华东师大数学分析答案
数学分析课本(华师大三版)-习题集与答案解析第十三章

数学分析课本(华师大三版)-习题集与答案解析第十三章第十三章函数列与函数项级数一、证明题1.讨论下列函数列或函数项级数在所示区间D 上是否一致收敛,并说明理由:(1) f n (x)=22n 1x +,n=1,2,…,D=(-1,1); (2) f n (x)=22xn 1x+,n=1,2,…D=(-∞,+∞); (3) f n (x)=≤<++≤≤++-1x 1n 1 0,1n 1x 0 1,1)x (n (n=1,2……); (4) f n (x)=n x, n=1,2,…, (i) D=[0,+∞]; (ii) D=[0,1000]; (5) f n (x)=sin nx, n=1,2,…, (i) D=[-L,L]; (ii) D=[-∞,+∞];(6) ∑+--nx 1)(21n , D=[-∞,+∞];(7) ∑-+1n 22)x (1x , (i) D=[-∞,+∞]; (ii) D=??10,101. 2. 证明:设f(x)→f(x),x ∈D; a n →0(n →∞),(a n >0),若对每一个自然数n.有|f n (x)-f(x)|≤a n , x ∈D, 则{f n }在D 上一致收敛于f.3. 设{f n }为定义在[a,b]上的函数列,且对每一个n,f n 在点a 右连续,但{f n (a n )}是发散的,证明在任何开区间(a,a+δ)这里(a+δ<="">4. 设函数项级数∑nu(x)在D 上一致收敛于S(x),函数g(x)在D 上有界,证明级数∑(x)g(x)u n在D上一致收敛于g(x)S(x).5. 若在区间I 上,对任何自然数n, |u n (x)|≤V n (x), 证明当∑nv (x)在I 上一致收敛时,级数∑nu(x)在I 也一致收敛.6. 设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑nu(a)与∑nu(b)都绝对收敛,则级数∑nu(x)在[a,b]上绝对并一致收敛.7. 在[0,1]上定义函数列1,2n n 1 x 0,n1 x ,n 1(x)u n =≠==证明: 级数∑nu(x)在[0,1]上一致收敛,但它不存在优级数.8. 证明:级数∑∞=0n n nx )-(1x (-1)在[0,1]上绝对并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛.9. 设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)],n=1,2,……,证明函数列{f n }在(a,b)内一致收敛于f.10. 设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数.则级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+… 在[a,b]上一致收敛.11. 证明: 若函数列{f n }在[a,b]上满足定理13.10的条件,则{f n }在[a,b]上一致收敛.12. 证明: 函数f(x)=∑3n sinnx在(-∞,+∞)上连续,且有连续的导函数.13. 证明: 定义在[0,2π]上的函数项级数∑∞=0n n co s n xr(0<r<1)满足定理13.12条件,且< p="">∑?∞==0n n 2πcosnx dx r 02π14. 讨论下列函数列在所定义区间上的一致收敛性及其极限函数的连续性,可积性和可微性.(1) f n (x)=2nx x e -(n=1,2,…)x ∈[-L,L];(2) f n (x)=nx1nx+,n=1,2,…, (i) x ∈[)+∞,0, (ii) x ∈[)+∞a,(a>0);15. 证明函数ξ(x)=∑x n 1在(1,+∞)内连续,且有连续的各阶导数.16. 证明:若函数列{f n }在x 0的某δ邻域U(x 0,δ)内一致收敛于f,且)1,2,(n a (x)f lim n n x x 0==→,则n n a lim ∞→与f(x)lim 0x x →存在且相等,即∞→n lim (x)f lim n x x 0→=(x)f lim lim n n x x 0∞→→17. 设f 在(-∞,+∞)上有任何阶导数,记F n =f (n),且在任何有限区间内,F n →?(n →∞),试证 ?(x)=ce x (c 为常数).二、计算题1. 判别下列函数项级数在所示区间上的一致收敛性.(1) ∑-∈-r]r,[x ,1)!(n x n; (2) ∑+∞-∞∈+],[x ,)x (1x (-1)n221-n ; (3)∑>≥0r |x |,x nn ;(4) ∑∈[0,1]x ,nx 2n.2. 讨论下列函数列或函数英级数在所示区间D 上的敛散性:(1) (0,1]D ,1,2,n ,nx 11(x)f n ==+= (2) ∑=][0,2D ,nsinnx π;(3)∑∞=++2n 2222]1)-(n )[x n (x 2n-1, D=[-1,1]; (4)∑nn 3xsin2, D=(0,+∞) (5)∑+-+)nx ](11)x (n [1x 222, D=(0,+∞) (6)∑nx n, D=[-1,0]; (7) ∑+-+12n x 1)(12n nD=[-1,1]3. 设S(x)=∑-21n nx ,x ∈[-1,1],计算积分S(t)dt 0x ?.4. 设S(x)=∑?n n cosnx,x ∈(-∞,+∞),计算积分S(t)dt 0x ?.5. 设S(x)=∑-nx ne (x>0),计算积分S(t)dt ln2ln3三、考研复习题1. 试问K 为何值时,下列函数列{f n }一致收敛: (1) f n (x)=xn k e -nx ,0≤x<+∞;(2) ?≤<≤<-≤≤=1x n 2 0,,n 2x n 1 ,n x n2n 1x 0 ,xn (x)f k kn2. 证明:(1)若f n (x)→f(x)(n →∞)(x ∈I),且f 在I 上有界,则{f n }至多除有限项外,在I 上是一致有界的;(2) 若f n (x)?f(x) (n →∞)(x ∈I),且对每一个自然数n,f n 在I 上有界,则{f n }在I 上一致有界.3. 设f 为??1,21上的连续函数,证明:(1) {x n f(x)}在??1,21上收敛;(2) {x n f(x)}在1,21上一致收敛的充要条件是f 在??1,21上有界且f(1)=04. 若把定理13.9中一致收敛函数列{f n }的每一项在[a,b]上连续改为在[a,b]上可积,试证{f n }在[a,b]上的极限函数在[a,b]上也可积.5. 证明: 由二重极限∞→m lim (∞→n lim cos 2n (m!πx))所确定的极限函数是狄利克雷函数.6. 设级数∑n a 收敛,证明∞→n lim∑x nn a =∑n a .7. 设可微函数列{f n }在[a,b]上收敛,{f 'n }在[a,b]上一致有界,证明:{f n }在[a,b]上一致收敛.</r<1)满足定理13.12条件,且<>。
华东师大数学分析答案

第四章函数的连续性第一节 连续性概念1.按定义证明下列函数在其定义域内连续:(1)x x f 1)(=; (2)x x f =)(。
证:(1)xx f 1)(=的定义域为 ),0()0,(+∞-∞=D ,当D x x ∈0,时,有0011x x x x x x -=- 由三角不等式可得:00x x x x --≥ , 故当00x x x <-时,有02011x x x x x x x x ---≤-对任意给的正数ε,取,01020>+=x x εεδ则0x <δ,当 D x ∈ 且δ<-0x x 时, 有 ε<-=-0011)()(x x x f x f 可见)(x f 在0x 连续,由0x 的任意性知:)(x f 在其定义域内连续。
(2) x x f =)(的定义域为),,(+∞-∞对任何的),(0+∞-∞∈x ,由于 00x x x x -≤-,从而对任给正数ε,取εδ=,当δ<-0x x 时, 有 =-)()(0x f x f 00x x x x -≤-ε< 故)(x f 在0x 连续,由0x 的任意性知,)(x f 在),(+∞-∞连续。
2.指出函数的间断点及类型: (1)=)(x f x x 1+; (2)=)(x f xx sin ; (3)=)(x f ]cos [x ; (4)=)(x f x sgn ; (5)=)(x f )sgn(cos x ;(6)=)(x f ⎩⎨⎧-为无理数为有理数x x x x ,,;(7)=)(x f ⎪⎪⎩⎪⎪⎨⎧+∞<<--≤≤--<<∞-+x x x x x x x 1,11sin )1(17,7,71解: (1))(x f 在0=x 间断,由于)1(lim xx x +∞→不存在,故0=x 是)(x f 的第二类间断点。
(2))(x f 在0=x 间断,由于 1sin lim )(lim 00==++→→xxx f x x , 1sin lim )(lim 00-=-=--→→xxx f x x 故0=x 是)(x f 的跳跃间断点。
数学分析 3,4,5章答案 华东师范大学

(2)若 存在,试问是否成立 ?
解:(1)证明因为 存在,设 ,则任给 ,存在 ,使得当 时,有 。此时取 ,则当 时, ,从而有 ,故有 。
(2)若若 存在, 并不一定成立。
例如
这里 存在,但 不存在,但是 则 。
3.函数极限存在的条件
1.叙述函数极限 的归结原则,并应用它证明 不存在。
所以 。
2.利用迫敛性求极限:
(1) ;(2) 。
解:(1)因为 趋于负无穷,所以当 时,
,而 ,由迫敛性定理得 。
(2)因为 趋于正无穷,所以当 时, 。而 , 。由迫敛性定理得 。
3.设 , ,证明:
(1) ;
(2) ;
(3) 。
证明:(1)因为 ,则对任给的 ,存在 ,当 时, 。 ,则对任给的 ,存在 ,当 时, 。对已给定的 ,取 ,当 时, 与 同时成立。当 时,
,对 ,存在 ,使得当 时,有 ,于是取 ,则当 ,即在 内有 。
8.求下列极限(其中 皆为正整数):
(1) ;(2) ;
(3) ;(4) ;
(5) 。
解:(1) 。
(2) 。
(3)由于
。由极限的四则运算法则,有
。
(4)由于 ,
。
(5)由于 ,当 时, 或 。对于两种形式,均有 ,由迫敛性定理得 。
解归结原则:设函数 为定义在 上的函数,则 存在的充要条件是:对任何含于 且趋于正无穷的数列 ,极限 都存在且相等。
证明由于 在 上有定义,设 ,则显然有 且 ,
但 ,有归结原则知 不存在。
2.设 为定义在 上的增(减)函数。证明: 存在的充要条件是 在 上有上(下)界。
证明只证一种情况即可。
数学分析课本(华师大三版)

数学分析课本(华师大三版)篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________6.若f(x)有原函数xlnx,则?xf??(x)dx?_______________ 7.?ln(sinx)sin2?3??2xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________ 9.设?xf(x)dx?arcsinx?C,则? dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan 2x,则f(x)?_______________ 18.?f?(x)1??f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u??(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f??(x)连续,那么?xf??(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x??1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________.26 若(?f(x)dx)??lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dx??C,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()(1?e)?C (1?e)?x?C ?2ln(1?e)?C (e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)?I2?x ?I2?x ??I1 ?I1 4.当n??1时,?xn lnxdx?() nn?1n(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C 7.?(cosx2 ?sinx2)dx?() (sinx?cos x)?C (cos xx222?sin 2)?C?cosxxx22?C?sin2?C8.?x?sinx1?cosxdx?()??2cotx??C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()?x?cosxB.?e?x?sinxC.?e?x??x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。
数学分析课本(华师大三版)-习题及答案第十七章

第十七章 多元函数微分学一、证明题1. 证明函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微.2. 证明函数⎪⎩⎪⎨⎧=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微.3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续.4. 试证在原点(0,0)的充分小邻域内有xy1y x arctg ++≈x+y. 5. 试证:(1) 乘积的相对误差限近似于各因子相对误差限之和;(2) 商的相对误差限近似于分子和分母相对误差限之和.6.设Z=()22y x f y -,其中f 为可微函数,验证 x 1x Z ∂∂+y 1y Z ∂∂=2y Z . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明:x Z ∂∂ sec x + y Z ∂∂secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换x=u cos θ-v sin θ, y=u sin θ+v cos θ之下.()2x f +()2y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ).则必有()2x f +()2y f =()2u g +()2vg .(其中旋转角θ是常数) 9.设f(u)是可微函数,F(x,t)=f(x+2t)+f(3x-2t),试求:F x (0,0)与F g (0,0)10..若函数u=F(x,y,z)满足恒等式F(tx,ty,tZ)=t k (x,y,z)(t>0)则称F(x,y,x)为K 次齐次函数.试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为K 次齐次函数的充要条件是:()z ,y ,x xF x +()z ,y ,x yF y +()z ,y ,x ZF x =KF(x,y,z).并证明:Z=xy y x xy 222-+为二次齐次函数.11..设f(x,y,z)具有性质f ()Z t ,y t ,tx m k =(x,y,z)(t>0)证明: (1) f(x,y,z)=⎪⎭⎫ ⎝⎛m k n x Z ,x y ,1f x ; (2) ()z ,y ,x xf x +()z ,y ,x kyf y +()z ,y ,x mzf z =nf(x,y,z).12.设由行列式表示的函数D(t)=()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n 2n 22211n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅其中()t a ij (i,j=1,2,…,n)的导数都存在,证明()dt t dD =∑=n 1k ()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n kn k21k 1n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅''⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 13.证明:(1) grad(u+c)=grad u(c 为常数);(2) graqd(αu+βv)=αgrad u+βgrad v(α,β为常数);(3) grsdu v=u grad v+v grsd u;(4) grad f(u)=(u)grad u.14.设f(x,y)可微,L 1与L 2是R 2上的一组线性无关向量,试证明;若()0,≡y x f i λ(i=1,2)则f(x,y)≡常数.15.通过对F(x,y)=sin x cos y 施用中值定理,证明对某 (0,1),有43=6cos 3cos 3πθπθπ6sin 3sin 6πθπθπ-. 16.证明:函数 u=()t a 4b x 22e t a 21--π(a,b 为常数)满足热传导方程:t u ∂∂=222xu a ∂∂ 17.证明:函数u=()()22b y a x ln -+-(a,b 为常数)满足拉普拉斯方程:22x u ∂∂+22yu ∂∂=0. 18.证明:若函数u=f(x,y)满足拉普拉斯方程: 22x u ∂∂+22yu ∂∂=0.则函数V=f(22y x x +,22y x y +)也满足此方程. 19.设函数u=()()y x φ+ϕ,证明:⋅∂∂x u y x u 2∂∂∂=⋅∂∂y u 22x u ∂∂. 20.设f x ,f y 和f yx 在点(x 0,y 0) 的某领域内存在,f yx 在点(x 0,y 0)连续,证明f xy (x 0,y 0)也存在,且f xy (x 0,y 0)= f yx (x 0,y 0),21.设f x ,f y 在点(x 0,y 0)的某邻域内存在且在点(x 0,y 0)可微,则有f xy (x 0,y 0)= f yx (x 0,y 0)二、计算题1.求下列函数的偏导数: (1) Z=x 2y; (2) Z=ycosx; (3) Z=22y x 1+;(4) Z=ln(x+y 2); (5) Z=e xy ; (6) Z=arctgx y ; (7) Z=xye sin(xy); (8) u=z x y Z x y -+; (9) u=(xy)z ; (10) u=.2. 设f(x,y)=x+(y-1)arcsinyx ; 求f x (x,1). 3. 设 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1ysin y)f(x,222222考察函数f 在原点(0,0)的偏导数.4. 证明函数Z=22y x +在点(0,0)连续但偏导数不存在.5. 考察函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1xysin y)f(x,222222在点(0,0)处的可微性.6. 求下列函数在给定点的全微分;(1) Z=x 4+y 4-4x 2y 2在点(0,0),(1,1); (2) Z=22y x x+在点(1,0),(0,1).7. 求下列函数的全微分;(1) Z=ysin(x+y);(2) u=xe yx +e -z +y8. 求曲面Z=arctg x y 在点⎪⎭⎫ ⎝⎛4,1,1π处的切平面方程和法线方程. 9. 求曲面3x 2+y 2-Z 2=27在点(3,1,1)处的切平面方程与法线方程.10. 在曲面Z=xy 上求一点,使这点的切平面平行于平面x+3y+Z+9=0,并写出这切平面方程和法线方程.11. 计算近似值:(1) 1.002×2.0032×3.0043;(2) sin29°×tg46°.12. 设园台上下底的半径分别为R=30cm, r=20cm 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm.求此园台体积变化的近似值.13. 设二元函数f 在区域D=[a,b]×[c,d]上连续(1) 若在intD 内有f x ≡0,试问f 在D 上有何特性?(2) 若在intD 内有f x =f y ≡0,f 又怎样?(3) 在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?14. 求曲面Z=4y x 22+与平面y=4的交线在x=2处的切线与OZ 轴的交角. 15. 测得一物体的体积v=4.45cm 3,其绝对误差限为0.01cm 3,又测得重量W=30.80g,其绝对误差限为0.018,求由公式d=vw 算出的比重d 的相对误差限和绝对误差限. 16.求下列复合函数的偏导数或导数: (1) 设Z=arc tg(xy),y=e x ,求x dZ α; (2) 设Z=xy y x 2222e xy y x ++,求x Z ∂∂,yZ ∂∂; (3) 设Z=x 2+xy+y 2,x=t 2,y=t,求dtZ ∂; (4) 设Z=x 2lny,x=v u ,y=3u-2v,求u Z ∂∂,v Z ∂∂; (5) 设u=f(x+y,xy),求x u ∂∂,yu ∂∂; (6) 设u=f ⎪⎪⎭⎫ ⎝⎛Z y ,y x ,求x u ∂∂,y u ∂∂,Z u ∂∂. 17.求函数u=xy 2+z 3-xyz 在点(1,1,2)处沿方向L(其方向角分别为60,°45°,60°)的方向导数.18.求函数u=xyz 在点A(5,1,2)处沿到点B(9,4,14)的方向AB 上的方向导数.19.求函数u=x 2+2y 2+3z 2+xy-4x+2y-4z 在点A(0,0,0)及点B(5,-3,3z )处的梯度以及它们的模. 20.设函数u=ln ⎪⎭⎫ ⎝⎛r 1,其中r=()()()222c z 0y a x -+-+-求u 的梯度;并指出在空间哪些点上成立等式gradu =1.21设函数u=222222by a x c z --,求它在点(a,b,c)的梯度. 22.设r=222z y r ++,试求: (1)grad r; (2)grad r1.23.设u=x 3+y 3+z 3-3xyz,试问在怎样的点集上grad u 分加满足:(1)垂直于Z 轴,(2)平行于Z 轴(3)恒为零向量.24.设f(x,y)可微,L 是R 2上的一个确定向量,倘若处处有f L (x,y)0,试问此函数f 有何特征?25.求下列函数的高阶偏导数:(1) Z=x 4+y 4-4x 2y 2,所有二阶偏导数;(2) Z=e x (cos y+x sin y),所有二阶偏导数; (3) Z=xln(xy),y x z 23∂∂∂,23yx z ∂∂∂; (4) u=xyze x+y+z ,r q p z q p zy x u ∂∂∂∂++; (5) Z=f(xy 2,x 2y),所有二阶偏导数;(6) u=f(x 2+y 2+x 2),所有二阶偏导数; (7)Z=f(x+y,xy,yx ),z x , z xx , Z xy . 26.求下列函数在指定点处的泰勒公式:(1) f(x,y)=sin(x 2+y 2)在点(0,0)(到二阶为止); (2) f(x,y)=yx 在点(1,1)(到三阶为止); (3) f(x,y)=ln(1+x+y)在点(0,0);(4) f(x,y)=2x 2―xy ―y 2―6x ―36+5在点(1,-2).27.求下列函数的极值点:(1) Z=3axy ―x 3―y 3 (a>0);(2) Z=x 2+5y 2―6x+10y+6;(3) Z=e 2x (x+y 2+2y).28.求下列函数在指定范围内的最大值与最小值.(1) Z=22y x -,(){2x y ,x +}4y 2≤;(2) Z=22y xy x +-,(){}1y x y ,x ≤+;(3) Z=sinx+sing -sin(x+y),()(){}π≤+≥2y x ,0x y ,x y ,x29.在已知周长为2P 的一切三角形中,求出面积为最大的三角形.30.在xy 平面上求一点,使它到三直线x=0,y=0,及x+2y -16=0的距离平方和最小.31.已知平面上n 个点的坐标分别是 ()111y ,x A ,()222y ,x A ,…()n n n y ,x A .试求一点,使它与这n 个点距离的平方和最小.32.设 u=222z y x z y x1 1 1求(1)u x +u y +u z ; (2)xu x +yu x +zu z ; (3)u xx +u yy +u zz .33.设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx,试按h,k,L 的下正整数幂展开f(x+h,y+k,z+L).三、三、考研复习题1. 设f(x,y,z)=x 2y+y 2z+z 2x,证明f x +f y +f z =(x+y+z)2.2. 求函数 ⎪⎩⎪⎨⎧=+≠++-=0y x 0,0y x ,y x y x y)f(x,22222233在原点的偏导数f x (0,0)与f y (0,0),并考察f(x,y)在(0,0)的可微性.3. 设 1nn1n 21n 12n 2221n21 x x x x x x x x x 11 1u ---=证明: (1)∑==∂∂n1k k 0;x u (2) ∑=-=∂∂n 1k k k u 21)n(n x u x . 4. 设函数f(x,y)具有连续的n 阶偏导数:试证函数g(t)=f (a+ht,b+kt)的n 阶导数 kt)b ht,f (a y k x h dt g(t)d nn n ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=. 5. 设 22x 求x k z h y g y f x e z d zc y b x a z)y,(x,∂∂+++++++++=ϕϕ. 6. 设 (z)h (z)h (z)h (y)g (y)g (y)g (x)f (x)f (x)f z)y,Φ(x,321321321=求z y x Φ3∂∂∂∂. 7. 设函数u=f(x,y)在R 2上有u xy =0,试求u 关于x,y 的函数式.8. 设f 在点p 0(x 0,y 0)可微,且在p 0给定了n 个向量L i (i=1,2,…n).相邻两个向量之间的夹角为n2π,证明 ∑==n 1i 0Li 0)(p f.9. 设f(x,y)为n 次齐次函数,证明1)f m (n 1)n(n f y y x x m +--=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂ . 10. 对于函数f(x,y)=sin xy ,试证 my y x x ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂f=0.。
华东师大数学分析答案第三章函数极限

第三章 函数极限§1 函数极限概念一、按概念证明以下极限: (1);656lim=+∞→xx x (2)2)106(lim 22=+-→x x x ;(3) ;115lim 22=--∞→x x x (4) 04lim 22=-→x x ; (5) 0cos cos lim 0x x x x =→证: (1)当0>x 时,xx x 5656=-+,于是对任给正数ε,只要取ε5=M ,当M x >时,有ε<-+656xx .故656lim=+∞→x x x (2) 当120<-<x 时,有422)106(2-⋅-=-+-x x x x 23)22(2-<+-⋅-≤x x x ,对任给正数ε,只要取}3,1min{εδ=,那么当δ<-<20x 时,有ε<-+-2)106(2x x ,故2)106(lim 22=+-→x x x .(3)当2>x 时, x x x x x 411411522<+-=---.对任给正数ε,只要取}4,2{ε=M ,当M x >时,便有ε<---11522x x ,故115lim 22=--∞→x x x . (4)设)2,1[∈x ,那么x x x -⋅+=-2242x -≤22.0>∀ε,取42εδ=,那么当820<-<x ,即21<<-x δ时,ε<-24x ,故04lim 22=-→x x .(5)因为00002sin 2sin2cos cos x x x x x x x x -≤+-=-. 从而对任给正数ε,只要取εδ=,当δ<-<00x x 时,就有ε<-0cos cos x x .0cos cos lim 0x x x x =→故0cos cos lim 0x x x x =→.二、参照概念2正面陈述A x f x x ≠→)(lim 0.解:设函数f 在点0x 的某空心邻域),(00δ'x U 内有概念,A 是一个确信的常数.假设存在某个正数0ε,使得对任意的正数δ,总存在x ',知足δ<-'<00x x ,且0)(ε≥-'A x f 那么称当0x x →时)(x f 不以A 为极限,记为A x f x x ≠→)(lim 0.3、 证明: )(lim )(lim 00h x f x f h x x +=→→.证明: 设A x f x x =→)(lim 0,那么对任给正数ε,存在正数δ,当δ<-<00x x 时,有ε<-A x f )(.从而当δ<<h 0时,有δ<-+<00)(0x h x ,于是ε<-+A h x f )(0, 故A h x f h =+→)(lim 00.反之,设A h x f h =+→)(lim 00,那么对任给正数ε,存在正数δ,当δ<<h 0时,有ε<-+A h x f )(0.从而当δ<-<00x x 时,0x x h -=知足δ<<h 0, 从而=-A x f )(ε<-+A h x f )(0 故A x f x x =→)(lim 0.4、 证明A x f x x =→)(lim 0,那么A x f x x =→)(lim 0.但反之不真.证: 设A x f x x =→)(lim 0,那么对任给正数ε,存在正数δ,当δ<-<00x x 时,有ε<-A x f )(.因此当δ<-<00x x 时, 有ε<-≤-A x f A x f )()( 故A x f x x =→)(lim 0.但逆命题不真.如对⎪⎩⎪⎨⎧<=>-=0,10,00,1)(x x x x f ,有⎩⎨⎧=≠=0,00,1)(x x x f且1)(lim 0=→x f x x ,但)(lim 0x f x x →不存在.5、 证明定理定理 A x f x x =→)(lim 0的充分必要条件是)(lim )(lim 00x f x f x x x x -+→→=A =.证: 必要性 设A x f x x =→)(lim 0,那么对任给正数ε,存在正数δ,当δ<-<00x x 时,有ε<-A x f )(.因此,当δ<-<00x x 时,有ε<-A x f )(.故A x f x x =+→)(lim 0当δ<-<x x 00时,有ε<-A x f )(.故A x f x x =-→)(lim 0.充分性 设A x f x f x x x x ==-+→→)(lim )(lim 0,那么对任给正数ε,别离存在正数1δ和2δ,使适当δ<-<00x x 或δ<-<x x 00时,都有ε<-A x f )(. 现取},min{21δδδ=,当δ<-<00x x 时,有1000δδ≤<-≤-<x x x x ,或2000δδ≤<-≤-<x x x x因此由(1)知ε<-A x f )(故A x f x x =→)(lim 0.6.研究以下函数在0=x 处的左右极限或极限(1)x x x f =)(; (2)][)(x x f =; (3) ⎪⎩⎪⎨⎧<+=>=0,10,00,2)(2x x x x x f x解: (1)当0>x 时, 1)(==xx x f ,故1)(lim 0=+→x f x x .当0<x 时, 1)(-==xx x f ,故1)(lim 0-=-→x f x x ,因此)(lim 0x f x →不存在.(2) 当01>>x 时, ][)(x x f =0=,故0)(lim 0=+→x f x x .当01<<-x 时, ][)(x x f =1-=,故1)(lim 0-=-→x f x x .因此)(lim 0x f x →不存在.(3) 当0>x 时, x x f 2)(=,故12lim )(lim 0==++→→x x x x f . 当0<x 时, 21)(x x f +=,故1)1(lim )(lim 20=+=--→→x x f x x . 因此1)(lim 0=→x f x .7.证明: )1(lim )(lim 0xf x f x x +→∞→=. 证: 设A x f x =∞→)(lim ,B xf x =+→)1(lim 0,下证B A =. 对任给正数ε,存在0>M ,0>δ,使适当M x >时,有2)(ε<-A x f .当δ<<x 0时,有2)1(δ<-B xf .令}1,min{M δη=,那么当η<<x 0时,M x>1, 从而由(1)知2)1(ε<-A xf .于是当η<<x 0时,由(2)与(3)知ε<-+-≤-B xf x f A B A )1()1(. 可见ε≤-B A ,由于ε的任意性可得, B A =8.证明:对黎曼函数)(x R 有0)(lim 0=→x R x x ,]1,0[0∈x (当0=x 或1时,考虑单侧极限)证: [0,1]上的黎曼函数概念如下: ⎪⎩⎪⎨⎧===或无理数当时当1,0,0,1)(x q p x q x R仍取]1,0[0∈x ,对任意给定的正数ε,知足不等式ε1≤n 的自然数n 最多有有限个.于是在[0,1]中最多有有限个既约分数qp ,使得ε≥=q q p R 1)(.因此咱们可取0>δ,使得0x 的空心邻域),(00δx U 内不含如此的既约分数, 于是只要δ<-<00x x (对00=x ,只要δ<<x 0;对10=x ,只要δ<-<x 10). 不论x 是不是为有理数,有ε<)(x R 故0)(lim 0=→x R x x ,]1,0[0∈x .§2 函数极限的性质一、求以下极限:(1))cos (sin 2lim 22x x x x --→π; (2) 121lim 220---→x x x x ;(3) 121lim 221---→x x x x ; (4) 32302)31()1(lim x x x x x +-+-→; (5) 11lim 1--→m n x x x (n 、m 为自然数);(6) 2321lim4--+→x x x ; (7) xax a x -+→20lim ,(0>a );(8) xx x x cos lim-∞→; (9) 4sin lim 2-∞→x xx x ;(10) 902070)15()58()63(lim --+∞→x x x x 解:(1))cos (sin 2lim 22x x x x --→π)41(22π-=.(2) 121lim 220---→x x x x 110010=---=.(3) 121lim 221---→x x x x 32121lim 1=++=→x x x . (4) 32302)31()1(lim xx x x x +-+-→3123lim 0-=+-=→x x x . (5) 11lim 1--→mn x x x mnx x x x x x m m n n x =++++++++=----→11lim 21211 . (6) 2321lim4--+→x x x 34321)2(2lim4=+++=→x x x . (7) x ax a x -+→20lim a ax a x 211lim 20=++=→. (8) x x x x cos lim-∞→1cos 1lim =-=∞→xxx .(9) 4sin lim 2-∞→x x x x 0411sin lim 2=-⋅=-∞→xx x x . (10) 902070)15()58()63(lim --+∞→x x x x 902070902070583)15()58()63(lim ⋅=--+=∞→xx x x .2.利用迫敛性求极限:(1) xx x x cos lim --∞→; (2) 4sin lim 2-+∞→x xx x .解: (1)因为1cos 1≤≤-x ,因此xx x x x x x 1cos 1-≤-≤+ )0(<x 而1)11(lim 1lim=+=+-∞→-∞→x x x x x ,1)11(lim 1lim =-=--∞→-∞→xx x x x 因此1cos lim=--∞→xxx x (2) 因为1sin 1≤≤-x ,因此44sin 4222-≤-≤--x xx x x x x , (2>x )而00411lim 4lim 22=-=--=--+∞→+∞→x x x x x x ,0411lim 4lim 22=-=-+∞→+∞→xx x xx x 因此04sin lim 2=-+∞→x xx x3.证明定理定理 假设极限)(lim 0x f x x →与)(lim 0x g x x →都存在,那么g f ±,g f ⋅在0x x →时极限也存在,且(Ⅰ) =±→)]()([lim 0x g x f x x )(lim 0x f x x →)(lim 0x g x x →±;(Ⅱ) =⋅→)]()([lim 0x g x f x x )(lim 0x f x x →)(lim 0x g x x →⋅;(Ⅲ)假设0)(lim 0≠→x g x x ,那么g f 在0x x →时极限存在,且有)(lim )(lim )()(lim 00x g x f x g x f x x x x x x →→→=. 证:设A x f x x =→)(lim 0,B x g x x =→)(lim 0,那么对任给的正数ε,别离存在正数1δ和2δ,使当100δ<-<x x 时,有2)(ε<-A x f . (1)当200δ<-<x x 时,有2)(ε<-B x f . (2)(Ⅰ)取},min{21δδδ=,当δ<-<00x x 时,有(1)、(2)同时成立,于是有ε<-+-≤±-±B g A f B A g f )()(,故B A x g x f x x ±=±→)]()([lim 0.(Ⅱ)由B x g x x =→)(lim 0知, 存在正数3δ,使)(x g 在),(300δx U 上有界,即存在正数M ,对任给),(300δx U x ∈,有M x g ≤)(. (3)取},,min{321δδδδ=,当δ<-<00x x 时,有(1)、(2)、(3)同时成立, 因此AB x g x f -⋅)()())(())()((B x g A A x f x g -+-=B x g A A x f x g -⋅+-⋅≤)()()(ε2A M +<。
数学分析课本(华师大三版)-习题及答案01

数学分析课本(华师大三版)-习题及答案01第一章实数集与函数习题§1实数1、设a 为有理数,x 为无理数。
证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明|22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗7、设x>0,b>0,a ≠b 。
证明x b x a ++介于1与ba 之间。
8、设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|§2数集、确界原理1、用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6;(3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<=""></b(4)sinx ≥22。
2、设S 为非空数集。
试对下列概念给出定义:(1)S 无上界;(2)S 无界。
3、试证明由(3)式所确定的数集S 有上界而无下界。
4、求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n 21,n ∈+N }。
数学分析课后习题答案(华东师范大学版)

152P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(153⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x)9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222154⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ155⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1πππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dx C x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2156C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin (157(23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =158Ct t t t t t dt t t t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212159⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:160⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-161所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311162⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(163C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x)12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dx164C x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有165⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12166⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12167⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=168⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222169⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章函数的连续性第一节 连续性概念1.按定义证明下列函数在其定义域内连续:(1)x x f 1)(=; (2)x x f =)(。
证:(1)xx f 1)(=的定义域为 ),0()0,(+∞-∞=D ,当D x x ∈0,时,有0011x x x x x x -=- 由三角不等式可得:00x x x x --≥ , 故当00x x x <-时,有02011x x x x x x x x ---≤-对任意给的正数ε,取,01020>+=x x εεδ则0x <δ,当 D x ∈ 且δ<-0x x 时,有 ε<-=-0011)()(x x x f x f 可见)(x f 在0x 连续,由0x 的任意性知:)(x f 在其定义域内连续。
(2) x x f =)(的定义域为),,(+∞-∞对任何的),(0+∞-∞∈x ,由于 00x x x x -≤-,从而对任给正数ε,取εδ=,当δ<-0x x 时, 有 =-)()(0x f x f 00x x x x -≤-ε< 故)(x f 在0x 连续,由0x 的任意性知,)(x f 在),(+∞-∞连续。
2.指出函数的间断点及类型: (1)=)(x f xx 1+; (2)=)(x f x x sin ; (3)=)(x f ]cos [x ;(4)=)(x f x sgn ; (5)=)(x f )sgn(cos x ;(6)=)(x f ⎩⎨⎧-为无理数为有理数x x x x ,,;(7)=)(x f ⎪⎪⎩⎪⎪⎨⎧+∞<<--≤≤--<<∞-+x x x x x x x 1,11sin )1(17,7,71解: (1))(x f 在0=x 间断,由于)1(lim xx x +∞→不存在,故0=x 是)(x f 的第二类间断点。
(2))(x f 在0=x 间断,由于 1sin lim )(lim 0==++→→xxx f x x , 1sin lim )(lim 0-=-=--→→xxx f x x 故0=x 是)(x f 的跳跃间断点。
(3))(x f 在πn x =间断,),2,1,0( ±±=n 由于0]cos [lim )(lim ==++→→x x f n x n x ππ, 0]cos [lim )(lim ==--→→x x f n x n x ππ故 πn x = 是)(x f 的可去间断点),2,1,0( ±±=n 。
(4))(x f 在0=x 间断,由于 1sgn lim )(lim 0==++→→x x f x x ,1sgn lim )(lim 00==--→→x x f x x ,故0=x 是)(x f 的可去间断点。
(5))(x f 在22ππ±=k x ),2,1,0( ±±=k 间断,由于1)(lim 214-=++→x f k x π,1)(lim214=-+→x f k x π,1)(lim 214-=+-→x f k x π,1)(lim 214=+-→x f k x π故 22ππ±=k x ),2,1,0( ±±=k 是)(x f 的跳跃间断点。
(6))(x f 在0≠x 的点间断且若00≠x ,则)(lim 0x f x x → 不存在,故0≠x 是)(x f 的第二类间断点。
(7))(x f 在7-=x 及1=x 间断,且7)(lim 7-=+-→x f x ,)(lim 7x f x --→不存在,故7-=x 是)(x f 的第二类间断点。
又因 011sin)1(lim )(lim 11=--=++→→x x x f x x ,1)(lim 1=-→x f x ,故1=x 是)(x f 的跳跃间断点。
3.延拓下列函数,使在 ),(+∞-∞上连续:(1)=)(x f 283--x x ; (2)=)(x f 2cos 3x x-;(3)=)(x f xx 1cos 。
解:(1)当2-=x 时,)(x f 没有定义,而2lim →x 283--x x =2lim →x )42(2++x x =12于是函数 ⎪⎩⎪⎨⎧=≠--=2,122,28)(3x x x x x F 是)(x f 的延拓,且在 ),(+∞-∞上连续。
(2)当0=x 时,)(x f 没有定义,而0lim →x )(x f =0lim→x 21cos 12=-xx ,于是 函数 ⎪⎪⎩⎪⎪⎨⎧=≠-=0,210,cos 1)(2x x x xx F 是)(x f 的延拓,且在 ),(+∞-∞上连续。
(3)当0=x 时,)(x f 没有定义,而0lim →x )(x f =0lim →x 01cos=xx ,于是 函数 ⎪⎩⎪⎨⎧=≠=0,00,1cos )(x x xx x F 是)(x f 的延拓,且在 ),(+∞-∞上连续。
4.若f 在0x 点连续,则f ,2f 是否也在0x 连续?又若f 或2f 在I 上连续,那么f 在I 上是否连续?解:(1)若f 在0x 点连续,则f 与2f 在0x 连续。
(i )f 在0x 点连续。
事实上,由于f 在0x 点连续,从而对任给正数ε,存在正数δ,当δ<-0x x 时,有ε<-)()(0x f x f ,而 ≤-)()(0x f x f ε<-)()(0x f x f故当 δ<-0x x 时,有 ε<-)()(0x f x f ,因此f 在0x 点连续。
(ii )2f 在0x 点连续。
事实上,由于f 在0x 点连续,从而由局部有界性知:存在0>M 及01>δ使当10δ<-x x 时, 有 2)(Mx f <, (1) 有连续性定义知:对任给正数ε,存在正数2δ,当20δ<-x x 有 Mx f x f ε<-)()(0 (2)先取},m in{21δδδ= ,则当δ<-0x x ,上(1)与(2)式同时成立,因此=-)()(022x f x f )()(0x f x f -)()(0x f x f +⋅≤)()(0x f x f -))()((0x f x f +ε<故 2f 在0x 点连续。
(2)逆命题不成立。
例如设 ⎩⎨⎧-=为无理数为有理数x x x f ,1,1)( ,则f ,2f 均为常数,故是连续函数,但)(x f 在),(+∞-∞任一点都不连续。
5.设当0≠x 时,)()(x g x f ≡,而)0()0(g f ≠,试证f 与g 这两个函数中至多有一个在0=x 连续。
证明:(反证)假设)(x f 与)(x g 均在0=x 连续,则)0()(lim 0f x f x =→,)0()(lim 0g x g x =→,又因0≠x 时,)()(x g x f ≡,于是=→)(lim 0x f x )(lim 0x g x →,从而 )0()0(g f = 这与 )0()0(g f ≠相矛盾。
故f 与g 这两个函数中至多有一个在0=x 连续。
6.证明:设f 为区间I 上的单调函数,且I x ∈0为f 的间断点,则0x 必是f 的第一类间断点。
证: 不妨设f 为区间I 上的递增函数,于是当I x ∈,且0x x <时,)()(0x f x f <, 从而由函数极限的单调有界定理可知:)0(0-x f 存在 ,且)0(0-x f =)(lim 0x f x x -→)(0x f ≤同理可证 )0(0+x f 存在,且)0(0+x f =)(lim 0x f x x +→)(0x f ≥因此 , 0x 是f 的第一类间断点。
7.设函数f 只有可去间断点,定义)(lim )(y f x g xy →=,证明g 为连续函数。
证:设 f 的定义域为区间I ,则)(x g 在I 上处处有定义(因f 只有可去间断点,从而极限处处存在),任取I x ∈0,下证)(x g 在0x 连续。
由于)(lim )(00y f x g x y →=且)(lim )(y f x g xy →=(I x ∈),从而对任给正数ε,存在正数δ,当δ<-<00x y 时有2)()(2)(00εε+<<-x g y f x g ,任取),(00δx U x ∈,则必存在),(),(00δηx U x U ⊂。
于是当 ),(ηx U y ∈时,由不等式性质知 2)()(lim )(2)(00εε+≤=≤-→x g y f x g x g xy因此当 ),(00δx U x ∈时,有 ε<-)()(0x g x g ,故)(x g 在0x 处连续。
8.设f 为R 上的单调函数,定义)0()(+=x f x g ,证明函数g 在R 上每点都连续。
证:由于f 为),(+∞-∞上的单调函数,故f 只有第一类间断点,故右极限处处存在。
于是)(x g 处处有定义,任取0x ∈),(+∞-∞,下证g 在0x 右连续。
由于)0()(00+=x f x g =)(lim 0y f x y +→且)(x g =)(lim y f xy +→,(+∞<<∞-x )从而对任给正数ε,存在正数δ,当δ<-<00x y 时,有2)()(2)(00εε+<<-x g y f x g ,任取),(00δx U x +∈,则必存在),(),(00δηx U x U ++⊂。
于是当),(0ηx U y +∈时,上不等式成立。
由极限不等式性质知 2)()(lim )(2)(00εε+≤=≤-+→x g y f x g x g xy因此当),(00δx U x +∈时,有 ε<-)()(0x g x g ,故)(x g 在0x 处右连续。
9.举出定义在]1,0[上符合下列要求的函数:(1)在31,21和41三点连续的函数;(2)只在31,21和41三点连续的函数;(3)只在),2,1(1=n n上间断的函数;(4)仅在0=x 右连续,其它点均不连续的函数。
解:(1)141131121)(-+-+-=x x x x f ; (2)⎪⎩⎪⎨⎧---=是无理数。
是有理数;x x x x x x f ),41)(31)(21(,0)( (3)]1[)(xx f =;(4)⎩⎨⎧-=中的有理数。
是中的无理数;是]1,0[,]1,0[,)(x x x x x f。