)共3份

【人教版】八年级(上)月考数学试卷(10月份)共3份

成都南开为明学校20~21学年度9月月考 初二(22届) 数学试题(无答案)(说明:本卷满分150分,其中A 卷100分,B 卷50分,考试时间120分钟)命题人签字: 学科组长签字:A 卷(100分)一、单项选择题 (每小题3分,共30分) 1. 在38-,,711,0.6 ,π,3.10这六个数,无理数有( )个。

A .2个 B .3个 C .4个 D .6个 2.平方根是本身的是( )A .1B .1- C.0 D .2 3. 1x -有意义的x 的取值范围是( )A .1x ≠B .1x >C .1x ≤D .1x ≥ 4.下列根式是最简二次根式是( ) 1320 30 121 5.下列无理数中,在-2与1之间的是( )A .5B .3 3 5 6.下列说法错误的是( )A .3- 是9 的平方根B 5的平方等于5C .1- 的平方根是1±D .9的算术平方根是3 7.下列计算正确的是( ) A.532= B .3523615= C .(2216= D 13= 8.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若()21520a b c -++-= ,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .钝角三角形9.一个正数的两个平方根分别是21a - 与2a -+ ,则a 的值为( )A .1B .-1C .2D .-210.已知2a =,3b = ,5c = ,则下列大小关系正确的是( )A .a >b >cB .c >b >aC .b >a >cD .a >c >b 二、填空题:(每空4分,共16分) 11.4的算术平方根为_______;12.比较大小:3 (填“>”“<”或“=”)13. =0,求20042004ab +的值_____. 14.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0), 如:3*2=3+23-2=5,那么7*(6*3)=_________. 三.解答题(共54分) 15计算:(每小题5分,20分)④()11152π-⎛⎫-++- ⎪⎝⎭16求下列各式中的x 的值: (每小题5分,10分)(1)()2913x += (2)()32216x -+=-17. (6分) 已知21a - 的平方根是3±,32a b -+的算术平方根是4,求3a b + 的立方根.18. (6分) 若,a b 都是实数,且12b =的值19 (6分) 先化简,再求值:()()()()22323412x x x x x +---+-,其中x =-.20. (6分) 自由下落的物体的高度h(m)与下落时间t(s)的关系为h =4.9t 2.有一学生不慎让一个玻璃杯从19.6 m 高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗?(声音的速度约为340 m/s)B 卷(50分)一填空题(每题5分,共20分)21.已知913与913的消暑部分分别是a 和b ,求348ab a b -++的值____。

八年级数学10月月考试题 新人教版-新人教版初中八年级全册数学试题

八年级数学10月月考试题 新人教版-新人教版初中八年级全册数学试题

八年级数学阶段性检测试题一、选择题(本大题共10小题,每小题3分,共30分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形3.已知等腰三角形的一个角为75°,则其顶角为()A.30° B.75° C.105° D.30°或75°4.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是() A.5 B.6 C.7 D.85.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半6. 下列说法中不正确的是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④周长相等的两个三角形全等;⑤全等三角形的面积相等;⑥面积相等的两个三角形全等.A.④⑤ B.④⑥ C.③⑥ D.③④⑤⑥7. 如图,线段AD 与BC 交于点O ,且AC=BD ,AD=BC , 则下面的结论中不正确的是( )A.△ABC ≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D8.已知等腰△ABC 的底边BC=8cm ,│AC-BC │=2cm ,则腰AC 的长为( ) A .10cm 或6cm B .10cm C .6cm D .8cm 或6cm9.如图9,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(• ) A .∠A=∠1+∠2 B .2∠A=∠1+∠2 C .3∠A=2∠1+∠2 D .3∠A=2(∠1+∠2)10.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE那么,AF ,AD ,CF 三条线段的关系是--------( )A .AF >AD+CFB .AF <AD+CFC .AD=AF-CFD .无法确定二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.如图,△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是 _________ .第9题图CDF第10题图12.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB= _度. 13.三角形的三边长分别为5,1+2x ,8,则x 的取值X 围是________. 14.如下图14:∠A+∠B+∠C+∠D+∠E+∠F 等于________.15.如图15,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC 的度数是_____. 16.如果一个多边形的所有内角从小到大排列起来,恰好依次增加相同的度数,设最小 角的度数为100°,最大角度数为140°,那么这个多边形是边形。

人教版八年级数学上册10月月考试卷附答案

人教版八年级数学上册10月月考试卷附答案

人教版八年级数学上册10月月考试卷附答案一、选择题(共7小题;共42分)1. 下列各组数分别表示三条线段的长度,不能组成三角形的是A. ,,B. ,,C. ,,D. ,,2. 下列说法中错误的是A. 三角形三条角平分线都在三角形的内部B. 三角形三条中线都在三角形的内部C. 三角形三条高都在三角形的内部D. 三角形三条高至少有一条在三角形的内部3. 如图,的角平分线,相交于点,,则A. B. C. D.4. 下列图形中有稳定性的是A. 平行四边形B. 正方形C. 长方形D. 直角三角形5. 三角形的三条高线的交点在三角形的一个顶点上,则此三角形是A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形6. 下列条件中,不能判定三角形全等的是A. 三条边对应相等B. 两边和一角对应相等C. 两角和其中一角的对边对应相等D. 两角和它们的夹边对应相等7. 如图,在方格纸中,以为一边作,使之与全等,从,,,四个点中找出符合条件的点,则点有A. 个B. 个C. 个D. 个二、填空题(共7小题;共42分)8. 已知一个多边形的内角和与外角和之比为,则它的边数是.9. 是的中线,,,和的周长的差是.10. 如图,是的角平分线,于点,若,,则的度数是.11. 如图,已知,,,则.12. 如图所示,,,的大小关系是(用“”将它们连接起来).13. 点,,,在同一直线上,且,.请你只添加一个边相等或角相等的条件(不再加辅助线),使.你添加的条件是:.。

(人教版)八年级(上学期)月考数学试卷(10月份)共3份

(人教版)八年级(上学期)月考数学试卷(10月份)共3份

2020-2021学年上学期月考试题八年级数学(无答案)(考试时间:120分钟试卷满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.2、一个多边形的内角和为1800°,则这个多边形的边数为( )A.12 B.11 C.10 D.93、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )A.180°B.270°C.300°D.360°4、一个三角形的两边长分别为3和7,第三边长为整数,则第三边长度的最小值是( )A.4 B.5 C.6 D.75、下列四组中一定是全等三角形的是( )A.两条边相等的两个直角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形6、如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为( )A.13 B.3 C.4 D.67、如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2B. 3C. 4D. 58、到三角形三个顶点距离相等的是( )A.三边高线的交点B.三条中线的交点C.三条垂直平分线的交点D.三条内角平分线的交点9、如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于21BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD.若CD=AC ,∠A=50°,则∠ACB 的度数为( ) A.90° B.95° C.100° D.105°10、如图,在△ABC 中,∠B =∠C ,D 为BC 中点,若由点D 分别向AB 、AC 作垂线段DE 、DF ,则能说明△BDE ≌△CDF 的理由是( )A .AASB .SASC .HLD .SSS11、如图,AD 垂直平分线段BC ,垂足为D ,∠ABC 的平分线BE 交AD 于点E ,连接EC ,若∠ABC =50°,则∠C 的度数是( )A .25°B .20°C .50°D .65°(9) (10) (11) (12)12、如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法:①△EBD 是等腰三角形,EB =ED ;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的有( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13、若正多边形的一个外角是40°,则这个正多边形的边数是__________.14、如图,已知△ABC ≌△BAD ,若∠DAC =20°,∠C =88°,则∠DBA =__________度.15、如图所示,在△ABC 中,∠C =90°,AB =8,AD 是△ABC 的一条角平分线.若CD =2,则△ABD 的面积为__________.5) (16) (17)(17)16、如图,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 于点D ,AB=6cm,BC=3cm,则∠DBC=_______,△DBC 的周长是_______cm17、如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =,则下列结论:①DE DF =;②AD 平分BAC ∠;③AE AD =;④2AC AB BE -=,正确的是__________.18、如图,在△ABC 中,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推….已知∠A =α,则∠A 2018的度数为__________(用含α的代数式表示).三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19、(8分)如图,有公路l 1同侧、l 2异侧的两个城镇A ,B ,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不写作法)20、(10分)在如图的方格中,每个小正方形的边长都为1,△ABC 的顶点均在格点上.在建立平面直角坐标系后,点B 的坐标为(-1,2).(1)把△ABC 向下平移8个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出A 1坐标.(2)画出与△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点B 2的坐标.(3)求出△A 2B 2C 2的面积21、(10分 )如图,点A 、F 、C 、D 在同一条直线上,已知AF=DC ,∠A=∠D ,BC ∥EF ,求证:AB=DE .22、(12分)如图,(1)AD是△ABC的外角∠EAC的平分线,AD∥BC.求证:△ABC是等腰三角形;(2)AD是△ABC的外角∠EAC的平分线,AB=AC.求证:AD∥BC.23、(12分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.24、(12分)如图,AO,BO,CO,DO分别是四边形ABCD四个内角的平分线.(1)判断∠AOB与∠COD有怎样的数量关系,为什么?(2)若∠AOD=∠BOC,则AB,CD有怎样的位置关系?为什么?25、(14分)动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系(写出说理过程)。

人教版八年级数学上册10月月考试题.docx

人教版八年级数学上册10月月考试题.docx

初中数学试卷桑水出品八年级数学10月月考试题一、选择题(共10小题,每小题3分,共30分)1.下列各组线段中能围成三角形的是()A.2 cm,4cm,6 cm B.8 cm,4 cm,6 cmC.14 cm,7 cm,6 cm D.2 cm,3 cm,6 cm2.在△ABC中,∠A=2∠B=75°,则∠C=()A.30°B.67.5°C.105°D.135°3.某同学把一块三角形玻璃打碎成如图所示的三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去4.下列各图中,∠1=60°的是()5.下列四组中一定是全等三角形的为()A.三内角分别对应相等的两个三角形B.斜边相等的两直角三角形C.两边和其中一条边的对角对应相等的两个三角形D.三边对应相等的两个三角形6.一个三角形的一个外角等于它相邻内角的4倍,等于与它不相邻一个内角的2倍,则这个三角形各个角的度数是()A.45°、45°、90°B.30°、60°、90°C.36°、72°、72°D.25°、25°、130°7.一个多边形的边数每增加一条,这个多边形的()A.内角和增加180°B.内角和增加360°C.外角和增加360°D.对角线增加一条8.已知如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于D,则下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的角平分线上,其中正确的是()A.只有①B.只有②C.只有①和②D.①②③9.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5 cm,BE=0.8 cm,则DE的长为()cmA.0.7 B.1.7 C.3.3 D.2.310.如图,△ABC中,BD平分∠ABC,CD平分∠ACE,下列结论:①点D到AB、BC、CA的距离相等;②CD∥BA;③S△AOB∶S△COB=AB∶BC=AO∶OC;④∠FAD=∠DAC,其中正确的是()A.①②③④B.①③④C.①④D.②③④二、填空题(每小题3分,共6小题,共18分)11.已知三角形两边长分别为3、8,则三角形第三边长c的取值范围是______________12.若等腰三角形有两边长分别为4 cm和7 cm,则他的周长是____________13.如图,△EFG≌△NMH,△EFG的周长为15 cm,HN= 6 cm,EF=4 cm,FH=1 cm,则HG=_________14.一个n边形的每个内角都等于140°,则n=_________15.如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的相邻两边上的点,且BE =CD ,DB 交AE 于P 点.图①中,∠APD 的度数为60°,图②中,∠APD 的度数为90°,则图③中,∠APD 的度数为________16.如图,在△ABC 中,∠A 、∠B 的角平分线交于点O ,过O 作OP ⊥BC 于P ,OQ ⊥AC 于Q ,OR ⊥AB 于R ,AB =7,BC =8,AC =9,则BP +CQ -AR =________三、解答题(共9小题,共72分)17.(本小题6分)解方程组:⎩⎨⎧=+=+7222y x y x 18.(本小题6分)如图,AB ∥DC ,AC 、BD 交于点O ,且OA =OC ,求证:AB =CD 19.(本小题6分)如图,已知FD ⊥BC 于D ,DE ⊥AB 于E ,∠B =∠C ,∠AFD =140°,求∠EDF 的度数20.(本小题7分)如图,线段AB 、CD 相交于点O ,E 是△OCB 内任一点,连接AE 、DE ,求∠A +∠B +∠C +∠D +∠AED 的度数21.(本小题7分)如图,在平面直角坐标系中,A(-1,5)、B(-1,0)、C(-4,3)(1) 求出ABC 的面积(2) 将点B 平移至点B ′(1,1),在第一象限内存在格点三角形△A ′B ′C ′(定点都是网格的交叉点)满足△A ′B ′C ′≌△ABC,请作出所有满足题意的△A′B′C′,并写出相应A′、C′的坐标22.(本小题7分)(1) 如图,在△ABC中,AD为中线,求证:AB+AC>2AD(2) 如图,在△ABC中,D为BC的中点,DE⊥DF交AB、AC于E、F,求证:BE+CF>EF23.(本小题10分)已知某服装厂现从纺织厂购进A种、B种两种布料共122米,用去4180元.已知A种布料每米30元,B种布料每米40元(1) 求A、B两种布料各购进多少米?(2) 现计划用这两种布料生产甲、乙两种型号的时装共80套.已知做一套甲种型号的时装或一套乙种型号的时装所需A、B两种布料如下表:甲乙A种(米)0.6 1.1B种(米)0.9 0.4若一套甲种型号的时装的销售价为100元,一套乙种型号的时装的销售价为90元.该服装厂在生产和销售这批时装中,当生产两种型号的时装各多少套时,获得的总利润最大,最大利润是多少元?24.(本小题10分)在四边形ABCD中,对角线AC、BD相交于点O(1) 如图(1),若∠BAC=∠ACD,∠AOB=70°,AP、DP分别平分∠BAC、∠BDC,求∠APD的度数(2) 如图(2),∠BAC=∠ACD,∠AOB=70°,DQ平分∠BDE,直线AQ平分∠BAC,求∠AQD的度数25.(本小题12分)等腰△ABO中,AO=AB,点A在x轴负轴上,点B在第二象限,C为y轴正半轴上的一动点,以AC为边在AC的上侧作等腰△ACD,AC=AD,且∠CAD=∠BAO直线BD交坐标抽于E、F两点。

最新人教版八年级数学上册10月份月考测试卷及答案.docx

最新人教版八年级数学上册10月份月考测试卷及答案.docx

八年级10月数学试题一、选择题(每小题3分,共36分)1.已知三角形两边长分别为4和8,则该三角形第三边的长可能是( ) A .3.5B .4C .11D .122.已知△ABC 中,∠A ∶∠B ∶∠C=2∶3∶5,则这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定3. 已知等腰三角形的两边长分别为6cm 和3cm ,则该等腰三角形的周长是( ) A.9cm B. 12cm C. 12cm 或15cm D. 15cm4. 如图1,AD 是△ABC 的中线,已知△ABD 的周长为25cm ,AB 比AC 长6cm , 则△ACD 的周长为( )A.19cm B.22cm C.25cm D.31cm5. 如图2,在△ABC 中,∠B=46°,∠C=54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB , 交AC 于E ,则∠ADE 的大小是( ) A .45° B .54° C .40° D .50°6. 以下四个命题中正确的是( )A.三角形的角平分线是射线B.过三角形一边中点的线段一定是三角形的中线C.三条线段一定能组成一个三角形D.三角形的中线是线段 7. 一个正多边形的每个外角都是36°,这个正多边形的边数是( ) A.9 B.10 C.11 D.128. 九边形的对角线有( ) A.25条 B.31条 C.27条 D.30条 9. 如图3,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是五边形ABCDE图2图1321CBDE A 图3A C EOBD1234 567 8图4的3个外角,则∠1+∠2+∠3等于( )A.90°B.180°C.210°D.270°10. 下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有等边三角形都全等.11. 可使两个直角三角形全等的条件是( )A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等12.如图4,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°.则∠O的度数为()A.10°B.15°C.18°D.20°二、填空题(每小题3分共15分)13. 已知三角形的三边长分别为4,2a,9,则a的取值范围是____ _________.14. 四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= .15. 如图5中∠A+∠B+∠C+∠D+∠E+∠F= °.16. 如图6,在△ABC中,AB=4,BC=3,将BC沿BE方向折过去,使点C落在BA上的D点,折痕为BE,则AD的长为.17. 如图7,已知AB∥CD,O是∠BAC与∠ACD的平分线的交点. OE⊥AC于E,OE=2,则点O到AB与CD的距离之和为_______.三、作图题(6分)ADCF EB图5DEB CA图6BDEOAC图718. 尺规作图(要求:保留作图痕迹,不写作法) (1)作∠AOB 的平分线OC ;(2)过OB 上一点D 作ED ⊥OB ,交OC 于点E ; (3)过点E 作直线EF ,使EF ∥OB ,交OA 于点F . 四、解答与证明19.(7分))用一条长为30cm 的细绳围成一个等腰三角形 (1)如果底边长是腰长的一半,求各边长.(2)能围成有一边长为7cm 的等腰三角形吗?如果能,请求出它的另两边.20.(6分)如图8,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,求∠ACB 的度数.21.(7分)如图10,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O , ∠ABC=450,∠C =75° ,求∠DAE ,∠AOB 的度数.22.(7分)如图9,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF =AC ,AOBD·南北ED CBA 图8图1034图9CDABFE521FD =CD ,判断线段BF 和AC 的数量关系和位置关系,并说明理由.23.(7分)如图11,△ABC 中,∠ABC=90°,点D 在AC 上,线段BD 绕点B 顺时针旋转90度到BE ,EF ∥DB 交BC 于点F.(1)求证:△ABD ≌△FBE . (2)BD ⊥AC.24.(9分)如图12,四边形ABCD 中,∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都2017年秋八年级上期10月月考数学试卷
时间:120分钟满分:150分
A卷(100分)
一、选择题(每小题3分,共30分)
1.81的平方根是()
A.﹣9 B.9 C.±9 D.±3
2.下列各组数,可以作为直角三角形的三边长的是()
A.2,3,4 B.3,4,5 C.4,5,6 D.5,13,15
3.已知+(b+3)2=0,则(a+b)2017的值为()
A.0 B.﹣1 C.1 D.2017
4.下列运算正确的是()
A. B.C. D.
5.如果直角三角形的边长为3,4,a,则a的值是()
A.5 B.6 C. D.5或
6.估算的值在()
A.1与2之间 B.2与3之间 C.3与4之间 D.5与6之间
7.下列说法中,错误的是()
A.4的算术平方根是2 B.的平方根是±3
C.﹣1是1的平方根 D.16的立方根是±4
8.二次根式:①;②;③;④中,与是同类二次根式的是()
A.①和② B.②和③ C.①和④ D.③和④
9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()
A.1 B. C. D.2
10.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是()
A.11c m≤h≤12cm B.12cm≤h≤19cm C.12cm≤h≤13cm D.5cm≤h≤12cm
二、填空题(每小题4分,共16分)
11. 的相反数是______,1的绝对值是______
,,中,无理数有.
12.下列各数:4.,0.2060060006,

13.如果一个数的平方根是a+6和2a﹣15,则a为,这个数是.
14.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米。

一只小虫在长方体表面从A爬到B的最短路程是
三、解答题(6小题,共54分)
15.求下列各式中的x(每小题4分,共8分)
(1)2x2﹣8=0 (2)(x﹣1)3=16
16. 计算:(每小题4分,共16分)
(1)(2)
(3)(4)﹣﹣(1﹣)2
17.(6分)已知,,求代数式的值:
(1);
(2)
18.(6分)已知:的算术平方根是3,的立方根是2,
(1)求、.
(2)求的平方根。

19.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BD=4cm,CD=2cm,
(1)求D点到直线AB的距离.
(2)求AC.
20.(10分)如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处。

(1)求线段BE的长
(2)连接BF、GF,求证BF=GF.
(3)求四边形BCFE的面积.
B卷(50分)
一、填空题(每小题4分,共20分)
21.立方根等于本身的数的个数为a,平方根等于本身的数的个数是b,算术平方根等于本身的数的个数为c,倒数等于本身的数的个数是d,则a+b+c+d=.
22.已知y=++x-2.则=
23.实数、b、c,如图,化简=.
24. 已知一个直角三角形,斜边长为2,周长为2+,则面积是
25.如图,已知∠AOB=45°,点P为∠AOB内一点,且OP=4,M为OA上一动点,N为OB上一动点,则△PMN 的周长的最小值是
二、解答题(3小题,共30分)
26.(8分)(1
)若二次根式
有意义,化简│x -4│-│7-x │.
(2
)若
的整数部分是
,小数部分是
,求的值.
27.(10分)
如图,在△ABC 中,∠ACB=90°,AC=4
,以BC 为边在△ABC 的外部作等边△BCD ,且CD ∥AB,
连接
AD .
(1)求四边形ABDC 的面积;
(2)求AD 的长.
28.(12分)如图已知:△ABC 中,AB=13,BC=12,
(1)当∠ACB=90°时,求△ABC 的面积.
(2)在(1)的条件下,若点O 为此Rt△ABC 内一点且点O 到三边的距离相等,作OE 、OF 、OG 分别垂直于AB 、AC 、BC ,求OE 的长。

C B
F
(3)若CA=11,过△ABC 内的点P 向△ABC 三边分别作垂线PE 、PF 、PG ,且CF+AE+BG=18,求AF+AE 的长.
成都七中实验学校2017年秋八年级上期10月月考
数学答案
一、选择题:(每小题3分,共30分)
CBBCD CDCDA
二.填空:(每小题4分,共16分)
11.,
12.,
13.3,81
14.25
三.计算:(每小题4分,共24分)
15. (每小题4分,共8分)
(1)(2)
16、(每小题4分,共16分)
(1)15 (2)(3)(4)
17.(1)(2)15
18.(1)5,12 (2)
19.(1)2cm;(2)
20.(1)线段BE的长
(2)略
(2)四边形BCFE的面积是6.
B卷(共50分)
一、填空题:(每小题4分,共20分)
21. 8
22.
23.
24.
25.
二.解答题:(共30分)26、(1)
(2)10
27.(1)
(2)
28(1)△ABC的面积30 (2)2
(3)12。

相关文档
最新文档