2008年成人高考专升本高等数学一真题

合集下载

2008年河南专升本高等数学真题+真题解析

2008年河南专升本高等数学真题+真题解析

2008河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学试卷一、选择题 (每小题2 分,共50 分)1.函数()ln(1)f x x =-+的定义域是( )A .[]2,1--B .[]2,1-C .[)2,1-D .()2,1-【答案】C【解析】由1020x x ->⎧⎨+≥⎩可得21x -≤<,故选C .2.312cos limsin 3x xx ππ→-=⎛⎫- ⎪⎝⎭( )A .1B .0CD【答案】D【解析】3312cos 2sin limlim sin cos 33x x x xx x ππππ→→-==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭D .3.点0x =是函数113131xxy -=+的( )A .连续点B .跳跃间断点C .可去间断点D .第二类间断点【答案】 【解析】11311lim 1131xx x-→--==-+,11031lim 131xx x +→-=+,故选B .4.下列极限存在的是( )A .lim xx e →+∞B .0sin 2lim x xx →C .01lim cosx x+→ D .22lim 3x x x →+∞+-【答案】B 【解析】0sin 2lim2x xx→=,其他三个都不存在,应选B .5.当0x →时,2ln(1)x +是比1cos x -的( ) A .低阶无穷小 B .高阶无穷小C .等价无穷小D .同阶但不等价无穷小【答案】D【解析】0x →时,22ln(1)~x x +,211cos ~2x x -,故选D .6.设函数11(1)sin ,11()1,10arctan ,0x x x f x x x x ⎧++<-⎪+⎪=-≤≤⎨⎪>⎪⎩,则()f x ( )A .在1x =-处连续,在0x =处不连续B .在0x =处连续,在1x =-处不连续C .在1,0x =-处均连续D .在1,0x =-处均不连续【答案】A【解析】1lim ()1x f x -→-=,1lim ()1x f x +→-=,(1)1()f f x -=⇒在1x =-处连续;0lim ()1x f x -→=,0lim ()0x f x +→=,(0)1()f f x =⇒在0x =处不连续,应选A .7.过曲线arctan x y x e =+上的点(0,1)处的法线方程为( )A .210x y -+=B .220x y -+=C .210x y --=D .220x y +-=【答案】D 【解析】211x y e x'=++,02x y ='=,法线的斜率12k =-,法线方程为112y x -=-,即220x y +-=,故选D .8.设函数()f x 在0x =处满足,()(0)3()f x f x x α=-+,且0()lim0x x xα→=,则(0)f '=( ) A .1- B .1 C .3-D .3【解析】000()(0)3()()(0)limlim 3lim 30x x x f x f x x x f x x xαα→→→--+'===-+=--,应选C .9.若函数()(ln )(1)x f x x x =>,则()f x '=( ) A .1(ln )x x - B .1(ln )(ln )ln(ln )x x x x x -+C .(ln )ln(ln )x x xD .(ln )x x x【答案】B【解析】ln(ln )()(ln )x x x f x x e ==,[]11()(ln )ln(ln )(ln )ln(ln )ln x x f x x x x x x x x x ⎡⎤''==+⋅⋅⎢⎥⎣⎦1(ln )(ln )ln(ln )x x x x x -=+,故选B .10.设函数()y y x =由参数方程33cos sin x t y t ⎧=⎨=⎩确定,则224|t d ydx π==( ) A .2- B .1- C.3-D.3【答案】D【解析】223sin cos sin 3cos sin cos dy dy dt t t t dx dx dt t t t ===--,22d y dx =1d dy dx dt dx dt⎛⎫⋅ ⎪⎝⎭2211cos 3cos sin x t t-=⋅- 413cos sin t t =,224|t d y dx π==,故选D .11.下列函数中,在区间[]1,1-上满足罗尔定理条件的是( )A .x y e =B .ln ||y x =C .21y x =-D .21y x=【答案】C【解析】验证罗尔定理得条件,只有21y x =-满足,应选C .12.曲线352y x x =+-的拐点是( )A .0x =B .(0,2)-C .无拐点D .0,2x y ==-【解析】235y x '=+,6y x ''=,令0y ''=,得0x =,当0x >时,0y ''>,当0x <时,0y ''<,故拐点为(0,2)-,应选B .13.曲线1|1|y x =-( ) A .只有水平渐进线B .既有水平渐进线,又有垂直渐近线C .只有垂直渐近线D .既无水平渐进线,又无垂直渐近线【答案】B 【解析】1lim 0|1|x x →∞=-,曲线有水平渐近线0y =;1lim |1|x x →∞=∞-,曲线有垂直渐近线1x =,故选B .14.如果()f x 的一个原函数是ln x x ,那么2()x f x dx ''=⎰( )A .ln x C +B .2xC +C .3ln x x C +D .C x -【答案】D【解析】()(ln )1ln f x x x x '==+,21()f x x''=-,2()x f x dx dx x C ''=-=-+⎰⎰,应选D . 15.243dxx x =-+⎰( )A .13ln 21x C x -+-B .1ln3x C x -+-C .ln(3)ln(1)x x C ---+D .ln(1)ln(3)x x C ---+【答案】A 【解析】211113ln 43(3)(1)23121dx dx x dx C x x x x x x x -⎛⎫==-=+ ⎪-+-----⎝⎭⎰⎰⎰,应选A .16.设14011I dx x =+⎰,则I 的取值范围为( )A .01I ≤≤B .112I ≤≤ C .04I π≤≤D .14I π<<【答案】B【解析】因01x ≤≤,411121x ≤≤+,根据定积分的估值性质,有112I ≤≤,故选B .17.下列广义积分收敛的是( )A .31x dx +∞⎰B .1ln xdx x+∞⎰C .1⎰D .0x e dx +∞-⎰【答案】D【解析】D 项中001x xe dx e +∞--+∞=-=⎰,故收敛.18.331xdx --=⎰( )A .3021x dx -⎰B .1331(1)(1)x dx x dx --+-⎰⎰C .1331(1)(1)x dx x dx ----⎰⎰ D .1331(1)(1)x dx x dx --+-⎰⎰【答案】D【解析】3131333131111(1)(1)xdx xdx xdx x dx x dx ----=-+-=-+-⎰⎰⎰⎰⎰,故选D .19.若()f x 是可导函数,()0f x >,且满足220()sin ()ln 221cos x f t tf x dt t=-+⎰,则()f x =( ) A .ln(1cos )x + B .ln(1cos )x C -++C .ln(1cos )x -+D .ln(1cos )x C ++【答案】A【解析】对220()sin ()ln 221cos x f t t f x dt t =-+⎰两边求导有()sin 2()()21cos f x xf x f x x'=-+,即 sin ()1cos x f x x '=-+,从而sin (1cos )()ln(1cos )1cos 1cos x d x f x dx x C x x+=-==++++⎰⎰.由初始条件(0)ln 2f =,代入得0C =,应选A .20.若函数()f x 满足111()1()2f x x f x dx -=+-⎰,则()f x =( )A .13x -B .12x -C .12x +D .13x +【答案】C【解析】令11()a f x dx -=⎰,则1()12f x x a =+-,从而11111()122a f x dx x a dx a --⎛⎫==+-=- ⎪⎝⎭⎰⎰,得1a =,故1()2f x x =+,应选C .21.若320()eI x f x dx =⎰,则I =( )A .2()e xf x dx ⎰B .0()exf x dx ⎰C .21()2e xf x dx ⎰D .1()2exf x dx ⎰ 【答案】C【解析】32222001()()2ee I xf x dx x f x dx ==⎰⎰,令2t x =,则220011()()22e e I tf t dt xf x dx ==⎰⎰,故选C .22.直线24:591x y zL ++==与平面:4375x y z π-+=的位置关系是( )A .斜交B .垂直C .L 在π内D .L π【答案】D【解析】直线的方向向量(5,9,1)=s ,平面的法向量(4,3,7)=-n ,由0⋅=s n 得⊥s n ,而点(2,4,0)--不在平面内,故平行,应选D .23.220x y →→=( )A .2B .3C .1D .不存在【答案】A【解析】22000001)2x x x y y y →→→→→→===,故选A .24.曲面22z x y =+在点(1,2,5)处的切平面方程为( )A .245x y z +-=B .425x y z +-=C .245x y z +-=D .245x y z -+=【答案】A【解析】令22(,,)F x y z x y z =+-,(1,2,5)2x F =,(1,2,5)4y F =,(1,2,5)1z F =-,得切平面方程为2(1)4(2)(5)0x y z -+---=,即245x y z +-=,故选A .25.设函数33z x y xy =-,则2zy x∂=∂∂( )A .6xyB .2233x y -C .6xy -D .2233y x -【答案】B【解析】323z x xy y ∂=-∂,22233z x y y x∂=-∂∂,应选B .26.如果区域D 被分成两个子区域12,D D ,且1(,)5D f x y dxdy =⎰⎰,2(,)1D f x y dxdy =⎰⎰,则(,)Df x y dxdy =⎰⎰( )A .5B .4C .6D .1【答案】C【解析】根据二重积分的可加性,(,)6Df x y dxdy =⎰⎰,应选C .27.如果L 是摆线sin 1cos x t ty t =-⎧⎨=-⎩上从点(2,0)A π到点(0,0)B 的一段弧,则曲线积分231(3)sin 3xLx y xe dx x y y dy ⎛⎫++-= ⎪⎝⎭⎰( ) A .2(12)1e ππ--B .22(12)1e ππ⎡⎤--⎣⎦C .23(12)1e ππ⎡⎤--⎣⎦D .24(12)1e ππ⎡⎤--⎣⎦【答案】C 【解析】因2P Qx y x ∂∂==∂∂,从而此积分与路径无关,取直线段0x x y =⎧⎨=⎩,x 从2π变成0,则002302221(3)sin 333()3x xx x x L x y xe dx x y y dy xe dx xde xe e πππ⎛⎫++-===- ⎪⎝⎭⎰⎰⎰23(12)1e ππ⎡⎤=--⎣⎦.28.通解为x Ce (C 为任意常数)的微分方程为 ( )A .0y y '+=B .0y y '-=C .1y y '-=D .10y y '-+=【答案】B【解析】x y Ce =,x y Ce '=,从而0y y '-=,故选B .29.微分方程x y y xe -'''+=的特解形式应设为*y = ( )A .()x x ax b e -+B .ax b +C .()x ax b e -+D .2()x x ax b e -+【答案】A【解析】特征方程为20r r +=,特征根为10r =,21r =-,1-是特征方程的单根,应设*y =()x x ax b e -+,应选A .30.下列四个级数中,发散的是( )A .11!n n ∞=∑B .1231000n n n ∞=-∑C .12n n n∞=∑D .211n n ∞=∑【答案】B【解析】231lim 01000500n n n →∞-=≠,故级数1231000n n n∞=-∑发散,应选B .二、填空题 (每小题 2分,共 30分)31.0lim ()x x f x A →=的________条件是0lim ()lim ()x x x x f x f x A -+→→==.【答案】充分必要(或充要) 【解析】显然为充分必要(或充要).32.函数sin y x x =-在区间(0,2)π内单调________,其曲线在区间0,2π⎛⎫⎪⎝⎭内的凸凹性为________的.【答案】增加(或递增),凹【解析】1cos 0y x '=->⇒在(0,2)π内单调增加,sin y x ''=在0,2π⎛⎫⎪⎝⎭内大于零,应为凹的.33.设方程22232x y z a ++=(a 为常数)所确定的隐函数为(,)z f x y =,则zx∂=∂________. 【答案】【解析】222(,,)32F x y z x y z a =++-,则6x F x =,2z F z =,故3x z F z xx F z∂=-=-∂. 34.=________.【答案】2ln(1C -++ 【解析】令t =2dx tdt =,212122ln(1)2ln(121t dt dt t t C C t t ⎛⎫==-=-++=++ ⎪++⎝⎭⎰⎰.35.331cos xdx x ππ-=+⎰________.【答案】0【解析】1cos x y x =+在区间,33ππ⎡⎤-⎢⎥⎣⎦上是奇函数,故3301cos x dx x ππ-=+⎰.36.在空间直角坐标系中以点(0,4,1)A -,(1,3,1)B --,(2,4,0)C -为顶点的ABC ∆面积为________.【解析】(1,1,0)AB =-,(2,0,1)AC =-,110(1,1,2)201AB AC ⨯=-=----i j k,故ABC ∆的面积为1122S AB AC =⨯=37.方程221942x y x ⎧+=⎪⎨⎪=-⎩在直角坐标系下的图形为________.【答案】两条平行直线【解析】椭圆柱面与平面2x =-的交线,为两条平行直线.38.函数33(,)3f x y x y xy =+-的驻点________. 【答案】【解析】由22330330fx y xf y x y∂⎧=-=⎪∂⎪⎨∂⎪=-=⎪∂⎩,可得驻点为(0,0),(1,1).39.若21z x y e -=+(1,0)|zx ∂=∂________. 【答案】0【解析】(1,0)(,0)000|z zz x x x ∂∂=⇒=⇒=∂∂.40.440cos xydx dy yππ=⎰⎰________.【解析】44444000cos cos cos sin y xy y dx dy dy dx ydy yy yπππππ====⎰⎰⎰⎰⎰.41.直角坐标系下二重积分(,)Df x y dxdy ⎰⎰(其中D 为环域2219x y ≤+≤)化为极坐标形式为________.【答案】231(cos ,sin )d f r r rdr πθθθ⎰⎰【解析】231(,)(cos ,sin )Df x y dxdy d f r r rdr πθθθ=⎰⎰⎰⎰.42.以3312x x y C e C xe --=+为通解的二阶常系数线性齐次微分方程为________.【答案】690y y y '''++=【解析】由通解3312x x y C e C xe --=+可知,有二重特征根3-,从而微分方程为690y y y '''++=.43.等比级数()00n n aq a ∞=≠∑,当________时级数收敛;当________时级数发散. 【答案】1q <,1q ≥【解析】级数0n n aq ∞=∑是等比级数,当1q <时,级数收敛,当1q ≥时,级数发散.44.函数21()2f x x x =--展开成x 的幂级数________. 【答案】11011(1)32n n n n x ∞++=-⎡⎤+-⎢⎥⎣⎦∑,11x -<< 【解析】211111111()231231612f x xx x x x x ⎛⎫==-+=-⋅-⋅ ⎪--+-+⎝⎭- 110001111(1)(1)36232n n n n n n n n n n x x x ∞∞∞++===-⎡⎤=---=+-⎢⎥⎣⎦∑∑∑,11x -<<.45.12nn n n ∞=-⎛⎫ ⎪⎝⎭∑是敛散性为________的级数. 【答案】发散 【解析】(2)2222lim lim 10n n n n n e n n -⋅--→∞→∞-⎛⎫⎛⎫=-=≠ ⎪ ⎪⎝⎭⎝⎭,级数发散.三、计算题(每小题5 分,共40 分)46.求252222lim 3x x x x +→∞⎛⎫+ ⎪-⎝⎭. 【答案】52e【解析】222225535552225232222255lim lim 1lim 1333x x x x x x x x x e x x x ++-+⋅⋅-→∞→∞→∞⎛⎫+⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.47.2400lim x x x →⎰. 【答案】【解析】24300lim 2x x x x x →→→===⎰.48.已知lnsin(12)y x =-,求dy dx . 【答案】2cot(12)x -- 【解析】lnsin(12)1cos(12)(2)2cot(12)sin(12)dy d x x x dx dx x -==⋅-⋅-=---.49.计算arctan x xdx ⎰.【答案】 【解析】2221111arctan arctan arctan 12221x xdx xdx x x dx x ⎛⎫==-- ⎪+⎝⎭⎰⎰⎰ 22111arctan (arctan )(arctan arctan )222x x x x C x x x x C =--+=-++.50.求函数cos()x z e x y =+的全微分.【答案】[]cos()sin()sin()x x e x y x y dx e x y dy +-+-+ 【解析】cos()sin()x x z e x y e x y x∂=+-+∂,sin()x z e x y y ∂=-+∂,故 []cos()sin()sin()x x z z dz dx dy e x y x y dx e x y dy x y∂∂=+=+-+-+∂∂.51. 计算2D x d y σ⎰⎰,其中D 为由2y =,y x =,1xy =所围成的区域. 【答案】1724【解析】根据积分区域的特征,应在直角坐标系下计算积分,且积分次序为先积x 后积y ,交点坐标为(2,2),(1,1),1,22⎛⎫ ⎪⎝⎭,故222122221111117224y y Dx x d dy dx y dy y y y y σ⎛⎫==-= ⎪⎝⎭⎰⎰⎰⎰⎰.52.求微分方程sin cos x y y x e -'+=满足初始条件(0)1y =-的特解.【答案】sin (1)x y e x -=-【解析】()cos P x x =,sin ()x Q x e -=,则通解为cos cos sin sin ()xdx xdx x x y e e e dx C e x C ---⎛⎫⎰⎰=⋅+=+ ⎪⎝⎭⎰, 又(0)1y =-,所以1C =-,特解为sin (1)x y e x -=-.53.求级数031nn n x n ∞=+∑的收敛半径与收敛区间(考虑端点). 【答案】11,33⎡⎫-⎪⎢⎣⎭【解析】1131lim lim 323n n n n n na n a n ρ++→∞→∞+==⋅=+,收敛半径113R ρ==. 当13x =时,级数为011n n ∞=+∑,该级数发散;当13x =-时,级数为0(1)1n n n ∞=-+∑,该级数收敛, 故收敛域为11,33⎡⎫-⎪⎢⎣⎭.四、应用题 (每小题7 分,共 14 分)54.过曲线2y x =上一点(1,1)M ,作切线L ,D 是由曲线2y x =,切线L 及x 轴所围成的平面图形.求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所生成的旋转体的体积.【答案】(1)112 (2)30π【解析】(1)曲线2y x =在(1,1)M 处的切线斜率为2,过M 点的切线方程为21y x =-,切线与x 轴的交点为1,02⎛⎫ ⎪⎝⎭,则平面图形D 的面积 123100111111223412A x dx x =-⋅⋅=-=⎰. (2)平面图形D 绕x 轴旋转一周所生成的旋转体的体积为12225100111()1325630V x dx x πππππ=-⋅⋅⋅=⋅-=⎰.55.一块铁皮宽24厘米,把它的两边折上去,做成一个正截面为等腰梯形的槽(图略),要使等腰梯形的面积A 最大,求腰长x 和它对底边的倾斜角α.【答案】【解析】由题意知梯形的上、下底分别为2422cos x x α-+,242(0,0)x x α->>. 故221(2422cos 242)sin 24sin 2sin sin cos 2A x x x x x x x αααααα=-++-⋅=-+, 24sin 4sin 2sin cos A x x xαααα∂=-+∂, 222224cos 2cos (cos sin )A x x x ααααα∂=-+-∂, 令0A x∂=∂,0A α∂=∂,联立解得,在定义域内唯一驻点8x =,3πα=, 故当3πα=,8x cm =时正截面面积A 最大.五、证明题 (6 分)56.证明方程0ln x x e π=-⎰在区间3(,)e e 内仅有一个实根.【解析】令0()ln x f x x e π=-+⎰,显然()f x 在3,e e ⎡⎤⎣⎦上连续,且0()0f e ==⎰,3220()360f e e e π=-+<-<⎰,由零点定理得,在3(,)e e 内至少存在一个ξ,使得()=0f ξ. 又11()f x x e'=-,在3(,)e e 内()<0f x ',所以在内单调减少.综上所述,方程0ln x x e =-⎰在区间3(,)e e 内仅有一个实根.。

成人专升本高等数学一真题2008年_真题(含答案与解析)-交互

成人专升本高等数学一真题2008年_真题(含答案与解析)-交互

成人专升本高等数学一真题2008年(总分150, 做题时间90分钟)一、选择题1.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B2.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A3.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D4.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C5.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B6.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D7.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C8.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D9.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C10.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A二、填空题11.SSS_FILL该题您未回答:х该问题分值: 4答案:12.SSS_FILL该题您未回答:х该问题分值: 4答案:313.SSS_FILL该题您未回答:х该问题分值: 4答案:514.SSS_FILL该题您未回答:х该问题分值: 4答案:e x+1dx15.SSS_FILL该题您未回答:х该问题分值: 4答案:16.SSS_FILL该题您未回答:х该问题分值: 4答案:2arcsin x+C17.SSS_FILL该题您未回答:х该问题分值: 4答案:018.SSS_FILL该题您未回答:х该问题分值: 4答案:2x-2y+3z=019.SSS_FILL该题您未回答:х该问题分值: 4答案:e y20.SSS_FILL该题您未回答:х该问题分值: 4答案:3x+C三、解答题21.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 822.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 823.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 824.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 825.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 826.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 1027.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 1028.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 101。

成人高考专升本(高等数学一)考试真题及答案

成人高考专升本(高等数学一)考试真题及答案

成人高考专升本(高等数学一)考试真题及答案-卷面总分:176分答题时间:120分钟试卷题量:35题一、单选题(共16题,共58分)1.当x→0时,sin(x^2+5x^3)与x^2比较是()A.较高阶无穷小量B.较低阶的无穷小量C.等价无穷小量D.同阶但不等价无穷小量正确答案:C您的答案:本题解析:暂无解析2.设y=x^-5+sinx,则y′等于()A.B.C.D.正确答案:A您的答案:本题解析:暂无解析3.若事件A与B互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于()A.0.3B.0.4C.0.2D.0.1正确答案:A您的答案:本题解析:暂无解析4.设函数y=2x+sinx,则y'=A.1-cosxB.1+cosxC.2-cosxD.2+cosx正确答案:D您的答案:本题解析:暂无解析5.设函数y=e^x-2,则dy=A.B.D.正确答案:B您的答案:本题解析:暂无解析6.设函数y=(2+x)^3,则y'=A.(2+x)^2B.3(2+x)^2C.(2+x)^4D.3(2+x)^4正确答案:B您的答案:本题解析:暂无解析7.设函数y=3x+1,则y'=()A.0B.1C.2D.3正确答案:A您的答案:本题解析:暂无解析8.设函数z=3x2y,则αz/αy=()A.6yB.6xyC.3xD.3X^2正确答案:D您的答案:本题解析:暂无解析9.设y=x^4,则y'=()A.B.C.D.正确答案:C您的答案:本题解析:暂无解析10.设y=x+inx,则dy=()A.C.D.dx正确答案:B您的答案:本题解析:暂无解析11.设y+sinx,则y''=()A.-sinxB.sinxC.-cosxD.cosx正确答案:A您的答案:本题解析:暂无解析12.在空间直角坐标系中,方程x^2+y^2=1表示的曲面是()A.柱面B.球面C.锥面D.旋转抛物面正确答案:A您的答案:本题解析:暂无解析13.设z=x^2-3y,则dz=()A.2xdx-3ydyB.x^2dx-3dyC.2xdx-3dyD.x^2dx-3ydy正确答案:C您的答案:本题解析:暂无解析14.微分方程y'=2y的通解为y=()A.B.C.D.正确答案:A您的答案:本题解析:暂无解析15.设b≠0,当x→0时,sinbx是x2的()A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量正确答案:D您的答案:本题解析:暂无解析16.函数f(x)=x^3-12x+1的单调减区间为()A.(-∞,+∞)B.(-∞,-2)C.(-2,2)D.(2,+∞)正确答案:C您的答案:本题解析:暂无解析二、填空题(共13题,共52分)17.设函数y=x3,则y/=()正确答案:3x^2您的答案:18.设函数y=(x-3)^4,则dy=()正确答案:4(x-3)^3dx您的答案:19.设函数y=sin(x-2),则y"=()正确答案:-sin(x-2)您的答案:20.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为()正确答案:3x+2y-2z=0您的答案:21.设函数x=3x+y2,则dz=()正确答案:3dx+2ydy您的答案:22.微分方程y/=3x2的通解为y=()正确答案:x^3+C您的答案:23.函数y=1/3x^3-x的单调减少区间为______.正确答案:(-1,1)您的答案:24.过点(1,-1,-2)且与平面2x-2y+3z=0垂直的直线方程为______.正确答案:您的答案:25.微分方程y'=x+1的通解为y=______.正确答案:您的答案:26.函数-e^-x是f(x)的一个原函数,则f(x)=()正确答案:您的答案:27.函数y=x-e^x的极值点x=()正确答案:0您的答案:28.设函数y=cos2x,求y″=()正确答案:-4cos2x您的答案:29.设z=e^xy,则全微分dz=()正确答案:您的答案:三、计算题(共13题,共52分)30.求曲线y=x^3-3x+5的拐点。

2008年成考专升本高等数学

2008年成考专升本高等数学

第 1 页 2008年成考专升本高等数学 36一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

每小题4分,共28分)1.设A 为[0,1]中的有理数全体,B 为[0,1]中的无理数全体,则A ( )B 。

A.<B.=C.>D.无法比较2.有限个可数集的并集是( )。

A.有限集B.可数集C.不可数集D.无法确定3.任意多个闭集的交集是( )。

A.开集B.闭集C.F σ集D.G δ集4.设E 是R 中无理数全体,则mE ( )。

A.0B.1C.+∞D.-∞5.设f(x )是R 1上的可微函数,则导函数f ′(x )是( )。

A.连续函数B. a. e.连续函数C.可测函数D.无法判定6.设⎪⎩⎪⎨⎧-∈-∈=={0,1}Q)|0,1(|0{0,1}Q)|0,1(|1 x p qx p )x (f 且p, q 互素,下述哪个说法不成立( )。

A. f(x)=0 a. e. B. f(x)=0 a. e.连续C. f(x)处处不连续D. f(x) Riemann 可积7.设{ϕn (x)}是简单函数列,(x)f lim n n ∞→存在,则(x)f lim n n ∞→ 是( )。

A.简单函数B.连续函数C.可测函数D. Lebesgue 可积函数二、填空题(每空4分,共40分)1.集簇{A α|α∈Γ}的交αΓ∈αA =_______________.2.设A 2n =[-1+n 1, 2-12n 1+], A 2n+1=[-n 1,1+n 1],∞→n lim A n =_______________.3.设E 是E 的开核,则E 与E 具有关系E _______________E.4.设f(x)是[0,1]上的单调函数,E 是f(x)的不连续点全体,则mE=_______________.5.可测集与G δ型集有如下关系:G δ型集是可测集,反之_______________.6.设p 是Cantor 集,⎩⎨⎧-∈∈=P |,|x P x )x (f 1010 ,则f(x)在21处的振幅为_______________.第 2 页 7.设f(x)是E ⊂R n 上的非负函数,记R n+1中的点集{(x,z )|x ∈Z,0≤z<f(x)}为G |E, f|,则当x ∉E 时(G |E, f |)x =_______________.8.设f(x)=⎩⎨⎧-∈∈Q|,|x |,|Q x 101100 , 则)(10f V =_______________. 9.设f(x)是E 上的可测函数,则E [|f|=0]是_______________.10.设{f n (x)}是E 上的单调下降的非负可测函数列,则⎰∞→E n x )x (f d lim n _______________ ⎰∞→E n x )x (f d lim n .三、完成下列各题(每小题8分,共32分)1.设p 0是E 的聚点,证明存在E 中的互异的点所成的{p n }点列,使p n →p 0(n →∞)。

2008年河南省专升本(高等数学)真题试卷(题后含答案及解析)

2008年河南省专升本(高等数学)真题试卷(题后含答案及解析)

2008年河南省专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数f(x)=ln(1-x)+的定义域是( )A.[-2,-1]B.[-2,1]C.[-2,1)D.(-2,1)正确答案:C解析:解不等式组,得C为正确选项.2.= ( )A.1B.0C.D.正确答案:D解析:3.点x=0是函数y=的( )A.连续点B.跳跃间断点C.可去间断点D.第二类间断点正确答案:B解析:=-1,左右极限均存在,但不相等,故选B.4.下列极限存在的是( )A.B.C.D.正确答案:B解析:选项A的极限为正的无穷大,选项B的极限为2,选项C的极限振荡不存在,选项D的极限也为正的无穷大.5.当x→0时,ln(1+x2)是比1-cosx的( )A.低阶无穷小B.高阶无穷小C.等价无穷小D.同阶但不等价无穷小正确答案:D解析:因为=2故选D.6.设函数f(x)=,则f(x) ( )A.在x=-1处连续,在x=0处不连续B.在x=0处连续,在x=-1处不连续C.在x=-1,x=0处均连续D.在x=-1,x=0处均不连续正确答案:A解析:=1=f(-1),所以f(x)在x=-1处连续;,所以在x=0处不连续7.过曲线y=arctanx+ex上的点(0,1)处的法线方程为( )A.2x-y+1=0B.x-2y+2=0C.2x-y-1=0D.x+2y-2=0正确答案:D解析:y’=+ex,曲线上点(0,1)处的切线斜率为y’|0=2,所以法线的斜率为k=,因此法线方程为y-1=(x-0),即x+2y-2=08.设函数f(x)在x=0处满足f(x)=f(0)-3x+a(x),且=0,则f’(0)=( ) A.-1B.1C.-3D.3正确答案:C解析:f’(0)=9.函数(x)=(lnx)x(x>1),则f’(x)= ( )A.(lnx)x-1B.(lnx)x-+(lnx)xln(lnx)C.(lnx)xln(lnx)D.x(lnx)x正确答案:B解析:f(x)=(lnx)x=exln(lnx),则f’(x)=exln(lnx)×[ln(lnx)+],即f’(x)=(lnx)x[ln(lnx)+]=(lnx)x-1+(lnx)xln(lnx)·10.设函数y=y(x)由参数方程确定,则= ( )A.-2B.-1C.D.正确答案:D解析:11.下列函数中,在区间[-1,1]上满足罗尔定理条件的是( )A.y=exB.y=ln|x|C.y=1-x2D.y=正确答案:C解析:选项A在[-1,1]两端的值不相等,选项B在[-1,1]内不连续,选项D在[-1,1]内不连续.12.曲线y=x3+5x-2的拐点是( )A.x=0B.(0,-2)C.无拐点D.z=0,y=-2正确答案:B解析:y’=3x2+5,令y’’=6x=0,得x=0,此时y=-2,当x>0时,f’’>0;当x ( )A.仅有水平渐近线B.既有水平渐近线,又有垂直渐近线C.仅有垂直渐近线D.既无水平渐近线,又无垂直渐近线正确答案:B解析:因=+∞,所以有垂直渐近线,又因=0,所以有水平渐近线14.f(x)的一个原函数是xlnx,那么∫x2f’’(x)x= ( )A.lnx+CB.x2+CC.x3lnx+CD.C-x正确答案:D解析:f(x)的一个原函数是xlnx,则f(x)=(xlnx)l=lnx+1,f’(x)=,f’’(x)=,那么∫x2f’’(x)dx=∫-1dx=-x+C.15.= ( )A.B.C.ln(x-3)-ln(x-1)+CD.ln(x-1)-ln(x-3)+C正确答案:A解析:16.设I=,则I的取值范围为( )A.0≤I≤1B.≤I≤1C.0≤I≤D.<I<1正确答案:B解析:在区间[0,1]上,1≤1+x4≤2,从而,所以选B.17.下列广义积分收敛的是( )A.B.C.D.正确答案:D解析:因广义积分(a>1)在k>1时均收敛,k≤1时均发散,所以选项A、B、C中积分均发散,故选D.18.= ( )A.B.C.D.正确答案:D解析:19.若函数f(x)为可导函数,f(x)>0,且满足f2(x)=ln22-,则f(x)= ( )A.ln(1+cosx)B.-ln(1+cosx)+CC.-ln(1+cosx)D.ln(1+cosx)+C正确答案:A解析:对f2(x)=ln22-两边求导得,2f(x)f’(x)=,即f’(x)=+cosx=ln(1+cosx)+C,又因f(x)满足初始条件f(0)=ln2,代入上式可得C=0,所以f(x)=ln(1+cosx).20.若函数f(x)满足f(x)=x+1-f(x)dx,则f(x)=( )A.B.C.D.正确答案:C解析:因为f(x)dx的值为常数,不妨令其为k,则对f(x)=x+1-f(x)dx 两边同时积分得k==2-k,所以k=1,从而f(x)=x+1-21.若I=,则I=( )A.B.C.D.正确答案:C解析:I=22.直线与平面4x-3y+7z=5的位置关系是( )A.直平与平面斜B.直线与平面垂直C.直线在平面内D.直线与平面平行正确答案:D解析:直线的方向向量为={5,9,1},平面的法向量为={4,-3,7},因为=0,即,从而可知直线与平面平行或重合,又因直线过定点M0(-2,-4,0),将该点坐标代人平面方程得4×(-2)-3×(-4)+7×0=4≠5,即表明该点不在平面内,故选D.23.= ( )A.2B.3C.1D.不存在正确答案:A解析:令x2+y2=t,则24.曲面z=x2+y2在点(1,2,5)处的切平面方程为( )A.2x+4y-z=5B.4x+2y-z=5C.x+2y-4z=5D.2x-4y+z=5正确答案:A解析:令F(x,y,z)=x2+y2-z,则(x,y,z)=2x,(z,y,z)=2y,(x,y,z)=-1,则在点(1,2,5)处,=2,=4,=-1,曲面z=x2+y2在该点处切平面的法向量为{2,4,-1},所以切平面方程为2(x-1)+4(y-2)-(x-5)=0,即2x+4y-z=5.25.设函数z=x3y-xy3,则= ( )A.6xyB.3x2-3y2C.-6xyD.3y2-3x2正确答案:B解析:=3x2y-y3,=3x2-3y226.如果区域D被分成两个子区域D1和D2,且f(x,y)dxdy=5,f(x,y)dxdy=1,则f(x,y)dxdy= ( )A.5B.4C.6D.1正确答案:C解析:如果区域D被分成两个子区域D1和D2,则f(x,y)dxdy=f(x,y)dxdy+f(x,y)dxay=5+1=6.27.如果L是摆线从点a(2π,0)到B(0,0)的一段弧,则曲线积分∫L(x2y+3xex)dx+(-ysiny)dy= ( )A.e2π(1-2π)-1B.2[eπ(1-2π)-1]C.3[e2π(1-2π)-1]D.4[e2π(1-2π)-1]正确答案:C解析:令P(x,y)=x2y+3xex,Q(x,y)=,则表明曲线积分与路径无关,取x轴上从A(2π,0)到B(0,0)的直线段,则有∫L(x2y+3xex)dx+(x3-ysiny)dy==3[e2π(1-2π)-]28.通解为y=Cex(C为任意常数)的微分方程为( )A.y’+y=0B.y’-y=0C.y’y=1D.y’-y+1=0正确答案:B解析:对y=Cex求导可得y’=Cex=y,即y-y’=0.显然B为正确选项.29.微分方程y’’+y=ce-x的特解形式应设为( )A.x(ax+b)e-xB.ax+bC.(ax+b)e-xD.x2(ax+b)e-x正确答案:A解析:根据自由项的形式为f(x)=xe-x,知多项式为1次多项式,且λ=-1,又知y’’+y’=0对应特征方程的根为r1=0,r2=-1,所以λ为单根,故特解形式应设为x(ax+b)e-x30.下列四个级数中,发散的级数是( )A.B.C.D.正确答案:B解析:的一般项为,其极限为≠0,故选项B的级数为发散的填空题31.(x)=A的______条件是正确答案:充要解析:函数在点x0处极限存在的充分必要条件是左右极限存在且相等.32.函数y=x-sinx在区间(0,2π)内单调______,其曲线在区间(0,)内的凹凸性为______的正确答案:递增凹解析:因y’=1-cosx,在区间(0,2π)内y’≥0,故单调递增;y’=sinx在区间(0,)内恒大于0,故为凹的.33.设方程3x2+2y2+z2=a(a为常数)所确定的隐函数为z=f(x,y),则=______正确答案:解析:方程两边同时对x求偏导(视y为常数),得6x+2z.34.=______正确答案:2-2ln(1+)+C解析:=2t-2ln(1+t)+C=2-2ln(1+)+C 35.=________正确答案:0解析:对称区间上奇函数的定积分恒为零.36.在空间直角坐标系中,以点A(0,-4,1),B(-1,-3,1),C(2,-4,0)为顶点的△ABC的面积为________正确答案:解析:={-1,1,0},={2,0,-1},则={-1,-1,-2},,故S△ABC=37.方程组在空间直角坐标系下的图形为________正确答案:两条平行直线解析:将x=-2代入=1,得y=,则该方程组的另一种形式为,因此在空间直角坐标系下的图形表示两条平行直线。

成人高考 08-12年 真题(专升本)

成人高考 08-12年 真题(专升本)


dx x
2
=
17.
d x 3 ∫0 (t + t )dt = dx

.
18. ∫-2
2
(cosx
+ x )dx .=
2
.
19. 函数 z= 1 - x 2 - y 的定义域为
.
20. 设函数 z= f ( x, y ) 存在一阶连续偏导数
∂z ∂z , ,则 dz = ∂x ∂y
.
三、解答题:21~28 小题,共 70 分,解答应写出推理、演算步骤,并将其写在答题卡相应题号后。 21.(本题满分 8 分) 计算 lim x →3
5 −1
1
A. -2
D. 1 )
8. 设函数 z= x 2 +3y,则
∂z = ( ∂x
C. 2 x +3
A. 2 x +3y
B. 2ቤተ መጻሕፍቲ ባይዱx
x3 3 2 D. + y 3 2

9. 设函数 z= x y ,则
2
2
∂2z ∂x
2
= (
A. 2 y 2
B. 4 xy
C. 4 y
D. 0 ) D. P(A)P(B)
2 x -9 x -3
22.(本题满分 8 分) 设函数 y = x3 + sin x + 3 ,求 y ′
23.(本题满分 8 分) 计算 ∫ sin 5 xdx
24.(本题满分 8 分) 设 z= x( x, y ) 是由方程 x + y − ez =0 所确定的隐函数,求
2 2
∂z . ∂x
5
4. 已知 f ( x) 在区间(- ∞ ,+ ∞ )内为单调减函数,且 f ( x) > f (1) ,则 x 的取值范围是( A. (- ∞ ,-1) B. (- ∞ ,1) C. (1, ∞ ) ) D. (- ∞ ,+ ∞ )

2008年成人高考(文史类)数学试卷(word版)

2008年成人高考(文史类)数学试卷(word版)

6 图像上一点 P 作 x 轴的垂线 PQ,Q 为垂足,O 为坐标原点,则△OPQ 的面积为 x
东莞常平·刘义江 1
内部资料,请勿外传
(A)6
(B)3
(C)2
(D)1
(14)过点(1,1)且与直线 x 2 y 1 0 垂直的直线方程为 (A) 2 x y 1 0 (B) 2 x y 3 0 (C) x 2 y 3 0 (D) x 2 y 1 0
2008 年成人高考(文史类)数学试题
1.答案必须答在答题卡上指定的位置,答在试卷上无效。 ........ 2.在本试卷中, tan 表示角 的正切, cot 表示角 的余切 一、选择题:本大题共 17 小题,每小题 5 分,共 85 分。在每小题给出的四个选项中,只有一项是符合题目要求 的,将所选项前的字母填涂在答题卡相应题号的信息点上 。 ............ (1)设集合 A={2,4,6},B={1,3,5},则 A B (A){5} (2)函数 y cos (A) 6 (B){1,2,3,4,6} (C){2,4,6} (D){1,2,3}
内部资料,请勿外传
东莞常平·刘义江
2
2
(B) {x 5 x 1}
(C) {x x 1或x 5}
(D) {x 1 x 5}
(B) log 2 a 0
(C) a
1
0
(D) a 1 0
2
(12)某学生从 6 门课程中选修 3 门,其中甲课程一定要选修,则不同的选课方案共有 (A)4 种 (B)8 种 (C)10 种 (D)20 种 (13)过函数 y
2 1 2
(C)
2 2

2008年陕西省专升本(高等数学)真题试卷(题后含答案及解析)

2008年陕西省专升本(高等数学)真题试卷(题后含答案及解析)

2008年陕西省专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.设函数在x=0处连续,则常数a与b的值为( ).A.a=0 b=一3B.a=一3 b=0C.a=0 b=3D.正确答案:A解析:由题意可知,函数y=f(x)在x=0处连续,又因则3+b一0=f(0)=a,所以a=0,b=一3.2.当x→0时,函数eax一1与是等价无穷小量,则常数a的值为( ).A.2B.C.一2D.正确答案:B解析:3.设函数f(x)的一个原函数为e-x,则不定积分等于( ).A.lnlnx+CB.x+CC.D.正确答案:D解析:由题意可知,函数f(x)的一个原函数为e-x,4.在空间直角坐标系中,平面π1:2x+y+z+7=0与平面π:x+2y—z+4=0的夹角为( ).A.B.C.D.正确答案:C解析:由题意可得,平面π1的法向量n1={2,1,1},平面π2的法向量n2={1,2,一1},5.设积分区域D是由直线y=x,y=0及所围成的闭区域,则二重积的值为( ).A.0B.1C.2D.3正确答案:B解析:如图所示,积分区域D可表示为填空题6.设函数F(x)的定义域为[-1,1],则函数g(x)=f(x+1)+f(sinx)的定义域为__________.正确答案:[-2,0]解析:由函数f(x)的定义域为[一1,1],则解之得一2≤x ≤0,所以函数的定义域为[一2,0].7.设函数f(x)在x=1处可导,,则f’(1)的值为________.正确答案:4解析:由题意可得,则f’(1)=4.8.函数f(x)=x4一2x2在[0,2]上的最小值为__________.正确答案:一1解析:由函数f(x)=x4—2x2,则f’(x)=4x3一4x,当0<x<1时,f’(x)<0,则函数f(x)=x4—2x2单调减少;当1<x<2时,f’(x)>0,则函数f(x)=x4一2x2单调增加,所以函数f(x)=x4一2x2的最小值为f(1)=一1.9.设函数f(x)=x—∫0e1xrf(x)dx,则∫01exf(x)dx的值为__________.正确答案:e一1解析:10.设由方程ex一xyz=1所确定的隐函数为z=z(x,y),则=________.正确答案:解析:令F(x,y,z)=ez一xyz一1,则Fz=ez一xy,Fx=一yz,所以综合题11.求极限正确答案:12.设由参数方程,所确定的函数为y=y(x),求正确答案:13.已知∫xf(x)dx=arcsinx+C,求正确答案:原方程两边对x求导数,得14.计算定积分正确答案:15.设函数其中f,δ具有二阶连续导数,求正确答案:16.求函数f(x,y,z)=xy2+yz2+zx2在点(1,1,0)处的梯度.正确答案:17.计算二重积分,其中区域D是由直线y=x,y=0及曲线x2+y2=4围成第一象限的部分.正确答案:18.计算对坐标的曲线部分I=∮L[xln(x+y)一4y]dx+[x-yln(x+y)一ey]dy其中L是以点A(1,0),B(3,0),C(2,1)为顶点的三角形闭区域的正向边界曲线.正确答案:设D是三角形区域,如图P=xln(x+y)一4y,Q=x—yln(x+y)一ey由格林公式,得19.求微分方程y’’一2y’一3y=3e2x的通解.正确答案:齐次方程所对应的特征方程为r2一2r一3=0,即(r一3)(r+1)=0特征根为r1=3,r2=一1对应的齐次方程的通解为Y(x)=C1e3x+C2e-x令y*(x)一Ae2x,则y*=2Ae2x,y*=4Ae2x,代入原方程并消去e2x,得4A一4A一3A=3解得A=一1所以y*(x)=一e2x从而微分方程通解为y(x)=C1e3x+C2e-x一e2x.20.求幂级数的收敛域及和函数,并求级数的和.正确答案:证明题21.计算抛物面z=4一x2一y2与平面z=0围成立体的体积.正确答案:立体在xOy面的投影区域为D={(x,y)|x2+y2≤4}所以,所求立体体积为22.设函数f(x)在[0,1]上有二阶导数,且f(0)=f(1)=0,又F(x)=x2f(x),证明:至少有一点ε∈(0,1),使得F’’(ε)=0.正确答案:由条件知,F(x)在[0,1]上连续,在(0,1)内可导,并且F(0)=F(1)=0,由罗尔定理知,至少存在一点η∈(0,1)使F’(η)=0又F’(x)=2xf(x)+x2f’(x)由于f(x)在[0,1]上有二阶导数,所以F’(x)在[0,η]上连续,在(0,η)内可导,并且F’(0)=F’(η)=0.由罗尔定理知,至少有一点ε∈(0,η)c(0,1),使F’’(ε)=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年成人高考专升本高等数学一真题
一、单项选择题(本大题共15小题,每小题1分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均不得分。

1.下列句子为命题的是( ) A.全体起立! B.x =0
C.我在说谎
D.张三生于1886年的春天
2.下列式子不是..谓词合式公式的是( ) A.),()()),(),()((z x R z z x Q y x P x ∃∨→∀ B. ),()(),(),())((y x P x z x Q y x P y x ∃∧∨∀∀ C. ))()()(())()()(x Q x P x x Q x P x ∨⌝∀⇔→∀ D. ),()()(z y Q x P x ∧∃
3.下列式子为矛盾式的是( ) A.P P ⌝∧ B.)(Q P P ∧∨
C.P P ⌝∨
D.)(Q P ∨⌝ Q P ⌝∧⌝
4.设给定赋值N 如下:个体域为自然数集;特定元素a =0;特定函数f (x ,y )=x+y,g (x ,y )=xy ;特定谓词F (x ,y )为x =y 。

在赋值N 下,下列公式为真的是( ) A. )),,(()(x a x g F x ∀
B. ))),,(()),,(()()((x a y f F y a x f F y x →∀∀
C. )),,(())()((z y x f F z y x ∀∀∀
D. )),(),,(())((y x g y x f F y x ∀∀
5.对于公式),()()),(),()((z x R z z x Q y x P x ∃∨→∀,下列说法正确的是( ) A.y 是自由变元 B.x 是约束变元
C. )(x ∀的辖域是),()()),(),((z x R z z x Q y x P ∃∨→
D. )(x ∀的辖域是P (x ,y )
6.设论域为{l ,2},与公式)()(x A x ∃等价的是( ) A.A (1)∨A (2) B. A (1)→A (2) C.A (1)
D. A (2)→A (1)
7.设Z +是正整数集合,f :Z +→Z +,f (n )=2n -2,则f ( ) A.仅是入射 B.仅是满射 C.是双射
D.不是函数
8.下列关系矩阵所对应的关系具有反自反性的是( )
A.⎥⎥⎥
⎦⎤
⎢⎢⎢⎣⎡001110101 B. ⎥⎥⎥


⎢⎢⎢⎣⎡101110001
C. ⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡001100100
D. ⎥⎥⎥⎦

⎢⎢⎢⎣⎡001010101
9.设R 1和R 2是集合A 上的相容关系,下列关于21R R ⊕的说法正确的是( ) A.一定是相容关系
B.一定不是相容关系
C.可能是也可能不是相容关系
D.一定是等价关系
10.设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×>
D.<A ,÷>
11.设A 是整数集,下列说法正确的是( ) A.<A ,+>有零元 B.<A ,÷>有零元 C.<A ,+>有幺元
D.<A ,÷>有幺元
12.下列说法不正确...的是( ) A.在实数集上,乘法对加法是可分配的 B.在实数集上,加法对乘法是可分配的 C.在某集合的幂集上,∪对∩是可分配的 D.在某集合的幂集上,∩对∪是可分配的 13.右图的最大入度是( ) A.0 B.1 C.2 D.3
14.下列可一笔画成的图形是(
)
15.一棵树有5个3度结点,2个2度结点,其它的都是l 度结点,那么这棵树的结点数是 ( ) A.13 B.14 C.16
D.17
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。

错填、不填均不得分。

16.请写出表示分配律的两个命题公式等价定理________,________。

17.n个命题变元的________称为大项,其中每个变元与它的否定不能同时出现,但两者必须________。

18.在谓词推理过程中,由)
P
∀得到P(a),其中a为论域的某个个体,用的是________规则,记为________规
x
(
)
(x
则。

19.请用联结词⌝,∨表示联结词∧和联结词→:________,________。

20.设A={1,2,3,4},B={2,4,6},则A-B=________,A⊕B=________。

21.给出A={l,2}上的一个等价关系________,并给出其对应的划分________。

22.设A={l,2,3,4},A上的二元关系R={<1,2>,<2,3>,<3,2>},S={<l,3>,<2,3>,<4,3>},则R∩S=________,(R—S)-1=________。

23.代数系统<A,+,。

>是域,则________和________都是交换群。

24.若图中存在________,它经过图中所有的________,则称该图为汉密尔顿图。

25.n点完全图记为K n,那么当________时,K n是平面图,当_____时,K n是非平面图。

三、计算题(本大题共6小题,每小题5分,共30分)
26.列出)
R
P→
∨的真值表。

((Q
(P
Q→)
)
27.用等值演算求→
P(Q R)的主析取范式。

28.设A={1,2,3,4},给定A上的二元关系R={<1,2>,<2,1>,<2,3>,<3,4>},求R的传递闭包。

29.求右图所示格的所有5元和6元子格。

30.求<Z7一{0},⊗>的所有生成元及所有2阶、3阶子群,其中⊗为模7乘法。

31.用矩阵的方法求右图中结点v1,v3之间长度为2的路径的数目。

四、证明题(本大题共3小题,第32小题8分,第33、34小题各6分,共20分)
32.用推理方法证明:)

P∧




→S
Q
,
,
Q
,S
(
P
R
R
⌝。

33.设H是G的非空子集,则<H,·>是群<G,·>的子群当且仅当对任意a,b∈H有a·b-1∈H。

34.证明整数集Z上的大于等于关系“≥”是一个偏序关系。

五、综合应用题(本大题共2小题,第35小题6分,第36小题9分,共15分)
35.将下面命题符号化,并构造推理证明:
所有有理数是实数,有些有理数是整数,所以有些实数是整数。

36.某城市拟在六个区之间架设有线电话网,其网点间的距离如下列有权矩阵给出,请绘出有权图,给出架设线路的最优方案,并计算线路的总长度。


⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎡00
6105000
70
8
9670302100304058040109201。

相关文档
最新文档