18.1勾股定理(3)

合集下载

沪科版数学八年级下册 18

沪科版数学八年级下册 18

能是 ( D )
A. 9 cm B. 12 cm C. 15 cm
D. 18 cm
3. 已知点 (2,5),(-4,-3),则这两点的距离为_1_0__.
4. 如图,有两棵树,一棵高 8 米,另一棵高 2 米, 两棵树相距 8 米. 一只鸟从一棵树的树梢飞到另一棵 的树梢,问小鸟至少飞行多少米?
B
y
解:如图,过点 A 作 x 轴的垂线,
过点 B 作 x,y 轴的垂线,相交于A
5 4
点 C,连接 AB.
3
则 AC = 5 - 2 = 3,BC = 3 + 1 = 4. C
2B
在 Rt△ABC 中,由勾股定理得
1
AB AC2 BC2 5.
-3 -2 -1-1 O 1 2 3 x
∴ A,B 两点间的距离为 5.
例3 在一次台风的袭击中,小明家房前的一棵大树在 离地面 6 米处折断,树的顶部落在离树根底部 8 米处. 你能告诉小明这棵树折断之前有多高吗?
6 米
8米
A
6 米
C
8米
解:根据题意可以构建一个 直角三角形模型,如图. 在 Rt△ABC 中, AC = 6 米,BC = 8 米, 由勾股定理得
AB AC 2 BC 2 62 82
12
侧面展开图 12
A解:在 Rt△ABA′ 中,由勾股A 定理得
AB AA′2 BA′2 122 3 32 15(cm).
归纳 立体图形中求表面上两点间的最短距离,一般把 立体图形展开成平面图形,根据“两点之间线段最短” 确定最短路线,再根据勾股定理求最短路程.
例5 有一个圆柱形油罐,要以 A 点环绕油罐建梯子, 正好建在 A 点的正上方点 B 处,问梯子最短需多少米 (已知油罐的底面半径是 2 m,高 AB 是 5 m,π 取 3)?

《勾股定理》同步作业及答案

《勾股定理》同步作业及答案

《勾股定理》同步作业及参考答案§18.1 勾股定理(一)1.在Rt △ABC ,∠C=90°:⑴已知a=b=5,求c ; ⑵已知a=1,c=2, 求b ;⑶已知c=17,b=8, 求a ; ⑷已知a :b=1:2,c=5, 求a ; ⑸已知b=15,∠A=30°,求a ,c .2. 已知:如图,等边△ABC 的边长是6cm :⑴求等边△ABC 的高;⑵求S △ABC .3.填空题:⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= ; ⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= ;⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= ; ⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 ; ⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 ; 4.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长.5.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.中考链接1.(2005 扬州)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.2.(2006,娄底)如图,滑杆在机械槽内运动,ACB ∠为直角,已知滑杆AB 长2.5米,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米时,求滑杆顶端A 下滑多少米? DBAAEC§18.1 勾股定理(二)1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米.A2.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长. ArrayB3.(2009年,北京市)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、n ,且n为BC边的中点,则A′N= ; 若M、N分别是AD、BC边的上距DC最近的n等分点(2整数),则A′N=(用含有n的式子表示).4.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是多少?5.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为.BC6.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米.Q7.有一个边长为1米的正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米. 8.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是米,水平距离是米.中考链接棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.()A.一定不会B.可能会C.一定会D.以上答案都不对§18.1 勾股定理(三)1. 已知:在Rt △ABC 中,∠ACB=90°,CD ⊥BC 于D ,∠A=60°,CD=3,求线段AB 的长.2. 已知:如图,△ABC 中,AC=4,∠A =45°,∠B =60°,根据题设可知什么?3. 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD 的面积.4.(2010年,北京市燕山)已知等边△ABC 的边长为a ,则它的面积是( ).A .21a 2 B .23a 2 C .42a 2 D .43a 25.如图,将长方形ABCD 沿直线AE 折叠,点D 落在BC 边上的点D ′.若AB=8,AD=10,求CE 的长.6.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22, 求(1)AB 的长;(2)S △ABC .C中考链接1.(2006,河北课改)如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从→→所走的路程为m.(结果保留根号)A B C2.(2010年,北京市门头沟区)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________(n为正整数).§18.1 勾股定理(四)1. △ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = .2.已知:如图,△ABC 中,AB=26,BC=25,AC=17,求S △ABC .3.如图所示在平面直角坐标系中,第一象限的角平分线OM 与反比例函数的图象相交于点M ,已知OM①求点M 的坐标;②求此反比例函数的解析式.4.如图,甲、乙两船从港口A 同时出发,甲船以16海里/时速度向南偏东50°航行,乙船向北偏东40°航行,3小时后,甲船到达B 岛,乙船到达C 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?5.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域. (1)A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?C中考链接(2010年,北京市大兴区)如图,ABC 的三个顶点A 、B 、C 的坐标分别为(33),、(64)46,、(,),则B C 边上的高为 .1.在Rt △ABC 中,若AC BC AB =4,则下列结论中正确的是( ).A .∠C =90°B .∠B =90°C .△ABC 是锐角三角形D .△ABC 是钝角三角形2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ). A. 仍是直角三角形 B. 不可能是直角三角形 C. 是锐角三角形 D. 是钝角三角形3.下列四条线段不能组成直角三角形的是( )A .a=8,b=15,c=17B .a=9,b=12,c=15C .a=5,b=3,c=2D .a :b :c=2:3:44.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴ a=3,b=22,c=5; ⑵ a=5,b=7,c=9; ⑶ a=2,b=3,c=7; ⑷ a=5,b=62,c=1 .5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.6.如图所示,在△ABD 中,∠A 是直角,AB =3,AD =4,BC =12,DC =13,△DBC 是直角三角形吗?为什么?中考链接(2006,荆门大纲)园丁住宅小区有一块草坪如图所示,已知3AB =米,4BC =米,12CD =米,13DA =米,且AB BC ⊥,求这块草坪的面积.1.在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角; 2.△ABC 中∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( )A .如果∠C -∠B=∠A ,则△ABC 是直角三角形;B .如果c 2= b 2—a 2,则△ABC 是直角三角形,且∠C=90°; C .如果(c +a )(c -a )=b 2,则△ABC 是直角三角形;D .如果∠A :∠B :∠C=5:2:3,则△ABC 是直角三角形. 3. 根据三角形的三边a ,b ,c 的长,判断三角形是不是直角三角形: (1)a =11,b =60,c =61 (2)a =32,b =1,c =45 4.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A 、B 、C 三点能否构成直角三角形?为什么?CD5.如图,四边形ABCD 中,AD=4,CD=3,AB=13,BC=12, ∠ADC=90°,求四边形ABCD 的面积.6.在△ABC 中,AB=13,BC=10,BC 边上的中线AD=12,求AC 的长.C中考链接(2005年,呼和浩特课改)如图,在由单位正方形组成的网格图中标有AB CD EF GH ,,,四条线段,其中能构成一个直角三角形三边的线段是( ).A.CD EF GH ,, B.A BE F G H ,, C.AB CD GH ,, D.A BC D E F ,,1.若三角形的三边是 ⑴1、3、2; ⑵51,41,31; ⑶32,42,52 ⑷9,40,41;⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ).A .2个B .3个 C.4个 D.5个2.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;⑶a=2,b=32,c=4; ⑷a=5k ,b=12k ,c=13k (k >0). 3.已知△ABC 的三边为a 、b 、c ,且a+b=4,ab=1,c=14,试判定△ABC 的形状.4.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积.5.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?N中考链接某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?参考答案及解析§18.1 勾股定理(一)1.(1)25; (2)3; (3)15; (4)5; (5)a=53, c=103.2. (1)33; (2)S △ABC =93.3.⑴17; ⑵7; ⑶a=6,b=8; ⑷6,8,10; ⑸4或34.4.8.5.48.中考链接1. 4.2.由勾股定理求得AC =2米,DC =2米,CE=1.5米,所以滑杆顶端A 下滑的长AE=0.5米.§18.1 勾股定理(二)1.2502米.2. 334.3.2,n (2n ≥,且n 为整数).4.18米.5. 503米.6.20厘米.7.22米.8.23米,6米.中考链接A.§18.1 勾股定理(三)1. 4.2. 根据题设可求得BC=634,AB=63222+.提示:作CD ⊥AB 于D.3. 63.提示:延长AD 、BC 交于点E ,则S 四边形ABCD =S △ABE - S △CDE .4. D .5.3.6.(1)AB=4; (2)S △ABC =2+23.中考链接 1.52 .2. 22-n .§18.1 勾股定理(四)1.AC=2,CD=3,BD=3,AD=1,S △ABC =23.2. S △ABC =204.提示:作BD ⊥AC 于D.设AD=x ,由勾股定理得方程:2222)17(2526x x --=-,解得x =10. 3.①点M 的坐标为(2,2); ②反比例函数的解析式为xy 4=. 4.12海里/时.5.(1)A 城会受到这次台风的影响.作AM ⊥BF 于M ,则AM=160km<200km .(2)以A 为圆心、以200km 为半径画圆,分别交BF 于C 、D 两点,求得MC=MD=120km ,即CD=240 km , A 城遭受这次台风影响的时间为240÷40=6小时.中考链接S △ABC =5,BC=22,则B C 边上的高为225.§18.2 勾股定理的逆定理(一)1.A .2.A.3.D .4.⑴是直角三角形,∠B 是直角; ⑵不是直角三角形;⑶是直角三角形,∠C 是直角; ⑷是直角三角形,∠A 是直角.5.设短边长x 米,则另外两边分别长7+x 、8+x 米,x +7+x +8+x =30,x =5,三边长分别为5、12、13,这个三角形是直角三角形.6.在R t △ABD 中,由勾股定理得BD=5;在△CBD 中,由勾股定理的逆定理得∠CBD=90º,△DBC 是直角三角形吗.中考链接连结AC .在R t △ABC 中,由勾股定理得AC=5;在△ACD 中,由勾股定理的逆定理得∠ACD=90º,则S=6,S△ACD=30, S四边形ABCD=36米2.△ABC§18.2 勾股定理的逆定理(二)1.直角,∠B.2.B.3.(1)是,(2)不是.4.BC=25,AC=5,AB=5,由勾股定理的逆定理得∠ACB=90º,即A、B、C三点能构成直角三角形.5. 连结AC.在R t△ADC中,由勾股定理得AC=5;在△ACB中,由勾股定理的逆定理得∠ACB=90º,则S△ADC=6,S△ACB=30, S四边形ABCD=24米.6. AC=13.中考链接B.§18.2 勾股定理的逆定理(三)1.B.分别是⑴、⑷、⑸.2.⑴是直角三角形,∠B是直角;⑵不是直角三角形;⑶是直角三角形,∠C是直角;⑷是直角三角形,∠C是直角.3.由a+b=4,ab=1,得a2+b2=(a+b)2-2ab=14= c2,所以∠C=90º,即△ABC是直角三角形.4.由a2+b2+c2+50=6a+8b+10c,得(a-3)2+(b-4)2+( c-5)2=0,则a=3,b=4,c=5,由勾股定理的逆定理得∠ACB=90º,则S△ABC=6.5.AC=12, BC=5, AB=13,∠ACB=90º,又∠ABC=50º,则∠CAB=40º,甲巡逻艇的航向为北偏东50°.中考链接“海天”号沿西北(或北偏西45º)方向.。

沪科版八年级下册数学《18.1 勾股定理》

沪科版八年级下册数学《18.1 勾股定理》

1.在△ABC中,∠C=900.AB=c,BC=a,AC=b.
(1)a=5,b=12,求c; 13
A
(2)a=8,c=17,求b. 15
c b
B aC
ቤተ መጻሕፍቲ ባይዱ展新知
勾股定理 a2 +b2 =c2 有哪些的变形?
(1)a2 =c2 - b2 (2)b2 =c2 - a2
(3) c a2 b2 (4) a c2 b2
S3的面积怎么算呢? (图中每个小方格代表一个单位面积)
A
S3
S2
C
B
S1
(1)观察
S1 _9__个单位面积。 S2 _9__个单位面积。 S3 _1_8_个单位面积。
S3的面积怎么算呢?
(图中每个小方格代表一个单位面积)
三个正方形的面积有 什么关系?
S1+S2=S3
一般的直角三角形 三边为边作正方形 (2)观察
沪科版八年级下册
18.1勾股定理

发们映友 现,直家

什我角作相 么们三客传

? 也 角 , 25 来 形 发 00

观三现年 察边朋前

下的友, 面某家一

的种用次 图数砖毕
案量铺达
,关成哥 看系的拉 看,地斯
你同面去
能学反朋
A
S3
S2
C
B
S1
(1)观察
S1 _9__个单位面积。 S2 _9__个单位面积。 S3 _1_8_个单位面积。
S1 _9__个单位面积。 S2 _1_6_个单位面积。
S3 _2_5_个单位面积。
A
S3 S2
C
B
S1

18.1勾股定理【3】-定理应用

18.1勾股定理【3】-定理应用

2.5m长的梯子 斜靠在一竖直的墙AC 例3:一个2.5 长的梯子 斜靠在一竖直的墙 :一个2.5 长的梯子AB斜靠在一竖直的墙 这时AC的距离为 的距离为2.4m.(2)梯子顶端 沿墙下 梯子顶端A沿墙下 上,这时 的距离为 .(2)梯子顶端 滑多少米梯子底端B也外移相同距离? 也外移相同距离 滑多少米梯子底端 也外移相同距离?
2 2
B
2
a
2
c
b A
a = c −b
C
b = c −a
2
2
练习1.如图,受台风“麦莎”影响, 练习 .如图,受台风“麦莎”影响,一棵树在离地面 4米处断裂,树的顶部落在离树跟底部 米处,这棵树 米处断裂, 米处, 米处断裂 树的顶部落在离树跟底部3米处 折断前有多高? 折断前有多高?
A
4米 米
C
2 2
1.7米梯子底端 米梯子底端B 米梯子底端 2 外移距离和下滑距 离相等。 离相等。
2.5m长的梯子 斜靠在一竖直的墙AC 例3:一个2.5 长的梯子 斜靠在一竖直的墙 :一个2.5 长的梯子AB斜靠在一竖直的墙 这时AC的距离为 的距离为2.4m (3)梯子顶端 沿墙下滑 梯子顶端A沿墙下滑 上,这时 的距离为 梯子顶端 多少米梯子底端B外移距离是下滑距离的 外移距离是下滑距离的3倍 多少米梯子底端 外移距离是下滑距离的 倍? ° A 解:在Rt∆ABC中, ∠ACB = 90 Q
xm
5m
C 1mB
B′
练习3.在一棵树的 米高处有两只猴子 米高处有两只猴子, 练习 .在一棵树的10米高处有两只猴子,一只猴 子爬下树走到离树20米处的池塘的 米处的池塘的A处 子爬下树走到离树 米处的池塘的 处。另一只爬 到树顶D后直接跃到 后直接跃到A处 距离以直线计算, 到树顶 后直接跃到 处,距离以直线计算,如果 两只猴子所经过的距离相等,则这棵树高多少 多少米 两只猴子所经过的距离相等,则这棵树高多少米?

18.1 勾股定理(3)37

18.1 勾股定理(3)37

班级: 组别: 姓名: 钢屯中学八年级导学案(2011-2012学年度第二学期)学科:数学 编号: 37个性天地 课题 18.1 勾股定理(3) 课型 自学课 总课时 37 主创人 刘国利 教研组长签字 王廷臣领导签字个性天地学习目标:1.会用勾股定理解决较综合的问题。

2.利用勾股定理,能在数轴上找到表示无理数的点,象2,3, . 学习重点:勾股定理的综合应用。

学习难点:勾股定理的综合应用。

学法指导:1、学生独立阅读课本P 68—P 69,探究课本基础知识,提升自己的阅读理解能力。

2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。

3、教师巡视,及时指导、帮助学生解决疑难问题。

导学流程: 一、旧知回顾1.知识回顾:叙述勾股定理: .2我们知道数轴上的点有的表示有理数,有的表示无理数,你还能在数轴上画出表示π和2的点吗?二、基础知识探究1.自学阅读课本68-69页.结合表示的点的方法,简述在数轴上画出表示无理数的点的基本步骤: .2.变式训练:下图是由36个边长为1的小正方形拼成的,连接小正方形中的点A 、B 、C 、D 、E 、F 得线段AB 、BC 、CD 、DE 、EF 、FA ,请说出这些线段中长度是有理数的是哪些?长度是无理数的是哪些?3.如右上图,利用勾股定理,可以作出长为1、2、3、4、5…的线段,按照同样方法,可以在数轴上作出表示1、2、3、4、5的点.三、综合应用探究1.在数轴上画表示17的点.解: 2.已知:如图,等边△ABC 的边长是6cm 。

⑴求等边△ABC 的高CD 的长(结果保留小数点后3位)。

⑵求S △ABC (结果保留小数点后1位).四、达标反馈 1. 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( ) A. 0 B. 1 C. 2 D. 32. 如图所示,在△ABC 中,三边a ,b ,c 的大小关系是( )A.a <b <cB. c <a <bC. c <b <aD. b <a <c 3.等边△ABC 的高为3cm ,以AB 为边的正方形面积为 .4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5cm ,则正方形A ,B ,C ,D 的面积之和为_______cm 2.5.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC , AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长.反思与评价:_ D _ F_ A C_ B ED C B A 第1题图 第2题图 第4题图A BC D5cABCBCDA。

18.1勾股定理(3)

18.1勾股定理(3)

D
C
2m
A
B
1m 针对性练习: 1、有一个边长为 50dm 的正方形洞口,想用 一个圆盖去盖住这个洞口,圆的直径至少 多长?(结果保留整数)
2、一圆柱形饭盒,底面半径为 8 cm,高为 12 cm,若往里面放双筷子(粗细不计) ,那 么筷子最长不超过多少,可正好盖上盒盖?
A
B
D
C
如图, 例 2 如图,一个 3m 长的梯子 AB,斜靠在一竖直的墙面 AO 上,这时 AO 的距离为 , 2.5m ,如果梯子的顶端 A 沿墙下滑 0.5 m ,那么梯子底端 B 也外移 0.5 m 吗? 分析:BD 与哪几条已知线段有关系呢?BD=___________ A 求出这些已知线段,问题就解决了 C 解:
D B A Cຫໍສະໝຸດ 四 、课 堂 梳 理 小 结 作 业 说 明
小结具体内容 详细分层作业 布置要求说明 从实际问题中抽象出直角三角形问题,用勾股定理解题 必做:书 P70 5、P71 9、10 导航:基础练习 选做:P71 11、12 导航习题选做
初二学案记录 初二学案记录 学科
课题 18.1 勾股定理(3)
八下数学
课型
时间
新授

课时

1
一 、课 堂 导 入 知 识 点 衔 接
复习内容重点 具体衔接点 1、勾股定理内容 2、利用勾股定理的简单计算 1、数学与实际问题的联系
2、数形结合的思想方法
二 、本 课 知 识 点 强 调 说
本课重点难点 1、勾股定理的应用 2、实际问题向数学问题的转化。
O
B
D
针对性练习: 如图, 梯子 AB 靠在墙上, 梯子的底端 A 到墙根 O 的 距离为 2,米,梯子的顶端 B 到地面的距离为 7 米,现将梯 子的底端 A 向外移到 A′ ,使梯子的底端 A′ 到墙根 O 的距离 为 3 米,同时梯子的顶端 B 下降至 B ′ ,那么 BB ′ 长是多少?

初中数学《勾股定理-3》教学设计

初中数学《勾股定理-3》教学设计

“三部五环”教学模式设计《18.1.4勾股定理(4)》教学设计1、教材内容义务教育课程标准实验教科书(人教版)《数学》八年级下册第18章第一节勾股定理第4课时。

2.设计理念本设计以“活动----参与”教学法为主,辅之小组合作、交流讨论。

以问题为主线,练习为核心,活动为载体,从学生已有的生活经验和认知基础出发,引导其经历探索神奇的“勾股数”、“勾股树”、“数轴上的无理点”等问题的全过程,激发学生的学习热情,更好地理解勾股定理应用价值,逐步树立科学探索精神。

体现“人人学有价值数学、不同的人在数学中得到不同发展”的新课程理念。

整个数学设计流程突出以学定教,体现“设计问题化,过程活动化,活动练习化,练习要点化,要点目标化,目标课标化”的要求,充分利用现代信息技术的直观、动态功能,丰富教学可视性材料,增大课堂容量,优化教学结构,实现课堂教学效果最优化。

3.知识背景分析本章所研究的是勾股定理,勾股定理是数学中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,他可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大,它不仅在教学中,而且在其他自然科学中也被广泛的应用。

本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

由于勾股定理反映的是一个直角三角形三边之间的关系,它也是直角三角形的一条重要性质。

同时由勾股定理及其逆定理,能够把形的特征(三角形中有一个角是直角)转化成数量关系(三边之间满足a2 +b2=c2),它把形与数密切的联系起来,因此,它在理论上也有重要地位。

本节课是勾股定理的第4课时,要求学生能熟练地掌握勾股定理,并能灵活的运用勾股定理解决现实世界的实际问题。

能运用勾股定理在数轴上画出表示无理数的点,进一步的领会数形结合的思想。

4.学情背景分析教学对象是八年级学生,在学习本节前,学生已经初步掌握了勾股定理的知识,通过本节的学习使学生能熟练地掌握勾股定理,并能灵活的运用勾股定理解决现实世界的实际问题。

初中八年级数学课件 勾股定理 第3课时

初中八年级数学课件 勾股定理  第3课时
人教版初中数学八年级下册
第十八章 勾股定理 18.1 勾股定理 第3课时
情境引入
复习回顾:
1.已知直角三角形ABC的三边为a、b、c , ∠C= 90°,则 a、b、c 三
者之间的关系是

2.若一个直角三角形两条直角边长是3和2,那么第三条边长是

3.
叫做无理数.
情境引入
探究一:数轴上的点有的表示有理数,有的表示无理数,你能 在数轴上画出表示 13 的点吗?
尝试应用
4. 已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.
解:∵AB=AC=10,BC=16,AD⊥BC ∴BD=CD= 1 BC=8
2
∴AD= AB2 BD2 = 102 82 =6 ∴这个等腰三角形的面积为 1 ×16×6=48.
2
学习体会
1.本节课你又那些收获? 2.预习时的疑难问题解决了吗?你还有那些疑惑? 3.你认为本节还有哪些需要注意的地方?
分析引导:(1)你能画出长为 2 的线段吗?怎么画?说说你的画法.
(2)长是 13
的线段怎么画?是由直角边长为_____和______整数组成
的直角三角形的斜边?
(3)怎样在数轴上画出表示 13 的点?
①在数轴上找到点A,使OA=3, ②过A点作直线L垂直于OA,在L上截取AB=2, ③以O为圆心,以OB为半径画弧,交数轴于点C, 点C即为表示 13 的点.
当堂达标
1.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高


2 .长为
的线段是直角边长为正整数

角三角形的26斜边.
的直
3 .如图所示,在正方形网格中,每个小正方形的边长为1,则在网格上的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
5 5
(2,1) D
x
1
5
x
F (4, 0)
H ( 5, 0)
2 x C E 5 2 2 2 ( , 0) ( 5, 0) 1 (2 x ) x 4

x
1 4 4x x x
2
2
5 解得x 4
探究2:
荷花问题 平平湖水清可鉴, 面上半尺生红莲; 出泥不染亭亭立, 忽被强风吹一边; 渔人观看忙向前, 花离原位二尺远; 能算诸君请解题, 湖水如何知深浅.
x 2 ( x 0.5) 2 2 x 4 x x 0.25 x 4 0.25 x 3.75 (尺)
2 2 2
答:湖水深3.75尺. 0.5
2
可用勾股定理建立方程.
x
x+0.5
例题1:
P71#9 一个工件如图,计算 l 的长: 三线 合一 80 60D
解: 作AD⊥BC于点D ∵AB=AC, AD⊥BC ∴BD= CD= 30
A
80 l C
B 在Rt△ABD中,根据勾股定理
2 2
AD 80 30 5700 10 57
例题2: 有一圆形油罐底面圆的周长为8m,
高为2m,一只老鼠从A处爬行到对角B处吃食 物,它爬行的最短路线长为多少? B C 4 B
2
A
A 解:如平面展开图所示
2 2
A
在Rt△ABC中,根据勾股定理
3
13
0 1
2
2
A
3
13
C4
你能在数轴上画出表示
17 的点和 15 的点吗?
你能在数轴上表示出 2 的点吗? 2呢 ? 用相同的方法作 3, 4, 5, 6, 7,. . . . 呢?
探究1:
你能在数轴 上画出表示 13的点吗?
2 2 -1
0
1
1
1
2
2
3
5
3
4
6 7
13
? 12 2 3
AB 4 2 20 2 5
你能在数轴上画出表示
17 的点和 15 的点吗?
17
? 16 4
1√
l B
1?
B
17
4
A
15
4
1A
4
2 3C 4
0
1
17
2 3 4 C
0
1
15
练习 P69 #2 如图,等边三角形的边长是6:
(1)求高AD的长(保留根号); 解: ∵AB=AC, AD⊥BC 6 A
13
?
13
93
?
1
2√
3√
42
数学海螺图:
在数学中也有这样一幅 美丽的“海螺型”图案
由此可知,利用勾股定 理,可以作出长为
1
1 1
14
1
1
1
2, 3, 5, , n
的线段.
你能在数轴上表示出 2 的点吗?
13 12 11
1
10
1
1 1
15 16
17
9
1
1
1 2 1
3
4
8
7
1 1 1
18 19
5
6
n
1
1
第七届国际数学 教育大会的会徽
练习&1

1、如图为4×4的正方形网格,以格点与点A为 端点,你能画出几条边长为 10 的线段?
A
练习&1

2.如图,D(2,1),以OD为一边画等腰三角形,并且 使另一个顶点在x轴上,这样的等腰三角形能画多 少个?写出落在x轴上的顶点坐标. y
第十八章
18.1
勾股定理
勾股定理(三)
历史因你而改变
学习因你而精彩
探究1:
你能在数轴上画出表示 13 的点吗?
13
步骤: 1、在数轴上找到点A,使OA=3;
2
2、作直线l⊥OA,在l上取一点B,使AB=2; 3,以原点O为圆心,以OB为半径作弧,弧与 数轴交于C点,则点C即为表示 13的点。 l B ∴点C即为表示 13 的点
∴BD= CD= 3 在Rt△ABD中,根据勾股定理 B 3 D
Байду номын сангаас
C
AD 6 3 27 3 3
2 2
(2)求△ABC的面积(保留根号);
相关文档
最新文档