【配套K12】江苏省宿迁市泗洪县2018届中考数学专题复习 第二章 函数(第4课时)练习(无答案)
【精编】江苏省宿迁市2018年中考数学试题(含答案)

江苏省宿迁市2018年初中学业水平考试数学A. 2B.C.D. -2 2. 下列运算正确的是A. B. C. D.3. 如图,点D 在△ABC 的边AB 的延长线上,DE ∥BC ,若∠A =350,∠C =240,则∠D 的度数是A. 240B. 590C. 600D.6904. 函数中,自变量X 的取值范围是 A. x ≠0 B. x <1 C. x >1 D. x ≠15. 若a <b ,则下列结论不一定成立的是A. a-1<b-1B. 2a <2bC.D.6. 若实数m 、n 满足,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是A. 12B. 10C. 8D. 67. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点E 为边CD 的中点,若菱形ABCD 的周长为16,∠BAD =600,则△OCE 的面积是A. B. 2 C. D. 48. 在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是A. 5B. 4C. 3D. 2二、填空题(本大题共10小题,每小题3分,共30分。
不需写出解答过程,请把答案直接填写在答题卡...1212-236a a a =21a a a -=236()a a =842a a a ÷=11y x =-33ab 22a b 20m -=相应位置....上) 9. 一组数据:2,5,3,1,6,则这组数据的中位数是▲.10. 地球上海洋总面积约为360 000 000km 2,将360 000 000用科学计数法表示是▲.11. 分解因式:x 2y-y=▲.12. 一个多边形的内角和是其外角和的3倍,则这个多边形的边数是▲.13. 已知圆锥的底面圆半价为3cm ,高为4cm ,则圆锥的侧面积是▲cm 2.14. 在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是▲.15.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是▲.16. 小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。
江苏省宿迁市泗洪县2018届中考数学专题复习 第二章 函数(第1课时)练习(无答案)

函数一、选择题1.[2017·六盘]水使函数y=3-x有意义的自变量的取值范围是( )A.x≥3 B.x≥0 C.x≤3 D.x≤02.[2016·成都]平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( ) A.(-2,-3) B.(2,-3)C.(-3,-2) D.(3,-2)3.[2017·湖州]在平面直角坐标系中,点P(1,2)关于原点的对称点P′的坐标是( )A.(1,2) B.(-1,2)C.(1,-2) D.(-1,-2)4.[2017·西宁]在平面直角坐标系中,将点A(-1,-2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )A.(-3,-2) B.(2,2) C.(-2,2) D.(2,-2)5.[2016·白银]、张掖已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在( )A.第一象限 B.第二象限C.第三象限 D.第四象限图K9-16.如图K9-1,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A点 B.B点 C.C点 D.D点7.[2017·东营]小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校.小明从家到学校行驶路程s(m)与时间t(min)的大致图象是( )图K9-28.[2016·枣庄]已知点P(a +1,-a2+1)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )图K9-39.[2017·淄博]小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图K9-4所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位h 与注水时间t 之间的变化情况的是( )图K9-4图K9-5二、填空题10.如果点M(3,x -3)在第一象限,那么x 的取值范围是________. 11.点A(-1,2)关于y 轴的对称点坐标是________,关于x 轴的对称点坐标为________.12.[[2017·郴州]] 在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为________. 三、解答题13.已知点A(a ,-5),B(8,b),根据下列要求,确定a ,b 的值. (1)A ,B 两点关于y 轴对称; (2)A ,B 两点关于原点对称; (3)AB∥x 轴;(4)A ,B 两点在第一、三象限的角平分线上.14.[2016·临夏]州如图K9-6,在平面直角坐标系中,△ABC 的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.图K9-615.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图K9-7所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多长时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?图K9-716.如图K9-8,矩形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图K9-8。
2018年江苏省宿迁市中考数学试卷(含答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前江苏省宿迁市2018年初中学业水平考试数 学(满分:150分 考试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的) 1.2的倒数是( ) A .2B .12C .12- D .2- 2.下列运算正确的是( ) A .236a a a =⋅B .2a a a -=C .()326a a =D .842a a a ÷=3.如图,点D 在ABC △边AB 的延长线上,DE BC ,若35A ∠=︒,24C ∠=︒,则D ∠的度数是( ) A .24︒B .59︒C .60︒D .69︒(第3题)(第7题)4.函数1x 1y =-中,自变量x 的取值范围是( ) A .0x ≠B .1x <C .1x >D .1x ≠ 5.若a b <,则下列结论不一定...成立的是( ) A .11a b -<-B .22a b <C .33a b ->-D .22a b <6.若实数m 、n满足等式20||m﹣,且m ,n 恰好是等腰ABC △的两条边的边长,则ABC △的周长是( ) A .12B .10C .8D .67.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点E 为边CD 的中点,若菱形ABCD 的周长为16,60BAD ∠=︒,则OCE △的面积是( )AB .2 C. D .48.在平面直角坐标系中,过点()1,2作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是( ) A .5B .4C .3D .2二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程) 9.一组数据:2,5,3,1,6,则这组数据的中位数是 .10.地球上海洋总面积约为2360000000 km ,将360 000 000用科学记数法表示是 .11.分解因式:212x y y -= .12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是 .13.已知圆锥的底面圆半径为3 cm 、高为4 cm ,则圆锥的侧面积是 2cm . 14.在平面直角坐标系中,将点()3,2-先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是 .15.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)16.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是 .17.如图,在平面直角坐标系中,反比例函数(0)2xy x =>的图像与正比例函数y kx =、(11)y x k k=>的图像分别交于点A 、B .若45AOB ∠=︒,则AOB △的面积是 .(第17题) (第18题)18.如图,将含有30︒角的直角三角板ABC 放入平面直角坐标系,顶点A 、B 分别落在x 、y 轴的正半轴上,60OAB ∠=︒,点A 的坐标为()1,0,将三角板ABC 沿x 轴向右作无滑动的滚动(先绕点A 按顺时针方向旋转60°,再绕点C 按顺时针方向旋转90︒,…),当点B 第一次落在x 轴上时,则点B 运动的路径与两坐标轴围成的图形面积是 .三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤)19.(本题满分8分)解方程组:2034 6.x y x y +=+=⎧⎨⎩;20.(本题满分8分)计算:()(2222sin60||π---++︒.21.(本题满分8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m 分()60100m ≤≤,组委会从1 000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表征文比赛成绩分布直方图请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c 的值是 ; (2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.数学试卷 第5页(共28页) 数学试卷 第6页(共28页)22.(本题满分8分)如图,在ABCD 中,点E 、F 分别在边CB 、AD 的延长线上,且BE DF =,EF 分别与AB 、CD 交于点G 、H .求证:AG=CH .23.(本题满分10分)有2部不同的电影A 、B ,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).24.(本题满分10分)某种型号汽车油箱容量为40 L ,每行驶100 km 耗油10 L .设一辆加满油的该型号汽车行驶路程为() km x ,行驶过程中油箱内剩余油量为() L y . (1)求y 与x 之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的14,按此建议,求该辆汽车最多行驶的路程.25.(本小题满分10分)如图,为了测量山坡上一棵树PQ 的高度,小明在点A 处利用测角仪测得树顶P 的仰角为45︒,然后他沿着正对树PQ 的方向前进10 m 到达点B 处,此时测得树顶P 和树底Q 的仰角分别是60︒和30︒,设PQ 垂直于AB ,且垂足为C . (1)求BPQ ∠的度数;(2)求树PQ 的高度(结果精确到0.1 m1.73).26.(本小题满分10分)如图,AB 、AC 分别是O 的直径和弦,OD AC ⊥于点D .过点A 作O 的切线与OD 的延长线交于点P ,PC 、AB 的延长线交于点F .(1)求证:PC 是O 的切线;(2)若60ABC ∠=︒,10AB =,求线段CF 的长.27.(本小题满分12分)如图,在平面直角坐标系中,二次函数()()()303y x a x a =--<<的图像与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点D ,过其顶点C 作直线CP x ⊥轴,垂足为点P ,连接AD 、BC . (1)求点A 、B 、D 的坐标;(2)若AOD △与BPC △相似,求a 的值;(3)点D 、O 、C 、B 能否在同一个圆上?若能,求出a 的值;若不能,请说明理由.28.(本小题满分12分)如图,在边长为1的正方形ABCD 中,动点E 、F 分别在边AB 、CD 上,将正方形ABCD 沿直线EF 折叠,使点B 的对应点M 始终落在边AD 上(点M 不与点A 、D 重合),点C 落在点N 处,MN 与CD 交于点P ,设BE x =.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________(1)当13AM 时,求x的值;(2)随着点M在边AD上位置的变化,PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.数学试卷第7页(共28页)数学试卷第8页(共28页)第5页(共14页)江苏省宿迁市2018年初中学业水平考试数学答案解析一、选择题 1.【答案】B【解析】解:2的倒数是12, 故选:B . 【考点】倒数. 2.【答案】C【解析】解:235 a a a ⋅=, ∴选项A 不符合题意;2a a a -≠,∴选项B 不符合题意;()326a a =,∴选项C 符合题意;844a a a ÷=,∴选项D 不符合题意.故选:C .【考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法. 3.【答案】B【解析】解:35A ∠=︒,24C ∠=︒,59DBC A C ∴∠=∠+∠=︒,DE BC , 59D DBC ∴∠=∠=︒,故选:B .【考点】平行线的性质;三角形的外角性质. 4.【答案】D【解析】解:由题意,得:10x -≠, 解得1x ≠,故选:D .【考点】函数自变量的取值范围. 5.【答案】A 【解析】解:数学试卷 第11页(共28页)数学试卷 第12页(共28页)A.在不等式a b <的两边同时减去1,不等式仍成立,即11a b <﹣﹣,故本选项错误;B.在不等式a b <的两边同时乘以2,不等式仍成立,即22a b <,故本选项错误;C.在不等式a b <的两边同时乘以13-,不等号的方向改变,即b33a ->-,故本选项错误; D.当5a =-,1b =时,不等式22a b <不成立,故本选项正确; 故选:D . 6.【答案】B【解析】解:20m -+,20m ∴-=,40n -=,解得2m =,4n =,当2m =作腰时,三边为2,2,4,不符合三边关系定理;当4n =作腰时,三边为2,4,4,符合三边关系定理,周长为:24410++=. 故选:B .【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质. 7.【答案】A【解析】解:过点D 作DH AB ⊥于点H , 四边形ABCD 是菱形,AO CO =,AB BC CD AD ∴===,菱形ABCD 的周长为16,4AB AD ∴==,60BAD∠=︒,42DH ∴==,4ABCD S ∴=⨯菱形,12CDAS∴=⨯, 点E 为边CD 的中点,OE ∴为ADC 的中位线,OE AD ∴,CEO CDA ∴∽,OCE ∴的面积1144CDA S =⨯=⨯,故选:A .【考点】三角形中位线定理;菱形的性质;相似三角形的判定与性质. 8.【答案】C【解析】解:设过点()1,2的直线l 的函数解析式为y kx b =+,第7页(共14页)2k b =+,得2b k =-,2y kx k ∴=+-,当0x =时,2y k =-,当0y =时,2kk x -=, 令k 22k k42--⋅=,解得:12k =-,26k =-36k =+ 故满足条件的直线l 的条数是3条, 故选:C .【考点】一次函数图象上点的坐标特征. 二、填空题 9.【答案】3【解析】解:将数据重新排列为1、2、3、5、6, 所以这组数据的中位数为3, 故答案为:3. 【考点】中位数. 10.【答案】83.610⨯【解析】解:8360 000 000 3.610=⨯, 故答案为:83.610⨯.【考点】科学记数法—表示较大的数. 11.【答案】()()11y x x +- 【解析】解:2x y y -,21()y x =-,()(11)y x x =+-,故答案为:()()11y x x +-.【考点】提公因式法与公式法的综合运用. 12.【答案】8【解析】解:设多边形的边数为n ,根据题意,得21803 0( 6)3n -=⨯⋅,解得8n =.则这个多边形的边数是8. 【考点】多边形内角与外角. 13.【答案】15π数学试卷 第15页(共28页)数学试卷 第16页(共28页)【解析】解:圆锥的母线长5(cm)=, 所以圆锥的侧面积()212 3 515πcm 2π=⋅⋅⋅=. 故答案为15π. 【考点】圆锥的计算. 14.【答案】()5,1【解析】解:将点()32-,先向右平移2个单位长度, ∴得到()52-,, 再向上平移3个单位长度, ∴所得点的坐标是:()5,1.故答案为:()5,1.【考点】坐标与图形变化﹣平移. 15.【答案】120【解析】解:设原计划每天种树x 棵,由题意得:960960=42x x-,解得:120x =, 经检验:120x =是原分式方程的解, 故答案为:120棵. 【考点】分式方程的应用. 16.【答案】1【解析】解:若小明第一次取走1根,小丽也取走1根,小明第二次取2根,小丽不论取走1根还是两根,小明都将取走最后一根,若小明第一次取走1根,小丽取走2根,小明第二次取1根,小丽不论取走1根还是两根,小明都将取走最后一根,由小明先取,且小明获胜是必然事件, 故答案为:1. 【考点】随机事件. 17.【答案】2【解析】解:如图,过B 作BD x ⊥轴于点D ,过A 作AC y ⊥轴于点C第9页(共14页)设点A 横坐标为a ,则3A a a ⎛⎫⎪⎝⎭,A 在正比例函数y kx =图象上 2ka a ∴=,22k a∴= 同理,设点B 横坐标为b ,则2B b b ⎛⎫⎪⎝⎭,21b b k ∴= 22b k ∴=2222b a∴=2ab ∴=当点A 坐标为2a a ⎛⎫⎪⎝⎭,时,点B 坐标为2,a a ⎛⎫ ⎪⎝⎭OC OD ∴=,将AOC 绕点O 顺时针旋转90︒,得到ODA ' BD x ⊥轴;B ∴、D 、A '共线45AOB ∠=︒,90AOA ∠'=︒,45BOA ∴∠'=︒ OA OA =',OB OB = AOB AOB ∴'≌1212BODAOCSS==⨯=,2AOBS ∴=故答案为:2【考点】反比例函数与一次函数的交点问题. 18.17π12+【解析】解:由点A 的坐标为()1,0.得1OA =,又60OAB ∠=︒,2AB ∴=,30ABC ∠=︒,2AB =,1AC ∴=,BC =,在旋转过程中,三角板的长度和角度不变, ∴点B 运动的路径与两坐标轴围成的图形面积22160190171π21ππ2360236012⨯⨯+⨯+=⨯.17π12【考点】规律型:点的坐标;轨迹;坐标与图形变化﹣旋转. 三、解答题数学试卷 第19页(共28页)数学试卷 第20页(共28页)19.【答案】解:20346x y x y +=+=⎧⎨⎩①②,2⨯-①②得:6x -=-,解得:6x =,故620y +=, 解得:3y =-,故方程组的解为:63x y ==-,.【考点】解二元一次方程组63x y =⎧⎨=-⎩.20.【答案】解:原式4122=-+-+,412=-+-,5=.【考点】实数的运算;零指数幂;特殊角的三角函数值. 21.【答案】(1)解:10.380.320.10.2---=, 故答案为:0.2; (2)100.1100÷=,1000.3232⨯=,1000.220⨯=,(3)全市获得一等奖征文的篇数为:()10000.20.1300⨯+=(篇). 【考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图. 22.【答案】解:证明:四边形ABCD 是平行四边形,AD BC ∴=,A C ∠=∠,AD BC ,E F ∴∠=∠,BE DF =,AF EC ∴=,在AGF 和CHE 中A C AF EC F E ∠=∠=∠=∠⎧⎪⎨⎪⎩, ()AGF CHE ASA ∴≌,AG CH ∴=.【考点】全等三角形的判定与性质;平行四边形的性质.第11页(共14页)23.【答案】解(1)甲选择A 部电影的概率12=; (2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2, 所以甲、乙、丙3人选择同1部电影的概率2184==. 【考点】概率公式;列表法与树状图法.24.【答案】解:(1)由题意可知:4010100x y =-⨯,即0.140y x =-+ y ∴与x 之间的函数表达式:0.140y x =-+.(2)油箱内剩余油量不低于油箱容量的14, 140104y ∴≥⨯=,则0.14010x -+≥,300x ∴≤ 故,该辆汽车最多行驶的路程是300 km .【考点】一次函数的应用.25.【答案】解:延长PQ 交直线AB 于点C ,(1)906030BPQ ∠=︒-︒=︒;(2)设PC x =米.在直角APC 中,45PAC ∠=︒,则AC PC x ==米;60PBC ∠=︒,30BPC ∴∠=︒.在直角BPC中,BC x ==米, 10AB AC BC =-=,10x ∴=,解得:15x =+则)5(BC =米.数学试卷 第23页(共28页)数学试卷 第24页(共28页)在直角BCQ中,)()55333QC BC ===+米.(1551015.8PQ PC QC ∴=-=+-+=+≈(米). 答:树PQ 的高度约为15.8米.【考点】解直角三角形的应用﹣仰角俯角问题.26.【答案】(1)解:连接OC ,OD AC ⊥,OD 经过圆心O ,AD CD ∴=,PA PC ∴=,在OAP 和OCP 中,OA OC PA PC OP OP ⎧===⎪⎨⎪⎩,()OAP OCP SSS ∴≌,OCP OAP ∴∠=∠ PA 是半O 的切线,90OAP ∴∠=︒.90OCP ∴∠=︒,即OC PC ⊥PC ∴是O 的切线.(2)OB OC =,60OBC ∠=︒,OBC ∴是等边三角形,60COB ∴∠=︒,10AB =,5OC ∴=,由(1)知90OCF ∠=︒,tan CF OC COB ∴=∠=【考点】勾股定理;垂径定理;圆周角定理;切线的判定与性质.第13页(共14页)27.【答案】:(1)解()((33))0y x a x a =--<<, ),(0A a ∴,()3,0B .当0x =时,3y a =,()0,3D a ∴;(2)(),0A a ,()3,0B ,∴对称轴直线方程为:3a 2x =+. 当3a 2x =+时,22()3a y -=-, 33,22a a C ⎛⎫+-⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭ 332a PB +=-,2)2(3a PC -=, ①若AOD BPC ∽时,则AO BP DO CP =,即2a 33a 33()22a a =+--, 解得3a =±(舍去);②若AOD CPB ∽时,则AO B CP DO P =,即2a 33a 3a 322a =+-⎛⎫- ⎪⎝⎭, 解得3a =(舍去)或73a =.所以a 的值是73. (3)能.理由如下:联结BD ,取中点M D 、O 、B 在同一个圆上,且圆心M 为33,22a ⎛⎫ ⎪⎝⎭. 若点C 也在圆上,则MC MB =. 即2222233302233332222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫+=-+- +-⎛⎫-+ ⎪⎝⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭⎝⎭⎭⎭, 整理,得4214450a a +=-,所以22()59(0)a a -=-,解得1a =2a =,33a =(舍),43a =-(舍),a ∴【考点】二次函数综合题.。
江苏省宿迁市2018年中考数学试题(含答案)(精品推荐)

江苏省宿迁市2018年初中学业水平考试数学符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 2的倒数是A. 2B.C.D. -2 2. 下列运算正确的是A. B. C. D.3. 如图,点D 在△ABC 的边AB 的延长线上,DE ∥BC ,若∠A =350,∠C =240,则∠D 的度数是A. 240B. 590C. 600D.6904. 函数中,自变量X 的取值范围是 A. x ≠0 B. x <1 C. x >1 D. x ≠15. 若a <b ,则下列结论不一定成立的是A. a-1<b-1B. 2a <2bC.D.6. 若实数m 、n 满足,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是A. 12B. 10C. 8D. 61212-236a a a =21a a a -=236()a a =842a a a ÷=11y x =-33ab 22a b 20m -+=7. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点E 为边CD 的中点,若菱形ABCD 的周长为16,∠BAD=600,则△OCE 的面积是B. 2C.D. 48. 在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是A. 5B. 4C. 3D. 2二、填空题(本大题共10小题,每小题3分,共30分。
不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 9. 一组数据:2,5,3,1,6,则这组数据的中位数是▲.10. 地球上海洋总面积约为360 000 000km 2,将360 000 000用科学计数法表示是▲.11. 分解因式:x 2y-y=▲.12. 一个多边形的内角和是其外角和的3倍,则这个多边形的边数是▲.13. 已知圆锥的底面圆半价为3cm ,高为4cm ,则圆锥的侧面积是▲cm 2.14. 在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是▲.15.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是▲.16. 小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。
江苏省宿迁市泗洪县2018届中考数学专题复习第二章函数(第2课时)练习(无答案)

函数一、选择题1.[2016·邵阳]一次函数y=-x+2的图象不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.直线y=2x-4与y轴的交点坐标是( )A.(4,0) B.(0,4)C.(-4,0) D.(0,-4)3.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是( )A.y=2x+4 B.y=3x-1 C.y=-3x+1 D.y=-2x+44.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为( )A.y=-3x+2 B.y=-3x-2 C.y=-3(x+2) D.y=-3(x-2)5.[2017·酒泉]在平面直角坐标系中,一次函数y=kx+b的图象如图K10-1所示,观察图象可得( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0图K10-16.一次函数y=kx+b(k≠0)的图象如图K10-2所示,当y>0时,x的取值范围是( )图K10-2A.x<0 B.x>0C.x>-2 D.x<-27.[2017·绥化]在同一平面直角坐标系中,直线y=4x+1与直线y=-x+b的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限图K10-38.如图K10-3,函数y 1=-2x 和y 2=ax +3的图象相交于点A(m ,2),则关于x 的不等式-2x >ax +3的解集是( )A .x >2B .x <2C .x >-1D .x <-19.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,则y 与x 之间的函数解析式和自变量取值范围分别是( )A .y =0.12x ,x >0B .y =60-0.12x ,x >0C .y =0.12x ,0≤x≤500D .y =60-0.12x ,0≤x≤50010.如图K10-4,过点A 的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的解析式为( )图K10-4A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +3二、填空题11.若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为________.12.[2016·无锡]一次函数y=2x-6的图象与x轴的交点坐标为________.13.[2016·永州]已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为________.14.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.15.[2017·株洲]如图K10-5,直线y=3x+3与x轴、y轴分别交于点A,B,当直线绕点A顺时针方向旋转到与x轴重合时,点B的运动路径长度是________.图K10-5三、解答题16.[2017·杭州]在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.17.[2017·连云]港如图K10-6,在平面直角坐标系xOy中,过点A(-2,0)的直线交y 轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.图K10-618.[2017·陕西]如图K10-7,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,若直线l2与x轴的交点为A(-2,0),则k的取值范围为( ) A.-2<k<2 B.-2<k<0C.0<k<4 D.0<k<2图K10-719.[2017·十堰]如图K10-8,直线y=kx和y=ax+4交于A(1,k),则不等式组kx-6<ax+4<kx的解集为________.图K10-820.[2017·咸宁]小慧根据学习函数的经验,对函数y=|x-1|的图象与性质进行了探究,下面是小慧的探究过程,请补充完成:(1)函数y=|x-1|的自变量x的取值范围是____________;(2)列表,找出y与x的几组对应值.其中,b=________;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:______________.图K10-9。
江苏省宿迁市泗洪县2018届中考数学专题复习 题型1 规律探究课件

们把点P′(-y+1,x+1)叫做点P的伴随点,已知点A1的伴
随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样
依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则
点A2017的坐标为( D )
A.(0,4)
B.(-3,1)
C.(0,-2) D.(3,1)
D ∵点A1的坐标为(3,1),∴A2(0,4),A3(-3,1), A4(0,-2),A5(3,1),….依此类推,每4个点为一个循 环组依次循环.∵2017÷4=504……1,∴点A2017的坐标 与点A1的坐标相同,为(3,1).
2.在平面直角坐标系中,正方形A1B1C1D1,D1E1E2B2, A2B2C2D2,D2E3E4B3,…按如图所示的方式放置,其中点 B1在y轴上,点C1,E1,E2,C2,E3,E4,C3…在x轴上, 已知正方形A1B1C1D1的边长为1,∠B1C1O=60°, B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长 是( C)
题型1 规律探究
专题类型突破 类型1 点的坐标变化规律
【例1】 [2017·温州中考]我们把1,1,2,3,5,8,13,
21,…这组数称为斐波那契数列,为了进一步研究,依次以这
列数为半径作90°圆弧
…得到斐波那契螺旋线,然
后顺次连接P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点 P1(0,1),P2(-1,0),P3(0,-1),则该折线上的点P9的坐 标为( B )
3.如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0), 假设有甲、乙两个物体分别由点A同时出发,沿正方形ABCD的边 作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方 向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24 秒钟可环绕一周回到A点,则两个物体运动后的第2017次相遇地 点的坐标是( ) D
江苏省宿迁市泗洪县2018届中考数学专题复习第二章函数单元练习无答案20181029478

函数单元练习一、选择题1.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.将抛物线y =-2x 2+1先向右平移1个单位长度,再向上平移2个单位长度后所得到的抛物线的解析式为( )A .y =-2(x +1)2-1B .y =-2(x +1)2+3C .y =-2(x -1)2+1D .y =-2(x -1)2+33.若抛物线y =x 2-2x +c 与y 轴的交点坐标为(0,-3),则下列说法错误的是( ) A .抛物线的开口向上B .抛物线的对称轴是直线x =1C .当x =1时,y 的最大值为-4D .抛物线与x 轴的交点坐标为(-1,0),(3,0)4.如图D3-1,函数y =-x 的图象与函数y =-的图象相交于A ,B 两点,过A ,4x B 两点分别作y 轴的垂线,垂足分别为C ,D ,则四边形ACBD 的面积为( )图D3-1A .2B .4C .6D .85.甲、乙两辆摩托车同时分别从相距20 km 的A ,B 两地出发,相向而行.图D3-2中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s(km)与行驶时间t(h)之间的函数关系.则下列说法错误的是( )图D3-2A .乙摩托车的速度较快B .经过0.3 h 甲摩托车行驶到A ,B 两地的中点C .经过0.25 h 两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地km 5036.如图D3-3所示,抛物线y =ax 2+bx +c 的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b 2-4ac =0;②a+b +c>0;③2a-b =0;④c-a =3. 其中结论正确的个数是( )图D3-3A .1B .2C .3D .4 二、填空题7.将点A(1,-3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A′的坐标为________.8.如图D3-4,已知直线y =kx +b 过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x 的解集为________.图D3-49.如图D3-5,△ABC 为等边三角形,CA⊥x 轴,S △ABC =6,双曲线y =经过点A ,kx B ,则k 的值为________. 图D3-510.[[2017·孝感]] 如图D3-6,将直线y =-x 沿y 轴向下平移后的直线恰好经过点A ,且与y 轴交于点B ,在x 轴上存在一点P ,使得PA +PB 的值最小,则点P (2,-4)的坐标为________.图D3-6三、解答题11.如图D3-7,一次函数y =kx +b 与反比例函数y =的图象交于A(1,4),B(4,mx n)两点.(1)求反比例函数的解析式; (2)求一次函数的解析式;(3)P 是x 轴上的一动点,试确定点P 并求出它的坐标,使PA +PB 最小.图D3-712.在一空旷场地上设计一落地为矩形的小屋,AB +BC =10 m ,拴住小狗的10 m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m 2).(1)如图D3-8①,若BC =4 m ,则S =________m 2.(2)如图②,现考虑在(1)中的矩形ABCD 的小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 变化过程中,当S 取得最小值时,边BC 的长为多少米.图D3-813.如图D3-9,抛物线y =-x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,点B12坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标.图D3-9。
江苏省宿迁市泗洪县2018届中考数学专题复习 第二章 函数(第7课时)二次函数应用练习(无答案)

函数一、选择题1.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图K15-1所示的平面直角坐标系,其函数解析式为y=-125x2,当水面离桥拱顶的高度DO是4 m时,水面的宽度AB为( )图K15-1A.-20 m B.10 m C.20 m D.-10 m2.如图K15-2是拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=-1400(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面处,有A C⊥x轴,若OA=10米,则桥面离水面的高度AC为( )A.16940米 B.174米C.16740米 D.154米图K15-23.如图K15-3,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积是( )图K15-3A.60 m2 B.63 m2 C.64 m2 D.66 m24.[2017·临沂]足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20 m ;②足球飞行路线的对称轴是直线t =92;③足球被踢出9 s 时落地;④足球被踢出1.5 s 时,距离地面的高度是11 m .其中正确结论的个数是( )A .1B .2C .3D .4 二、填空题5.[2017·天门]飞机着落后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s =60t -32t 2,则飞机着落后滑行的最长时间为________秒.6.[2016·台州]竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t 秒时在空中与第2个小球的离地高度相同,则t =________.7.[2016·衢州]某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图K15-4),已知计划中的建筑材料可建墙的总长度为48 m ,则这三间长方形种牛饲养室的总占地面积的最大值为________m 2.图K15-48.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,当每件的定价为________元时,该服装店平均每天的销售利润最大.三、解答题9.[2017·十堰]某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?10.[2017·德州]随着新农村的建设和旧城的改造,我们的家园越来越美丽.小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度是多少?图K15-511.[2017·台州]交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征.其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q 与速度v 之间关系的部分数据如下表:(1)根据上表信息,下列三个函数关系式中,刻画q ,v 关系最准确的是________.(只需填上正确答案的序号)①q=90v +100;②q=32000v;③q=-2v 2+120v.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q,v,k满足q=vk.请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d 的值.12.[2017·绍兴]某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图K15-6①,问饲养室长x为多少时,占地面积y最大?(2)如图K15-6②,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.图K15-6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K12
校 班级 姓名___________________考号________________考试时间__________________ 装订线内不要答题 ◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆
函数
1.[2016·湘西]如图G3-1,已知反比例函数y =k
x 的图象与直线y =-x +b 都经过
点A(1,4),且该直线与x 轴的交点为B.
(1)求反比例函数和直线的解析式; (2)求△AOB 的面积.
图G3-1
2.[[2017·贵港]] 如图G3-2,一次函数y =2x -4的图象与反比例函数y =k
x 的图象交
于A ,B 两点,且点A 的横坐标为3.
(1)求反比例函数的解析式; (2)求点B 的坐标.
图G3-2
3.[2017·内江]如图G3-3,已知A(-4,2),B(n ,-4)是一次函数y =kx +b 和反比例函数y =m
x
的图象上的两个交点.
(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积;
(3)观察图象,直接写出不等式kx +b -m
x
>0的解集.
图G3-3
4.[2017·黄冈]已知:如图G3-4,一次函数y =-2x +1与反比例函数y =k
x 的图象有
两个交点A(-1,m)和B ,过点A 作AE⊥x 轴,垂足为点E ;过点B 作BD⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2),连接DE.
(1)求k 的值;
(2)求四边形AEDB 的面积.
图G3-4
5.[2017·广安]如图G3-5,一次函数y =kx +b 的图象与反比例函数y =m
x 的图象在第
一象限交于点A(4,2),与y 轴的负半轴交于点B ,且OB =6.
(1)求函数y =m
x
和y =kx +b 的解析式.
(2)已知直线AB 与x 轴相交于点C.在第一象限内,求反比例函数y =m
x 的图象上一点
P ,使得S △POC =9.
图G3-5
6.[2017·北京]如图G3-6,在平面直角坐标系xOy 中,函数y =k
x (x>0)的图象与直线y
=x -2交于点A(3,m).
(1)求k 、m 的值;
(2)已知点P(n ,n)(n >0),过点P 作平行于x 轴的直线,交直线y =x -2于点M ,过点P 作平行于y 轴的直线,交函数y =k
x
(x>0)的图象于点N.
①当n =1时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN≥PM,结合函数的图象,直接写出n 的取值范围.
图G3-6
7.[2016·连云]港环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0 mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图G3-7所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.
(1)求整改过程中硫化物的浓度y与时间x的函数表达式;
(2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0 mg/L?为什么?
图G3-7。