广西南宁市第三中学2018届高三数学第二次模拟考试试题文-含答案 师生通用

合集下载

广西南宁市第三中学2018届高三数学第二次模拟考试试题 文

广西南宁市第三中学2018届高三数学第二次模拟考试试题 文

南宁三中2018届高三第二次模拟考试数学试题(文科)全卷满分150分 考试用时120分钟一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合,,则( )A.B.C.D.2.已知复数512z i=+,则z =( )A. 1D. 53.甲、乙两人参加歌唱比赛,晋级概率分别为45和34,且两人是否晋级相互独立,则两人中恰有一人晋级的概率为( )A.1920B.35C. 25D.7204.设等差数列的前项和为,若,则( )A.21B. 22C. 23D. 245.下列命题中,正确的是( ) A. 若22a bc c<,则a b <B. 若ac bc >,则a b >C. 若a b >,c d >,则a c b d ->-D. 若a b >,c d >,则ac bd >6.如图所示的流程图,最后输出的n 的值为( )A. 3B. 4C. 5D. 67.若抛物线在处的切线的倾斜角为,则( )A.45B.12C.45-D.12-8.一个几何体的三视图如图所示,则该几何体外接球的体积为( )A.6π B.2D.9.若将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度,则平移后图象的对称轴为( ) A.()24k x k Z ππ=+∈B. ()212k x k Z ππ=+∈C.()4x k k Z ππ=+∈ D. ()12x k k Z ππ=+∈10.已知命题:p x R ∃∈,220x ax a ++≤,若命题p 是假命题,则实数a 的取值范围是( ) A. ()0,1B. (]0,1C. ()(),01,-∞⋃+∞D. ][(),01,-∞⋃+∞11.已知圆()22:200M x y ay a +-=>截直线0x y +=所得线段的长度是,则圆与圆()()22:111N x y -+-=的位置关系是( )A. 内切B. 相交C. 外切D. 相离12.已知当()1,x ∈+∞时,关于x 的方程()ln 21x x k xk+-=-有唯一实数解,则k 的取值范围是( )A. ()3,4B. ()4,5C. ()5,6D. ()6,7二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a 与b 的夹角为,且||1,|2|5a a b =-=,则||b _______. 14.若实数,满足约束条件,则的最小值为__________.15.设数列{}n a 的前项和为,且11a =,131n n a S +=+,则4S =__________.16.如图,在正三棱柱111ABC A B C -中,若1AB =,则1AB 与1C B 所成角的余弦值为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本题满分12分)在锐角中,角,,的对边分别为,,cos cos 2sin A B b C =(Ⅰ)求角的大小;(Ⅱ)已知sin 4,sin a CA=ABC ∆的面积为,求边长的值.18.(本题满分12分)如图,三棱锥中,平面,,,是的中点,是的中点,点在上,. (1)证明:平面;(2)若,求点到平面的距离.19.(本题满分12分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2018年1月1日到 2018年4月30日这120天对某居民区的PM2.5平均浓度的监测数据统计如下:(Ⅰ)在这120天中采用分层抽样的方法抽取30天的数据做进一步分析,每一组应抽取多少天? (Ⅱ)在(I )中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率.20.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,且过点T .(1)求椭圆的方程;(2)已知直线与椭圆交于,两点,求(为坐标原点)的面积取最大值时直线的方程.21.(本题满分12分)已知函数()cos f x x x ax a =-+,π[0,]2x ∈,(0)a ≠. (Ⅰ)当1=a 时,求)('x f 的最小值; (Ⅱ)求证:()f x 有且仅有一个零点.请考生在(22)、(23)两题中任选一题作答,如果多答,则按做的第一题记分. 22.(本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(为参数),以为极点,轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为()6R πθρ=∈.(1)求曲线的极坐标方程;(2)设直线与曲线相交于两点,求的值.23.(本题满分10分)选修4-5:不等式选讲已知函数()222f x x a x b =++-+(0,0)a b >>的最小值为3. (1)求a b +的值;(2)求证:3413log a b a b ⎛⎫+≥-+⎪⎝⎭.南宁三中2018届高三第二次模拟考试数学试题(文科)参考答案1.B 【解析】由题得=={x|0,1,2},所以A∩B={0,1,2}.故选B.2.C 【解析】512z i ====+故选C3.D 【解析】根据题意,恰有一人晋级就是甲晋级乙没有晋级或甲没有晋级乙晋级, 则所求概率是4334711544520-+-=()()故选D . 4.A 【解析】由题意=15,,∴. 故选A .5.A 【解析】对于A .∵22a b c c<即20a bc -<,∴a b <,正确;对于B .∵ac bc >即()0a b c ->,c 的正负不知道,则a ,b 大小也无法判断,错误;对于C .∵a b >,c d >,无法判断a c -与b d -的大小关系,错误;对于D .∵a b >,c d >,不知道a ,b ,c ,d 正负,无法判断ac 与bd 的大小关系,故选A .6.C 【解析】执行程序有:n=1,n=n+1=2,此时,2n=4,n 2=4,故有n=n+1=3, 此时2n=8,n 2=9,故有n=n+1=4, 此时2n=16,n 2=16,故有n=n+1=5,此时2n=32,n 2=25,即满足2n>n 2故输出n 的值5. 故选:C .7.A 【解析】因为,所以, 则该切线的斜率, 则 .故选A .8.B 【解析】根据几何体的三视图,可知该几何体是底面是正方形,一条侧棱垂直于底面的四棱锥,即这五个点都是棱长为的正方体的顶点,所以该几何体的外接球就是对应正方体的外接球,所以外接球的直径是正方体的对角线为,所以半径,从而求的球的体积为,故选B.9.B 【解析】平移后函数解析式为,令,则,.故选B . 10.A 【解析】P 为假,即“∀x ∈R ,x 2+2ax +a >0”为真,∴△=4a2−4a<0⇒0<a<1.本题选择A选项.11.B【解析】圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,2a∴===则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN=,R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B.12.B【解析】因为()ln21x x k xk+-=-,所以ln21x x xkx+=-,令()l n2,(1)1x x xf x xx+=>-,则()()2ln3(1)1x xf x xx--=>-',再令()()1g ln3(1)10x x x x g xx'=-->∴=->()()()000040,(5)0,4,5,0-ln30g g x g x x x<>∴∃∈=∴-=,因为关于x的方程()ln21x x k xk+-=-有唯一实数解,所以()()()()000000000000ln21ln24,5111x x x xx x xk f x xx x x+-+=====∈---,选B.13.1【解析】,向量与的夹角为,0,解得,故答案为.14.2【解析】作出可行域如图所示,设,则表示可行域内的点与原点的距离的平方.由图知,所以.故答案为:2.15.【解析】①,②,①②得:,又∴数列 首项为1,公比为的等比数列,∴. 故结果为85; 16.18【解析】取1BB 中点D ,11B C 中点E ,AB 中点F 则1//DE BC ,1//DF AB即EDF ∠为所求角,设1BB x =,12AB x =,得EF x =DE DF x ==2222714cos 28x x x EDF x +-∠== 17.【解析】(1)由已知得,由正弦定理得, ∴, 又在中,, ∴ 所以 ∴.(2)由已知及正弦定理 又 S ΔABC =,∴,得 由余弦定理 得.18.【解析】(Ⅰ)证明:如图,取AD 中点G ,连接GE ,GF ,则GE //AC ,GF //AB ,因为GE ∩GF =G ,AC ∩AB =A ,所以平面GEF //平面ABC , 所以EF //平面ABC . (Ⅱ)∵平面ABC ,∴. 又∴平面PAB . 又∴, ∴.记点P到平面BCD的距离为d,则∴,∴,所以,点P到平面BCD的距离为.19.【解答】(Ⅰ)这120天中抽取30天,采取分层抽样,抽样比k==,第一组抽取32×=8天;第二组抽取64×=16天;第三组抽取16×=4天;第四组抽取8×=2天(Ⅱ)设PM2.5的平均浓度在(75,115]内的4天记为A,B,C,D,PM2.5的平均浓度在115以上的两天记为1,2.所以6天任取2天的情况有:AB,AC,AD,A1,A2,BC,BD,B1,B2,CD,C1,C2,D1,D2,12,共15种记“恰好有一天平均浓度超过115(微克/立方米)”为事件A,其中符合条件的有:A1,A2,B1,B2,C1,C2,D1,D2,共8种所以,所求事件A的概率P(A)=20.【解析】(1)依题意得解得∴椭圆的方程为.(2)由消去整理得,其中设,则,,∴,又原点到直线的距离.∴,令,则,∴当时,取得最大值,且,此时,即. ∴直线的方程为∴的面积取最大值时直线的方程为.21.(Ⅰ)解:依题意()cos sin f x x x x a '=--.令()cos sin g x x x x a =--,π[0,]2x ∈,则()2sin cos 0g x x x x '=--≤.所以()g x 在区间π[0,]2上单调递减. 所以)('x f 的最小值为122sin22cos)2()(min --=--==πππππa g x g . (Ⅱ)证明:由(Ⅰ)知,()g x 在区间π[0,]2上单调递减,且(0)1g a =-,ππ()22g a =--. 当1a ≥时,()f x 在π[0,]2上单调递减. 因为(0)0f a =>,ππ()(1)022f a =-<,所以()f x 有且仅有一个零点. 当π02a --≥,即π2a ≤-时,()0g x ≥,即()0f x '≥,()f x 在π[0,]2上单调递增.因为(0)0f a =<,ππ()(1)022f a =->, 所以()f x 有且仅有一个零点.当π12a -<<时,(0)10g a =->,ππ()022g a =--<, 所以存在0π(0,)2x ∈,使得0()0g x =.x ,()f x ',()f x 的变化情况如下表:所以()f x 在0(0,)x 上单调递增,在0(,)2x 上单调递减.因为(0)f a =,ππ()(1)22f a =-,且0a ≠,所以2ππ(0)()(1)022f f a =-<,所以()f x 有且仅有一个零点. 综上所述,()f x 有且仅有一个零点.22.【解析】(1)将方程消去参数得,∴曲线的普通方程为, 将代入上式可得, ∴曲线的极坐标方程为:. (2)设两点的极坐标方程分别为, 由消去得,根据题意可得是方程的两根, ∴, ∴.23.【解析】(1)()222f x x a x b =++-+()()222x a x b ≥+--+2a b =++所以23a b ++=,即1a b += (2)由1a b +=,则原式等价为:341log 2a b ⎛⎫+≥⎪⎝⎭,即419a b +≥,而()41414559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当41b aa b a b ⎧=⎪⎨⎪+=⎩,即21,33a b ==时,“=”成立, 故原不等式成立。

广西南宁2018届普通高中毕业班第二次模拟考试数学(理)试题 含答案

广西南宁2018届普通高中毕业班第二次模拟考试数学(理)试题 含答案

2018届普通高中毕业生第二次适应性测试理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|310}A x x =+<,2{|610}B x x x =--≤,则A B = ( )A .11[,]32-B .φC .1(,)3-∞D .1{}3 2.复数1()1a R ai∈+在复平面内对应的点在第一象限,则a 的取值范围是( ) A .0a < B .01a << C .1a > D .1a <-3.若椭圆C :22221(0)x y a b a b+=>>的短轴长等于焦距,则椭圆的离心率为( )A .12 B .2 D .44.在ABC ∆中,3cos 5B =,5AC =,6AB =,则内角C 的正弦值为( ) A .2425 B .1625 C. 925 D .7255.如图是一个几何体的三视图,则该几何体的体积是( )A . 13B .23 C. 1 D .436.若向量(1,0)a = ,(1,2)b = ,向量c 在a 方向上的投影为2,若//c b ,则||c的大小为( )A . 2B .7.执行如图的程序框图,输出的S 的值是( )A .28B .36 C. 45 D .558.若以函数sin (0)y A x ωω=>的图象中相邻三个最值点为顶点的三角形是面积为1的直角三角形,则ω的值为( )A .1B .2 C. π D .2π9.已知底面是边长为2的正方体的四棱锥P ABCD -中,四棱锥的侧棱长都为4,E 是PB 的中点,则异面直线AD 与CE 所成角的余弦值为( )A C. 12 D .210.定义,min{,},a a b a b b a b≤⎧=⎨>⎩,设21()min{,}f x x x =,则由函数()f x 的图象与x 轴、直线2x =所围成的封闭图形的面积为( )A .712 B .512 C. 1ln 23+ D .1ln 26+ 11.函数11()33x f x -=-是( )A .奇函数B .偶函数C.既是奇函数也是偶函数 D .既不是奇函数也不是偶函数12.设实数,,,,a b c d e 满足关系:8a b c d e ++++=,2222216a b c d e ++++=,则实数e 的最大值为( ) A . 2 B .165 C. 3 D .25第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设变量,x y 满足约束条件22344x y x y x y -≤⎧⎪+≤⎨⎪-≥-⎩,则目标函数2z y x =-的最大值是 .14.若锐角,αβ满足4sin 5α=,2tan()3αβ-=,则tan β= . 15.过动点M 作圆:22(2)(2)1x y -+-=的切线MN ,其中N 为切点,若||||MN MO =(O 为坐标原点),则||MN 的最小值是 .16.定义在R 上的函数()f x ,如果存在函数()g x ax b =+(,a b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数,给出如下命题:①函数()2g x =-是函数ln ,0()1,0x x f x x >⎧=⎨≤⎩的一个承托函数;②函数()1g x x =-是函数()sin f x x x =+的一个承托函数;③若函数()g x ax =是函数()x f x e =的一个承托函数,则a 的取值范围是[0,]e ; ④值域是R 的函数()f x 不存在承托函数. 其中正确的命题的个数为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 的前n 项和n S 满足:22n S n n =+,*n N ∈. (1)求数列{}n a 的通项公式; (2)记数列11{}n n a a +的前n 项和为n T ,求证:16n T <.18. 某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量y(单位:千克)与该地当日最低气温x (单位:C)的数据,如下表:x 2 5 8 9 11 y1210887(1)求出y 与x 的回归方程^^^y b x a =+;(2)判断y 与x 之间是正相关还是负相关;若该地1月份某天的最低气温为6C,请用所求回归方程预测该店当日的销售量;(3)设该地1月份的日最低气温X ~2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s ,求(3.813.4)P X <<.附:①回归方程^^^y b x a =+中,^1221()ni ii nii x y nx yb xn x ==-=-∑∑,^^^a yb x =-.3.2≈1.8≈,若X ~2(,)N μσ,则()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=.19. 如图,已知侧棱垂直于底面的四棱柱1111ABCD A BC D -中,1AB AD ==,CB CD ==60BCD ∠=,1CC(1)若E 是线段1A A 上的点且满足13A E AE =,求证:平面EBD ⊥平面1C BD ; (2)求二面角1C C D B --的平面角的余弦值.20. 已知椭圆1C 和抛物线2C 有公共焦点(1,0)F ,1C 的中心和2C 的顶点都在坐标原点,过点(4,0)M 的直线l 与抛物线2C 分别相交于,A B 两点(其中点A 在第四象限内). (1)若||4||MB AM =,求直线l 的方程;(2)若坐标原点O 关于直线l 的对称点P 在抛物线2C 上,直线l 与椭圆1C 有公共点,求椭圆1C 的长轴长的最小值.21. 已知函数()ln f x x ax =-,1()g x a x=+. (1)讨论函数()()()F x f x g x =-的单调性;(2)若()()0f x g x ≤在定义域内恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知圆E 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,取相同单位长度(其中0ρ≥,[0,2]θπ∈),若倾斜角为34π且经过坐标原点的直线l 与圆E 相交于点A (A 点不是原点). (1)求点A 的极坐标;(2)设直线m 过线段OA 的中点M ,且直线m 交圆E 于,B C 两点,求||||||MB MC -的最大值.23.选修4-5:不等式选讲(1)解不等式|1||3|4x x +++<;(2)若,a b 满足(1)中不等式,求证:2|||22|a b ab a b -<++.试卷答案一、选择题1-5:BACAD 6-10: DCCAC 11、12:DB 二、填空题13. 14 14. 176 15. 827 16. 2 三、解答题17. 解:(1)第一类解法: 当1n =时,13a =. 当2n ≥时,1n n n a S S -=-222(1)2(1)n n n n =+----.21n =+.而13a =也满足21n a n =+.∴数列{}n a 的通项公式为21n a n =+. (2)∵12+=n a n ,∴111(21)(23)n n a a n n +=++. 111()22123n n =-++. 则1111111[()()()]235572123n T n n =-+-++-++ . 111()2323n =-+. 11646n =-+. 16< 18. 解:【提示:本题第(1)、(2)问与第(3)问没有太多关系,考生第(1)、(2)问做不对,第(3)问也可能做对,请老师们留意】(1) ∵令5n =,113575n i i x x n ====∑,114595n i i y y n ====∑,【说明:如果考生往下算不对结果,只要上面的两个平均数算对其中一个即可给1分】∴1()28757928ni ii x y nx y =-=-⨯⨯=-∑2221()2955750nii xn x =-=-⨯=∑∴^280.5650b -==- 【说明:2分至4分段,如果考生不是分步计算,而是整个公式一起代入计算,正确的直接 给完这部分的分;如果结果不对,只能给1分】 ∴^^^9(0.56)712.92a y b x =-=--⨯=(或者:32325) ∴所求的回归方程是^0.5612.92y x =-+ (2) 由^0.560b =-<知y 与x 之间是负相关, 【说明:此处只要考生能回答负相关即可给这1分】将6x =代入回归方程可预测该店当日的销售量^0.5612.929.56y x =-+=(千克) (或者:23925) 【说明:此处只要考生能算得正确的答案即可给这1分】 (3)由(1)知7x μ==,又由2222221[(27)(57)5sσ==-+-+-+得 3.2σ=【说明:此处要求考生算对方差才能给这1分】 从而(3.813.4)(2)P X P X μσμσ<<=-<<+ .()(2)P X P X μσμμμσ=-<<+<<+11()(22)22P X P X μσμσμσμσ=-<<++-<<+ 【说明:此处不管考生用什么方法进行变换,只要有变换过程都给这1分】 0.8185=【说明:此处是结论分1分,必须正确才给】19. 解:(1) 解法(一): 60BCD ∠=,1AB AD ==,CB CD =,∴90CDA ∠= ,2CA =(没有这一步扣一分)∴以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系.设M 是BD 的中点,连接1MC .1CC ⊥平面ABCD, CB CD =∴11C D C B =. M 是BD 的中点,∴ 1MC BD ⊥.4E,3(44M,1C ,∴13(4MC =-,DE = .131004MC DE ∙=-⨯= ,∴1MC DE ⊥ . (证得1MC ME ⊥ 或BE也行)DE与BD 相交于D , ∴1MC ⊥平面EBD . 1MC在平面BD C 1内, ∴平面EBD ⊥平面BD C 1(2) 解法一: (若第1问已经建系)(1,0,0)A ,DA ⊥平面1C DC ,∴(1,0,0)DA =是平面1C DC 的一个法向量.3(,22B,1C,3(22DB =,1DC = 设平面1C BD 的法向量是(,,)m x y z = ,则100m DB m DC ⎧∙=⎪⎨∙=⎪⎩,30220x y ⎧+=⎪=, 取1x =,得y z ==平面1C BD的法量(1,m =.cos ,||||DA m DA m DA m ∙<>==∙∴由图可知二面角1C C D B --20. 解:(1)解法一:由题意得抛物线方程为24y x =. 设直线l 的方程为4x my =+.令211(,)4y A y ,222(,)4y B y ,其中10y <. 由||4||MB AM =,得214y y =-.联立244y x x my ⎧=⎨=+⎩,可得24160y my --=,1221121644y y y y y y m =-⎧⎪=-⎨⎪+=⎩,解得12y =-,28y =,∴32m =. ∴直线l 的方程为2380x y --=.(2)设00(,)P x y ,直线:4l x my =+, 点P 在抛物线2C 上,∴直线l 的斜率存在, 0m ≠,O P 关于直线:4l x my =+对称,所以000042211x y m y m x ⎧=⨯+⎪⎪⎨⎪⨯=-⎪⎩.解得02028181x m m y m ⎧=⎪⎪+⎨-⎪=⎪+⎩. 故2288(,)11m P m m-++代入抛物线22:4C y x =,可得11m =,21m =- . 直线l 的方程为4x y =+或4x y =-+.设椭圆为221(1)1x λλλλ+=>-. 联立直线和椭圆,消去x 整理得 22(21)8(1)17160y y λλλλ-±--+-= 0∆≥∴2264(1)4(21)(1716)0λλλλ-+--+≥,解得172λ≥. 则2172a ≥,即a ≥∴椭圆1C21. 解:(1)1()()()ln (0)F x f x g x x ax a x x=-=---> '211()F x a x x=-+. ①若0a ≤时,0)(>'x F ,则()()()F x f x g x =-在(0,)+∞上是增函数.②若0a > 时,则()()()F x f x g x =-在1(0,2a上是增函数.()()()F x f x g x =-在)+∞上是减函数.(2)若()()0f x g x ≤在定义域内恒成立,考虑以下情形: ①当()0f x ≤,()0g x ≥同时恒成立时, 由()ln 0f x x ax =-≤,ln xa x≥恒成立. 得:1a e≥. ∵由()0g x ≥,10a x +≥恒成立得:0a ≥.∴1a e≥. ②当()0f x ≥,()0g x ≤同时恒成立时,a 不存在; ③当0a <时,∵()ln f x x ax =-为增函数,1()g x a x=+为减函数, 若它们有共同零点,则()()0f x g x ≤恒成立. 由()ln 0f x x ax =-=,1()0g x a x=+=,联立方程组解得:a e =-. 综上:1a e≥或a e =-. 22. 解: (1) 直线l 的倾斜角为34π,∴点A 的极角34πθ=.代入圆E 的极坐标方程得ρ=∴点A 的极坐标3)4π.(2)由(1)得线段OA 的中点M 的极坐标是3)4π, ∴M 的直角坐标为(1,1)-. 圆E 的极坐标方程为4sin ρθ=,∴圆E 的直角坐标方程为2240x y y +-=.设直线m 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(t 为参数).代入2240x y y +-=,得22(sin cos )20t t αα-+-=. 24(sin cos )80αα∆=++>设,B C 的参数依次为12,t t ,则122(sin cos )t t αα+=+.∴1212||||||||||||||MB MC t t t t -=-=+.2|sin cos |sin()|4πααα=+=+∴||||||MB MC -的最大值为此时直线m 的倾斜角为4π) 23. 解:(1)当3x <-时,|1||3|13244x x x x x +++=----=--<, 解得4x >-,所以43x -<<-.当31x -≤<-时,|1||3|1324x x x x +++=--++=<, 解得31x -≤<-当1x ≥-时,|1||3|13244x x x x x +++=+++=+< 解得0x <,所以10x -≤<(2)证明:224()(22)a b ab a b --++22224416a b a b ab ab =+++ (4)(4)0ab b a =++>∴224()(22)0a b ab a b --++> ∴2|||22|a b ab a b -<++2018年南宁市高中毕业班第二次适应性测试数学试卷(理科)评分标准一、选择题1.已知集合{}|310A x x =+<,{}2|610B x x x =--≤,则=B AA. 11[,]32-B. ΦC. 1(,)3-∞D.1{}3【答案】B 2.复数11ia +(R)a ∈在复平面内对应的点在第一象限,则a 的取值范围是A. 0<aB. 10<<aC. 1>aD. 1-<a 【答案】A3.若椭圆C :12222=+by a x (0)a b >>的短轴长等于焦距,则椭圆的离心率为A.21 B. 33 C. 22 D. 42【答案】C4.在ABC ∆中,53cos =B ,65==AB AC ,,则角C 的正弦值为 A.2524 B. 2516 C. 259 D. 257【答案】A5.如图是一个几何体的三视图,则该几何体的体积是A.31 B. 32C. 1D. 43【答案】D6.已知向量),(01=a ,),(21=b ,向量c 在a方向上的投影为2.若c //b,则c 的大小为A.. 2B. 5C. 4D. 52 【答案】D 7.执行如图的程序框图,输出的S 的值是A. 28B. 36C. 45D. 55 【答案】C 8.若以函数()0sin >=ωωx A y 的图像中相邻三个最值点为顶点的三角形是面积为1的直角三角形,则ω的值为A.1B. 2C. πD. π2 【答案】C第7题图9.已知底面是边长为2的正方形的四棱锥ABCD P -中,四棱锥的侧棱长都为4,E 是PB 的中点,则异面直线AD 与CE 所成角的余弦值为12D. 2【答案】A10.定义,,min{,},>,a ab a b b a b ≤⎧=⎨⎩设21()=min{,}f x x x ,则由函数()f x 的图像与x 轴、直线=2x 所围成的封闭图形的面积为A.712 B. 512 C. 1+ln 23 D. 1+ln 26【答案】C 11.函数11()33x f x -=-是A. 奇函数B. 偶函数C. 既是奇函数也是偶函数D. 既不是奇函数也不是偶函数 【答案】D 12.设实数e d c b a ,,,,同时满足关系:,8=++++e d c b a 1622222=++++e d c b a ,则实数e 的最大值为 A.2 B.516C. 3D. 25【答案】B解: 将题设条件变形为2222216,8e d c b a e d c b a -=+++-=+++, 代入由柯西不等式得如下不等式222222222(1111)(1111)()a b c d a b c d ⋅+⋅+⋅+⋅≤++++++有)16(4)8(22e e -≤-,解这个一元二次不等式,得.5160≤≤e 所以,当56====d c b a 时,实数e 取得最大值.516 二、填空题:本大题共4个小题,每小题5分,共20分. 把答案填答题卷相应题中横线上.13.设变量y x ,满足约束条件22344x y x y x y -≤⎧⎪+≤⎨⎪-≥-⎩,则目标函数2z y x =-的最大值是 【答案】1414若锐角βα,满足54sin =α,32)tan(=-βα,则=βtan ▲ .【答案】176 15. 过动点M 作圆:22221x y -+-=()()的切线MN ,其中N 为切点,若||||MO MN =(O 为坐标原点),则||MN 的最小值是 ▲ . 【答案】82716.定义在R 上的函数()f x ,如果存在函数()g x ax b =+,(,a b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数.给出如下命题:①函数()2g x =-是函数ln ,0,()1,0x x f x x >⎧=⎨≤⎩的一个承托函数;②函数()1g x x =-是函数()sin f x x x =+的一个承托函数;③若函数()g x ax =是函数()f x =e x 的一个承托函数,则a 的取值范围是[0,e]; ④值域是R 的函数()f x 不存在承托函数.其中正确的命题的个数为 ▲ . 【答案】2三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 的前n 项和n S 满足:*2,2N n n n S n ∈+=.(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16n T <.解:(1)第一类解法: 当n=1时,13a =....................................................................................................1分 当2n ≥时1--=n n n S S a .....................................................................................2分222(1)2(1)n n n n =+----................................................................................3分21n =+....................................................................................................................4分 而13a =也满足21n a n =+...................................................................................5分 ∴数列{}n a 的通项公式为12+=n a n .................................................................................6分 第二类解法:1--=n n n S S a ........................................................................................1分222(1)2(1)n n n n =+----.....................................................................2分21n =+......................................................................................................3分 ∴数列{}n a 的通项公式为12+=n a n .................................................................................4分 第三类解法:113a S ==..........1分; 221a S S =-.......1分;12+=n a n ...........1分,共3分第四类解法: 由S n22n n=+可知{}n a 等差数列.........................................................................2分 且13a =,212132d a a S S =-=--=...............................................................................4分∴数列{}n a 的通项公式为12+=n a n .................................................................................5分 (2)∵12+=n a n ,∴111(21)(23)n n a a n n +=++....................................................7分111()22123n n =-++..........................................................................8分 则1111111[()().......()]235572123n T n n =-+-++-++................................................9分111()2323n =-+.........................................................................10分11646n =-+...........................................................................11分1.6<...........................................................................................................................................12分 18. (本小题满分12分)(注意:在试题卷上作答无效.........) 某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量y (单位:千克)与该地当日最低气温x (单位:C)的数据,如下表:(1)求出y 与x 的回归方程y b x a ∧∧∧=+;(2)判断y 与x 之间是正相关还是负相关;若该地1月份某天的最低气温为6C,请用所求回归方程预测该店当日的销售量;(3)设该地1月份的日最低气温X ~2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s ,求(3.813.4)P X <<.附: ①回归方程y b x a ∧∧∧=+中, 1221()()ni ii nii x y nx yb xn x ∧==-=-∑∑,a y b x ∧∧=-.X ~2(,)N μσ,则()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=.解:【提示:本题第(1)、(2)问与第(3)问没有太多关系,考生第(1)、(2)问做不对,第(3)问也可能做对,请老师们留意】 (1)∵令5n =,11357,5n i i x x n ====∑114595n i i y y n ====∑,.........................................1分【说明:如果考生往下算不对结果,只要上面的两个平均数算对其中一个即可给1分】 ∴1()28757928.ni ii x y nx y =-=-⨯⨯=-∑ .......................................................................2分2221()2955750.nii xn x =-=-⨯=∑ ...............................................................................................3分 ∴280.5650b ∧-==- ....................................................................................................4分【说明:2分至4分段,如果考生不是分步计算,而是整个公式一起代入计算,正确的直接 给完这部分的分;如果结果不对,只能给1分】 ∴9(0.56)712.92.a yb x ∧∧=-=--⨯= (或者:32325) ...............................................5分∴所求的回归方程是0.5612.92y x ∧=-+ ....................................................................6分 (2)由0.560b ∧=-<知y 与x之间是负相关, ....................................................................7分 【说明:此处只要考生能回答负相关即可给这1分】将6x =代入回归方程可预测该店当日的销售量0.56612.929.56y ∧=-⨯+=(千克) (或者:23925) ....................................................................8分【说明:此处只要考生能算得正确的答案即可给这1分】 (3)由(1)知7x μ==,又由2221[(27)5sσ==-22(57)(87)+-+-+22(97)(117)]-+- 10,=得3.2σ= ......................................................................................................................9分 【说明:此处要求考生算对方差才能给这1分】 从而(P X <<=(P X μσμσ-<<+ ..........................................................10分()P X μσμ=-<<(2)P X μμσ+<<+1()2P X μσμσ=-<<+1(22)2P X μσμσ+-<<+ ...............................................11分【说明:此处不管考生用什么方法进行变换,只要有变换过程都给这1分】0.8185= ........................................................................12分【说明:此处是结论分1分,必须正确才给】19. (本小题满分12分)(注意:在试题卷上作答无效.........) 如图,已知侧棱垂直于底面的四棱柱1111-D C B A ABCD 中,==1A B A D ,,3==CD CB 60BCD ∠= ,31=CC .(1)若E 是线段A A 1上的点且满足AE E A 31=,求证: 平面EBD ⊥平面BD C 1;(2)求二面角1C C D B --的平面角的余弦值.解:(1) 解法(一): 60BCD ∠=,,3,1====CD CB AD AB∴90CDA ∠= ,2=C A .. ...............1分(没有这一步扣一分) ∴以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系. ...............2分 设M 是BD 的中点,连接1MC .........................................................................................................2分C C 1⊥平面ABCD , ,3==CD CB ∴11C D C B =.M 是BD 的中点,∴1MC ⊥BD ................................................................................................3分 ),(430,1E,3(,44M ,)33,0(1,C ,∴13(,44MC =-,(1,0,4DE =. ................................................ ..........4分13100444MC DE =-⨯+=,∴1MC ⊥DE ..............................................5分(证得1MC ⊥ME 或BE也行)DE与BD 相交于D, ∴1MC ⊥平面EBD .1MC 在平面BDC 1内, ∴平面EBD ⊥平面BD C 1..............................................................6分解法(二):设M 是BD 的中点,连接EM 和11,MC EC ..............................................................1分,,CD CB AD AB ==∴BD ⊥CA 且,,C A M 共线. ∴BD ⊥ME ,BD ⊥1MC .EA ⊥平面ABCD , C C 1⊥平面ABCD ,∴∠1EMC 是二面角1C BDE --的平面角...........................................................2分60BCD ∠= ,,3,1====CD CB AD AB∴90CDA ∠= ,13,22MA MC ==................................................3分(正确计算出才给这1分)AE E A 31=,31=CC ,∴142EM C M ==………………4分(至少算出一个)1C E =.............................................................................................5分∴22211C E C M EM =+,即1C E ⊥EM .∴二面角1C BD E --的平面角为直角. ∴平面EBD ⊥平面BD C 1......................................................................................................6分解法(三): 60BCD ∠= ,,3,1====CD CB AD AB ∴90CDA ∠= ,2=C A . 以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系. ...............1分设M 是BD 的中点,连接EM 和11,MC EC ..,,CD CB AD AB ==∴BD ⊥CA且,,C A M 共线. ........................................................2分EA ⊥平面ABCD , C C 1⊥平面ABCD ,∴BD ⊥ME ,BD ⊥1MC .∴∠1EMC 是二面角1C BDE --的平面角.............................................................................3分则),(430,1E ,)33,0(1,C,3(4M ......................4分(至少正确写出一个点的坐标)∴1(,4ME =,13(4MC =- .∴113()(044ME MC ∙=⨯-+= ................................5分∴ME ⊥1MC,∠190EMC = ,二面角1C BD E --的平面角为直角,平面EBD ⊥平面BD C 1................................................6分解法四: 连结AC ,11AC ,11B D ,交点为O 和N ,如图. 60BCD ∠= ,,3,1====CD CB AD AB∴90CDA ∠= ,2=C A .以O 为原点,OB 为x 轴,OC 为y 轴,ON 为z 轴,建立空间直角坐标系. ...............1分 则O 是BD 的中点.C C 1⊥平面ABCD , ,3==CD CB O 是BD 的中点,∴11C D C B =. O 是BD 的中点,∴1OC ⊥BD ............3分1,2E -(0,,0)B ,,13(0,2C∴13(0,2OC =,1(2BE =- .1310()02224OC BE =+⨯-= ,∴1OC ⊥BE .........................................5分BE与BD 相交于O , ∴1OC ⊥平面EBD .1OC 在平面BDC 1内, ∴平面EBD ⊥平面BD C 1..............................................................6分(2) 解法一: (若第1问已经建系)(1,0,0)A ,DA ⊥平面1C DC ,∴(1,0,0)DA =是平面1C DC 的一个法向量 (8)分32B(,1C ,3(2DB =,1DC = 设平面BD C 1的法向量是(,,)m x y z = ,则10,0m DB m DC ⎧=⎪⎨=⎪⎩,302x y ⎧+=⎪⎨=, 取1,x =得y z ==.平面BDC 1的法量(3,3)m =...................................10分 【另解:由(1)知当13A E AE =时,ME ⊥平面BD C 1,则平面BD C 1的法向量是ME=1(,)444-】cos ,||||DA mDA m DA m ∙<>=⨯.............................................................................................11分=∴由图可知二面角1C C D B --的平面角的余弦值为....................................12分 解法二: (第1问未建系)60BCD ∠= ,,3,1====CD CB AD AB ∴90CDA ∠= ,2=C A 以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系. ..................7分(1,0,0)A ,DA⊥平面1C DC ,∴(1,0,0)DA=是平面1C D C的法向量.....................................................................................8分32B(,1C ,3(2DB =,1DC = , 设平面BD C 1的法向量是(,,)m x y z = ,则10,0m DB m DC ⎧=⎪⎨=⎪⎩,3020x y ⎧+=⎪⎨=, 取1,x =得y z ==.平面BDC 1的法量(3,3)m =.......................................10分 cos ,||||DA mDA m DA m ∙<>=⨯.................................................................................................11分7=.∴由图可知二面角1C C D B --的平面角的余弦值为.......................................12分 解法三: (几何法) 设N 是CD 的中点,过N 作NF ⊥D C 1于F ,连接FB ,如图.......................................................7分60BCD ∠= ,,3==CD CB ∴ NB ⊥CD .侧面D C 1⊥底面ABCD , ∴ NB ⊥侧面D C 1..........8分 NF ⊥D C 1,∴BF ⊥D C 1∴∠BFN 是二面角1C C D B --的平面角 (9)分依题意可得NB =32, NF=,BF=4..................11分 ∴cos ∠BFN =NFBF=7∴二面角1C CD B --的平面角的余弦值为....................12分 20. (本小题满分12分)(注意:在试题卷上作答无效.........) 已知椭圆1C 和抛物线2C 有公共焦点(1,0)F ,1C 的中心和2C 的顶点都在坐标原点,过点(4,0)M 的直线l 与抛物线2C 分别相交于,A B 两点(其中点A 在第四象限内).(1)若||4||MB AM =,求直线l 的方程;(2)若坐标原点O 关于直线l 的对称点P 在抛物线2C 上,直线l 与椭圆1C 有公共点,求椭圆1C 的长轴长的最小值.解:(1)解法一:由题意得抛物线方程为24y x =.......................................................................1分 设直线l的方程为4x my =+........................................................................................................2分 令211(,),4y A y 222(,),4y B y 其中10y <.由||4||MB AM =,得214y y =-................................3分联立24,4,y x x my ⎧=⎨=+⎩可得24160y m y --=,12211216,4,4y y y y y y m=-⎧⎪=-⎨⎪+=⎩解得12y =-,28y =,..................4分∴32m =.........................................................................................................................................5分∴直线l的方程为2380x y --=................................................................................................6分 解法二:由题意得抛物线方程为24y x =.....................................................................................1分 设直线l的方程为(4)y k x =-...................................................................................................2分 令211(,),4y A y 222(,),4y B y 其中10y <.由||4||MB AM =,得214y y =-................................3分联立24,(4)y x y k x ⎧=⎨=-⎩可得24160ky y k--=,1221124,4,16y y k y y y y ⎧+=⎪⎪=-⎨⎪=-⎪⎩解得12y =-,28y =,................4分∴23k =.........................................................................................................................................5分∴直线l的方程为2380x y --=...............................................................................................6分 解法三:由题意得抛物线方程为24y x =.................................................................................1分 设直线l的方程为(4)y k x =-...................................................................................................2分令11(,),A x y 22(,),B x y 其中2140,x x >>>由||4||MB AM =, 得21204,0x x k =->..............3分联立24,(4)y x y k x ⎧=⎨=-⎩可得2222(84)160k x k x k -++=,2122211284,204,16k x x k x x x x ⎧++=⎪⎪⎪=-⎨⎪=⎪⎪⎩解得11x =,216x =,...............................................................................................................4分∴2.3k =..................................................................................................................................5分∴直线l的方程为2380x y --=.........................................................................................6分第一问得分点分析:(1)求出抛物线方程,得1分。

2018-2019年广西南宁市二模:南宁市2018届高三第二次模拟考试数学(文)试题-附答案精品

2018-2019年广西南宁市二模:南宁市2018届高三第二次模拟考试数学(文)试题-附答案精品

青霄有路终须到,金榜无名誓不还!
2018-2019年高考备考
广西南宁市2018届第二次模拟考试
文科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}|8U x x =≤,集合{}
2|80A x x x =-≤,则U C A =( ) A .(),8-∞ B .(],0-∞ C .(),0-∞ D .∅
2.下列命题正确的是( )
A .命题“若αβ=,则sin sin αβ=”的逆否命题为真命题
B .命题“若a b <,则22
ac bc ≤”的逆命题为真命题
C .命题“0,50x x ∀>>”的否定是“000,50x x ∃≤≤”
D .“1x <-”是“()ln 20x +<”的充分不必要条件 3.已知tan 3α=,则
sin 21cos 2αα
=+( ) A .-3 B .13- C .13 D .3 4.已知向量b 在向量a 方向上的投影为2,且1a =,则a b = ( )
A .-2
B .-1 C. 1 D .2
5.若点P 为圆22
1x y +=上的一个动点,点()()1,0,1,0A B -为两个定点,则PA PB +的最大值是 ( )
A .2
B .22 C. 4 D .42
6.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,。

2018年广西南宁市高考数学二模试卷(理科)(解析版)

2018年广西南宁市高考数学二模试卷(理科)(解析版)

2018年广西南宁市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|x>﹣1},B={x|x2≤4},则A∩B=()A.(﹣1,2]B.(﹣1,2)C.{0,1,2}D.{1,2}2.(5分)复数z在复平面内表示的点Z如图所示,则使得z2•z1是纯虚数的一个z1是()A.4+3i B.3+4i C.4﹣3i D.3﹣4i3.(5分)已知,则tan2α=()A.B.2C.D.4.(5分)如图为某市2017年3月21﹣27日空气质量指数(AQI)柱形图,已知空气质量指数为0﹣50空气质量属于优,51﹣100空气质量属于良好,大于100均属不同程度的污染.在这一周内,下列结论中正确的是()A.空气质量优良的概率为B.空气质量不是良好的天数为6C.这周的平均空气质量为良好D.前三天AQI的方差大于后四天AQI的方差5.(5分)设实数x,y满足不等式组,则z=x+2y的最小值为()A.4B.5C.6D.106.(5分)“a=0”是“(1+x+x2)(1+)4的常数项为1”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件7.(5分)执行如图所示的程序框图,则输出的n值为()A.2B.3C.4D.58.(5分)函数f(x)=sin(πx+φ)()的图象向左平移个单位后为偶函数,则f(x)的单调递增区间是()A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z9.(5分)函数y=ln|x|﹣x2的图象大致为()A.B.C.D.10.(5分)若l,m,n是不相同的空间直线,α,β是不重合的两个平面,则下列命题正确的是()A.l⊥α,m⊥β,l⊥m⇒α⊥βB.l∥m,m⊆α⇒l∥αC.l⊆α,m⊆α,l∥β,m∥β⇒α∥βD.l⊥n,m⊥n⇒l∥m11.(5分)已知抛物线W:y2=4x的焦点为F,点P是圆O:x2+y2=r2(r>0)与抛物线W的一个交点,点A(﹣1,0),则当最小时,圆心O到直线PF的距离是()A.B.1C.D.12.(5分)函数,若方程f(x)=k有三个不同的零点x1,x2,x3,则x1x2x3的取值范围是()A.B.[5,6)C.(5,6)D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量=(2,4),=(﹣1,m),且与﹣2平行,则m等于.14.(5分)△ABC中.角A,B,C的对边分别是a,b,c.若sin B=2sin C.且a=,A=,则c=.15.(5分)已知双曲线C:的左、右焦点分别是F1,F2,点P(5,1)满足|PF1|﹣|PF2|=6,则双曲线C的离心率是.16.(5分)某三棱锥的三视图如图所示,则该几何体的外接球的体积是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}的前n项和为S n,且满足a n+1=S n+n+1(n=1,2,3…),a1=1.(1)求证:{a n+1}为等比数列;(2)数列{a n}中是否存在不同的三项,适当排列顺序后构成一个等差数列?并说明理由.18.(12分)如图,四棱锥P﹣ABCD中,,AD=CD=2,P A=PC,,AB⊥AD,平面P AD⊥平面ABCD.(1)求证:PD⊥平面ABCD;(2)若PD=3,求直线CD与平面P AB所成角的正弦值.19.(12分)随着人们对交通安全的重视,安全驾驶已成为了社会广泛关注的问题.交通管理部门调取了大量数据,得到以下散点分布图其中y表示“反应距离”,指的是驾驶员从作出反应(刹车)到车辆停止滑行的距离(单位:米),x表示驾驶员作出反应的瞬间车辆速度的平方(单位:米2/秒2).其中,i=1,2,…,7,.(1)由散点图判断:y=ax+b和哪个更适合于模型?(直接写出判断即可,不必说明理由)(2)根据(1)的判断结果和表中的数据,建立y关于x的回归方程;(3)当驾驶者看到前方30米处出现行人并刹车,根据(2)中你得到的方程,请说明此时驾驶者的速度满足什么条件才能避免这次车祸?附:对于一组数据(x1,x1),(x2,x2),…,(x n,x n),其中回归方程y=α+βx的斜率和截距的最小二乘估计分别为:,.20.(12分)已知左焦点为F(﹣1,0)的椭圆C:(a>b>0)经过点A(2,0).(1)求椭圆C的方程;(2)已知直线l与椭圆C分别交于M、N(M、N在x轴异侧),M关于长轴对称的点为B (不与N重合),直线x=﹣4分别与x轴,AB,AN交于T、P、Q.若∠TQF=∠TFP,求证:直线l经过定点.21.(12分)已知函数.(1)若函数在处有最大值,求a的值;(2)当a≤e时,求函数f(x)的零点的个数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(12分)在极坐标系中设极点O到直线l的距离为2,由O点向直线l作垂线OA,垂足为A,射线OA的极坐标方程为(ρ≥0).(1)求直线l的极坐标方程;(2)以极点O为平面直角坐标系的原点,极轴为x轴的正半轴,建立直角坐标系.若点P 在直线l上,将向量按逆时针旋转,再伸缩为原来的λ(λ>0)倍得到向量,使得.求动点M的轨迹C的直角坐标方程.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|﹣|x﹣2|﹣1,不等式f(x)≤k的解集为[﹣5,1].(1)求实数k的值;(2)若正数a,b满足,求2a+4b的最小值.2018年广西南宁市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|x>﹣1},B={x|x2≤4},则A∩B=()A.(﹣1,2]B.(﹣1,2)C.{0,1,2}D.{1,2}【解答】解:B={x|﹣2≤x≤2},且A={x∈Z|x>﹣1};∴A∩B={0,1,2}.故选:C.2.(5分)复数z在复平面内表示的点Z如图所示,则使得z2•z1是纯虚数的一个z1是()A.4+3i B.3+4i C.4﹣3i D.3﹣4i【解答】解:由图可得:z=﹣2+i,设z1=a+bi(a,b∈R).z2•z1=(﹣2+i)2(a+bi)=(3﹣4i)(a+bi)=3a+4b+(3b﹣4a)i为纯虚数,则3a+4b=0,3b﹣4a≠0.则z1=4﹣3i.故选:C.3.(5分)已知,则tan2α=()A.B.2C.D.【解答】解:∵,可得:cos2α﹣sin2α=,又∵cos2α+sin2α=1,∴可得cos2α=,sin2α=,∴tan2α==.故选:D.4.(5分)如图为某市2017年3月21﹣27日空气质量指数(AQI)柱形图,已知空气质量指数为0﹣50空气质量属于优,51﹣100空气质量属于良好,大于100均属不同程度的污染.在这一周内,下列结论中正确的是()A.空气质量优良的概率为B.空气质量不是良好的天数为6C.这周的平均空气质量为良好D.前三天AQI的方差大于后四天AQI的方差【解答】解:由空气质量指数(AQI)柱形图得:在A中,空气质量优良的概率为p=,故A错误;在B中,空气质量不是良好的天数为6天,故B正确;在C中,这周的平均空气质量指数大于100,属不同程度的污染,故C错误;在D中,前三天AQI的方差小于后四天AQI的方差,故D错误.故选:B.5.(5分)设实数x,y满足不等式组,则z=x+2y的最小值为()A.4B.5C.6D.10【解答】解:画出不等式组表示的平面区域,如图所示;由图形知,当目标函数z=x+2y过点A时,z取得最小值;由,求得A(2,1),∴z的最小值为2+2×1=4.故选:A.6.(5分)“a=0”是“(1+x+x2)(1+)4的常数项为1”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件【解答】解:由题意的常数项是1+4a+6a2=1,解得:a=0或a=﹣,故a=0是a=0或a=﹣的充分不必要条件,故选:B.7.(5分)执行如图所示的程序框图,则输出的n值为()A.2B.3C.4D.5【解答】解:当m=16时,不满足cos m>0,执行循环体后,m=8,n=2;当m=8时,不满足cos m>0,执行循环体后,m=4,n=3;当m=4时,不满足cos m>0,执行循环体后,m=2,n=4;当m=2时,不满足cos m>0,执行循环体后,m=1,n=5;当m=1时,满足cos m>0,故输出的n=5,故选:D.8.(5分)函数f(x)=sin(πx+φ)()的图象向左平移个单位后为偶函数,则f(x)的单调递增区间是()A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z【解答】解:函数f(x)=sin(πx+φ)的图象向左平移个单位,得y=f(x+)=sin[π(x+)+φ]=sin(πx+φ+)的图象;又y为偶函数,∴φ+=+kπ,k∈Z;∴φ=+kπ,k∈Z;|φ|<,∴φ=;∴f(x)=sin(πx+),﹣+2kπ≤πx+≤+2kπ,k∈Z;解得﹣+2k≤x≤+2k,k∈Z;∴f(x)的单调递增区间是[﹣+2k,+2k],k∈Z.故选:B.9.(5分)函数y=ln|x|﹣x2的图象大致为()A.B.C.D.【解答】解:令y=f(x)=ln|x|﹣x2,其定义域为(﹣∞,0)∪(0,+∞),因为f(﹣x)=ln|x|﹣x2=f(x),所以函数y=ln|x|﹣x2为偶函数,其图象关于y轴对称,故排除B,D,当x>0时,f(x)=lnx﹣x2,所以f′(x)=﹣2x=,当x∈(0,)时,f′(x)>0,函数f(x)递增,当x∈(,+∞)时,f′(x)<0,函数f(x)递减,故排除C,方法二:当x→+∞时,函数y<0,故排除C,故选:A.10.(5分)若l,m,n是不相同的空间直线,α,β是不重合的两个平面,则下列命题正确的是()A.l⊥α,m⊥β,l⊥m⇒α⊥βB.l∥m,m⊆α⇒l∥αC.l⊆α,m⊆α,l∥β,m∥β⇒α∥βD.l⊥n,m⊥n⇒l∥m【解答】解:由l,m,n是不相同的空间直线,α,β是不重合的两个平面,知:在A中:l⊥α,m⊥β,l⊥m,则由面面垂直的判定定理得α⊥β,故A正确;在B中:l∥m,m⊆α⇒l∥α或l⊂α,故B错误;在C中:l⊆α,m⊆α,l∥β,m∥β⇒α与β相交或平行,故C错误;在D中:l⊥n,m⊥n⇒l与m相交、平行或异面,故D错误.故选:A.11.(5分)已知抛物线W:y2=4x的焦点为F,点P是圆O:x2+y2=r2(r>0)与抛物线W的一个交点,点A(﹣1,0),则当最小时,圆心O到直线PF的距离是()A.B.1C.D.【解答】解:过P作抛物线的准线的垂线PM,M为垂足,则|PF|=|PM|,则==sin∠P AM,∴当P A与抛物线相切时,∠P AM取得最小值,故而取得最小值.设直线P A的方程为y=k(x+1),代入抛物线方程得:k2x2+(2k2﹣4)x+k2=0,令△=(2k2﹣4)2﹣4k4=0得k2=1.此时方程为x2﹣2x+1=0,解得x=1,不妨设P在第一象限,则P(1,2),直线PF的方程为x=1.∴O到PF的距离为1.故选:B.12.(5分)函数,若方程f(x)=k有三个不同的零点x1,x2,x3,则x1x2x3的取值范围是()A.B.[5,6)C.(5,6)D.【解答】解:根据函数,画出函数图象:∵f(x1)=f(x2)=f(x3),且x1<x2<x3,∴﹣log5x1=log5x2=﹣2x3+12,∴log5(x1x2)=0,0<﹣2x3+12≤1,解得x1x2=1,≤x3<6,∴x1x2x3的取值范围是[,6),故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量=(2,4),=(﹣1,m),且与﹣2平行,则m等于﹣2.【解答】解:∵向量=(2,4),=(﹣1,m),∴=(2,4)﹣(﹣2,2m)=(4,4﹣2m),∵与﹣2平行,∴,解得m=﹣2.故答案为:﹣2.14.(5分)△ABC中.角A,B,C的对边分别是a,b,c.若sin B=2sin C.且a=,A=,则c=.【解答】解:在△ABC中,sin B=2sin C.利用正弦定理得:b=2c.由于:a=,A=,则:a2=b2+c2﹣2bc cos A,整理得:14=b2+c2+bc,所以:,整理得:14=4c2+c2+2c2=7c2,解得:c=,故答案为:15.(5分)已知双曲线C:的左、右焦点分别是F1,F2,点P(5,1)满足|PF1|﹣|PF2|=6,则双曲线C的离心率是.【解答】解:双曲线C:的左、右焦点分别是F1,F2,点P(5,1)满足|PF1|﹣|PF2|=6,可知P在双曲线上,可得,解得b=,∵a=3,可得:c=,所以:e===.故答案为:.16.(5分)某三棱锥的三视图如图所示,则该几何体的外接球的体积是.【解答】解:根据三视图知,该几何体是侧面P AB⊥底面ABC的三棱锥,如图所示;结合图中数据知,该三棱锥外接球的球心O在PD上,设DO=a,则=a2+52,解a=;∴外接球的半径为R=PO=5﹣=,∴外接球的体积为V=•=.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}的前n项和为S n,且满足a n+1=S n+n+1(n=1,2,3…),a1=1.(1)求证:{a n+1}为等比数列;(2)数列{a n}中是否存在不同的三项,适当排列顺序后构成一个等差数列?并说明理由.【解答】(1)证明:a n+1=S n+n+1,n≥2时,可得:a n+1﹣a n=S n+n+1﹣(S n﹣1+n),化为:a n+1=2a n+1,a n+1+1=2(a n+1),n=1时,a2=a1+2=3,∴a2+1=2(a1+1),∴{a n+1}为等比数列,首项为2,公比为2.(2)解:由(1)可得:a n+1=2n,可得a n=2n﹣1.可知:数列{a n}单调递增.假设数列{a n}中存在不同的三项,a m,a k,a n,m,k,n∈N*,m<k<n.适当排列顺序后构成一个等差数列,必然是a m,a k,a n是等差数列.∴2a k=a m+a n,∴2(2k﹣1)=2m﹣1+2n﹣1,化为:2k+1﹣m=1+2n﹣m.而左边为偶数,右边为奇数.因此不成立,故假设不成立.因此数列{a n}中不存在不同的三项,适当排列顺序后构成一个等差数列.18.(12分)如图,四棱锥P﹣ABCD中,,AD=CD=2,P A=PC,,AB⊥AD,平面P AD⊥平面ABCD.(1)求证:PD⊥平面ABCD;(2)若PD=3,求直线CD与平面P AB所成角的正弦值.【解答】证明:(1)∵AB⊥AD,平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD∴AB⊥平面P AD,∵P A⊂平面P AD,∴AB⊥PD,∵,AD=CD=2,P A=PC,∴BC⊥CD,∴BC⊥平面PCD,∵PC⊂平面PCD,∴BC⊥PD,∵AB∩BC=B,∴PD⊥平面ABCD.解:(2)以A为原点,AB为x轴,AC为y轴,过A作平面ABC的垂线为z轴,建立空间直角坐标系,∵PD=3,∴C(,3,0),D(0,2,0),A(0,0,0),B(2,0,0),P(0,2,3),=(,1,0),=(0,2,3),=(2,0,0),设平面P AB的法向量=(x,y,z),则,取y=3,得=(0,3,﹣2),设直线CD与平面P AB所成角为θ,则sinθ===.∴直线CD与平面P AB所成角的正弦值为.19.(12分)随着人们对交通安全的重视,安全驾驶已成为了社会广泛关注的问题.交通管理部门调取了大量数据,得到以下散点分布图其中y表示“反应距离”,指的是驾驶员从作出反应(刹车)到车辆停止滑行的距离(单位:米),x表示驾驶员作出反应的瞬间车辆速度的平方(单位:米2/秒2).其中,i=1,2,…,7,.(1)由散点图判断:y=ax+b和哪个更适合于模型?(直接写出判断即可,不必说明理由)(2)根据(1)的判断结果和表中的数据,建立y关于x的回归方程;(3)当驾驶者看到前方30米处出现行人并刹车,根据(2)中你得到的方程,请说明此时驾驶者的速度满足什么条件才能避免这次车祸?附:对于一组数据(x1,x1),(x2,x2),…,(x n,x n),其中回归方程y=α+βx的斜率和截距的最小二乘估计分别为:,.【解答】解:(1)由散点图判断:y=ax+b更适合于模型;(2)根据(1)的判断结果,利用表中的数据,=519.7143,=43.1727,(﹣x i)(﹣y i)=28486,=332350,∴==≈0.026;=﹣=43.1727﹣0.026×519.7143≈29.66,∴y关于x的回归方程=0.026x+29.66;(3)令,=0.026x+29.66≤30,解得x≤13.08;即当驾驶者看到前方30米处出现行人并刹车,此时驾驶者的速度小于或等于13.08米2/秒2才能避免这次车祸.20.(12分)已知左焦点为F(﹣1,0)的椭圆C:(a>b>0)经过点A(2,0).(1)求椭圆C的方程;(2)已知直线l与椭圆C分别交于M、N(M、N在x轴异侧),M关于长轴对称的点为B (不与N重合),直线x=﹣4分别与x轴,AB,AN交于T、P、Q.若∠TQF=∠TFP,求证:直线l经过定点.【解答】解:(1)由题意可知:c=1,a=2,则b2=a2﹣c2=3,∴椭圆方程为:,(2)设直线l:y=kx+b,点M(x1,y1),N(x2,y2),B(x1,﹣y1),P(﹣4,y P),Q(﹣4,y Q),,整理得:(3+4k2)x2+8kbx+4b2﹣12=0,x1+x2=﹣,x1x2=,在Rt△PTF与Rt△FTQ,∠TQF=∠TFP,则Rt△PTF∽Rt△FTQ,∴=,则|QT|•|TP|=|TF|2,即y P y Q=9,过点N作ND⊥x轴,交x轴于点D,则△ADN∽△ATQ,有=,即=,同理可得:=,两式相乘,则=4,整理得:4﹣2(x1+x2)+x1x2+4y1y2=0,∴4﹣2(x1+x2)+x1x2+4[k2x1x2+kb(x1+x2)+b2]=0,整理得:b2+kb﹣2k2=0,即(b+2k)(b﹣k)=0,解得:b=﹣2k(舍去),b=k,则直线l方程:y=k(x+1),∴直线l恒过点(﹣1,0).21.(12分)已知函数.(1)若函数在处有最大值,求a的值;(2)当a≤e时,求函数f(x)的零点的个数.【解答】解:(1)f′(x)=﹣(x>0),若f(x)在处有最大值,则f(x)在x=处取极大值,故f′()=﹣e=0,解得:a=e;(2)f′(x)=﹣(x>0).(i)当a=0时,f(x)=﹣,因为f(x)<0,所以函数f(x)的零点的个数为0;…………………………(6分)(ii)当a<0时,f′(x)<0,所以函数f(x)在(0,+∞)内是减函数.所以函数f(x)至多有一个零点.取0<x0<min{e,},则f(x0)=aln2x0﹣>aln2x0﹣e2>0.因为f()=aln1﹣=﹣<0,所以函数f(x)的零点个数为1.…………………………(8分)(iii)当0<a≤e时,令t=2x,g(t)=alnt﹣,显然,g(t)与f(x)的零点个数相等.令h(t)=g′(t)=﹣,则h′(t)=﹣﹣<0.所以h(t)在(0,+∞)内是减函数.取0<t0<min{e,a},则h(t0)=﹣>﹣1>0;取t1>e a,则h(t1)=﹣e<﹣e a=(1﹣e a)<0.所以h(t)在(0,+∞)内有且只有一个实根,设为t a,且t∈(0,t a),h(t)>0;t∈(t a,+∞),h(t)<0.所以g(t)在(0,t a)内是增函数,在(t a,+∞)内是减函数,在t=t a时,取得最大值g (t a).①当a=e时,由,可知:t a=e,g(t a)=0.所以g(t)的有且只有一个零点.所以当a=e时,函数f(x)的零点个数为1.②由﹣e=0可得:a=e,因为(xe x)'=e x+xe x,所以当x>0时,(xe x)'>0,即xe x是一个增函数.所以当0<a<e时,t a<e.因为(lnx﹣1)′=lnx+=lnex,所以当x>时,(lnx﹣1)′>0,即lnx﹣1是增函数.所以当1<t a<e时,lnta﹣1<lne﹣1=0.又因为当0<t a≤1时,lnta﹣1<0,所以g(t a)=lnt a﹣=(lnta﹣1)<0.所以函数g(t)的只有一个零点,即函数f(x)的零点个数为0.综上所述:当0≤a<e时,函数f(x)的零点个数为0;当a<0或a=e时,函数f(x)的零点个数为1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(12分)在极坐标系中设极点O到直线l的距离为2,由O点向直线l作垂线OA,垂足为A,射线OA的极坐标方程为(ρ≥0).(1)求直线l的极坐标方程;(2)以极点O为平面直角坐标系的原点,极轴为x轴的正半轴,建立直角坐标系.若点P 在直线l上,将向量按逆时针旋转,再伸缩为原来的λ(λ>0)倍得到向量,使得.求动点M的轨迹C的直角坐标方程.【解答】解:(1)如图所示:极点O到直线l的距离为2,即:OA=2,由极轴到OA的角为,∴∠BOA=,则∠OBA=,∠ABx=,则直线l的斜率为:k=﹣.在△OBC中,进一步求得:OC=4,直线l的方程为:y=﹣x+4,转化成极坐标方程为:ρsinθ+ρcosθ﹣4=0,化简为:ρsin(θ+)=2;(2)设M(ρ,θ),P(ρ′,θ′),由题意可得:,即,.而ρ′ρ=8,即,∴,即,∵(ρ′,θ′)在ρsin(θ+)=2上,∴ρ′sin(θ′+)=2,则,即,∴,即.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|﹣|x﹣2|﹣1,不等式f(x)≤k的解集为[﹣5,1].(1)求实数k的值;(2)若正数a,b满足,求2a+4b的最小值.【解答】解:(1)不等式f(x)≤k,即|2x+1|﹣|x﹣2|≤k+1,x≥2时,2x+1﹣x+2≤k+1,解得:x≤k﹣2,﹣<x<2时,2x+1+x﹣2≤k+1,解得:x≤,x≤﹣时,﹣2x﹣1+x﹣2≤k+1,解得:x≥﹣(k+4),而不等式的解集是[﹣5,1],对应[﹣(k+4),],故,解得:k=1;(2)由(1)ab=2,故2a+4b≥2=8,当且仅当a=2,b=1时成立.。

广西2018届高三数学下学期二模试卷理科有答案

广西2018届高三数学下学期二模试卷理科有答案

广西2018届高三数学下学期二模试卷(理科有答案)广西区2018年3月高三年级第二次高考模拟联合考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.2.复数()A.B.C.D.3.以下关于双曲线:的判断正确的是()A.的离心率为B.的实轴长为C.的焦距为D.的渐近线方程为4.若角的终边经过点,则()A.B.C.D.5.某几何体的三视图如图所示,其中俯视图中的圆的半径为,则该几何体的体积为()A.B.C.D.6.设,满足约束条件,则的最大值是()A.B.C.D.7.执行如图所示的程序框图,若输入的,则输出的()A.B.C.D.8.我国南宋著名数学家秦九韶发现了三角形三边求三角形面积的“三斜求积公式”,设三个内角,,所对的边分别为,,,面积为,则“三斜求积公式”为.若,,则用“三斜求积公式”求得的()A.B.C.D.9.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于的产品为优质产品.现用两种新配方(分别称为配方和配方)做试验,各生产了件这种产品,并测量了每件产品的质量指标值(都在区间内),将这些数据分成组:,,,,得到如下两个频率分布直方图:已知这种配方生产的产品利润(单位:百元)与其质量指标值的关系式均为.若以上面数据的频率作为概率,分别从用配方和配方生产的产品中随机抽取一件,且抽取的这件产品相互独立,则抽得的这两件产品利润之和为的概率为()A.B.C.D.10.设,,,则()A.B.C.D.11.将函数的图象向左平移()个单位长度后得到的图象,若在上单调递减,则的取值范围为()A.B.C.D.12.过圆:的圆心的直线与抛物线:相交于,两点,且,则点到圆上任意一点的距离的最大值为()A.B.C.D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量,,,则.14.的展开式中的系数为.15.若函数()只有个零点,则.16.在等腰三角形中,,,将它沿边上的高翻折,使为正三角形,则四面体的外接球的表面积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知公差不为的等差数列的前项和,,,成等差数列,且,,成等比数列.(1)求数列的通项公式;(2)若,,成等比数列,求及此等比数列的公比.18.4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取名学生参加问卷调查.各组人数统计如下:小组甲乙丙丁人数(1)从参加问卷调查的名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数,求的分布列及数学期望.19.如图,在正方体中,,分别是棱,的中点,为棱上一点,且平面.(1)证明:为的中点;(2)求平面与平面所成锐二面角的余弦值.20.已知椭圆:()的离心率,直线被以椭圆的短轴为直径的圆截得的弦长为.(1)求椭圆的方程;(2)过点的直线交椭圆于,两个不同的点,且,求的取值范围.21.已知函数()(1)当时,求曲线在原点处的切线方程;(2)若对恒成立,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)写出直线的普通方程及曲线的直角坐标方程;(2)已知点,点,直线过点且曲线相交于,两点,设线段的中点为,求的值.23.选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若对恒成立,求的取值范围.广西区2018年3月高三年级第二次高考模拟联合考试数学参考答案(理科)一、选择题1-5:DADBC6-10:ACDBA11、12:CC二、填空题13.14.15.16.三、解答题17.1)设数列的公差为由题意可知,整理得,即所以(2)由(1)知,∴,∴,,又,∴,∴,公比18.由已知得,问卷调查中,从四个小组中抽取的人数分别为,,,,从参加问卷调查的名学生中随机抽取两名的取法共有种,这两名学生来自同一小组的取法共有种.所以所求概率(2)由(1)知,在参加问卷调查的名学生中,来自甲、丙两小组的学生人数分别为,.的可能取值为,,,,,.所以的分布列为19.(1)证明:取的中点,连接,因为,所以为的中点,又为的中点,所以,因为平面,平面,平面平面所以,即,又,所以四边形为平行四边形,则,所以为的中点. (2)解:以为坐标原点,建立如图所示的空间直角坐标系,不妨令正方体的棱长为,则,,,,可得,,设是平面的法向量,则,令,得易得平面的一个法向量为所以故所求锐二面角的余弦值为20.解:(1)因为原点到直线的距离为,所以(),解得.又,得所以椭圆的方程为.(2)当直线的斜率为时,当直线的斜率不为时,设直线:,,,联立方程组,得由,得,所以由,得,所以.综上可得:,即21.解:(1)当时,,∴故曲线在原点处的切线方程为(2)当时,,若,,则,∴在上递增,从而.若,令,当时,,当时,,∴则不合题意.故的取值范围为22.解:(1)由直线的参数方程消去,得的普通方程为,由得所以曲线的直角坐标方程为(2)易得点在,所以,所以所以的参数方程为,代入中,得.设,,所对应的参数分别为,,.则,所以23.解:(1)因为,所以当时,由得;当时,由得;当时,由得综上,的解集为(2)(方法一)由得,因为,当且仅当取等号,所以当时,取得最小值. 所以,当时,取得最小值,故,即的取值范围为(方法二)设,则,当时,的取得最小值,所以当时,取得最小值,故,即的取值范围为。

广西2018届高三第二次模拟数学(理)试题含答案

广西2018届高三第二次模拟数学(理)试题含答案

广西2018届高三第二次模拟数学(理)试题含答案广西区2018年3月高三年级第二次高考模拟联合考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合2{|20}A x x =->,{|0}B x x =>,则AB =( )A .(0B .(2)(0)-∞-+∞,, C .(2)+∞ D .(2)(0)-∞+∞,,2.复数13ii -=+ ( ) A .931010i - B .131010i + C .931010i + D .131010i - 3. 以下关于双曲线M :228x y -=的判断正确的是( ) A .M 的离心率为2 B .M 的实轴长为2C.M 的焦距为16 D .M 的渐近线方程为y x =± 4.若角α 的终边经过点(123)-, ,则tan()3πα+= ( )A .7-B .37-335.35 5.某几何体的三视图如图所示,其中俯视图中的圆的半径为2,则该几何体的体积为( )A .51296π-B .296 C.51224π- D .5126.设x ,y 满足约束条件330280440x y x y x y -+⎧⎪+-⎨⎪+-⎩≥≤≥,则3z x y =+的最大值是( )A .9B .8 C.3 D .47.执行如图所示的程序框图,若输入的11k =,则输出的S =( )A .12B .13 C.15 D .188.我国南宋著名数学家秦九韶发现了三角形三边求三角形面积的“三斜求积公式”,设ABC △三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积公式”为2222221[()]42a cb S ac +-=-.若2sin 24sin a C A =,2(sin sin )()(27)sin a C B c b a A -+=-,则用“三斜求积公式”求得的S =( )AB 155156 D 1579.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于100 的产品为优质产品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100 件这种产品,并测量了每件产品的质量指标值(都在区间[90110], 内),将这些数据分成4 组:[9095), ,[95100), ,[100105), ,[105110], ,得到如下两个频率分布直方图:已知这2 种配方生产的产品利润y (单位:百元)与其质量指标值t 的关系式均为19509510011001052105t t y t t -<⎧⎪<⎪=⎨<⎪⎪⎩,,≤,≤,≥.若以上面数据的频率作为概率,分别从用A 配方和B 配方生产的产品中随机抽取一件,且抽取的这2 件产品相互独立,则抽得的这两件产品利润之和为0 的概率为( )A .0.125B .0.195 C.0.215 D .0.235 10. 设38a =,0.5log 0.2b =,4log 24c =,则( )A .a c b <<B .a b c << C.b a c << D .b c a << 11. 将函数sin 2cos2y x x =+的图象向左平移ϕ(02πϕ<<)个单位长度后得到()f x 的图象,若()f x 在5()4ππ,上单调递减,则ϕ的取值范围为( ) A .3()88ππ,B .()42ππ, C.3[]88ππ, D .[)42ππ, 12.过圆P :221(1)4x y ++=的圆心P 的直线与抛物线C :23y x = 相交于A ,B 两点,且3PB PA =,则点A 到圆P 上任意一点的距离的最大值为( ) A .116 B .2 C.136 D .73第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()AB m n =, ,(21)BD =, ,(38)AD =, ,则mn = . 14.71(4)2x - 的展开式中3x 的系数为 . 15. 若函数32()3f x x x a =--(0a ≠)只有2个零点,则a = . 16.在等腰三角形ABC 中,23A π∠=,23AB =,将它沿BC 边上的高AD 翻折,使BCD △ 为正三角形,则四面体ABCD 的外接球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知公差不为0的等差数列{}n a 的前n 项和n S ,11S +,3S ,4S 成等差数列,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)若4S ,6S ,10S 成等比数列,求n 及此等比数列的公比.18. 4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解高三学生课外阅读情况,(1)从参加问卷调查的 名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的10 名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用X 表示抽得甲组学生的人数,求X 的分布列及数学期望. 19. 如图,在正方体1111ABCD A B C D - 中,F ,G 分别是棱1CC ,1AA 的中点,E 为棱AB 上一点,113B M MA = 且GM ∥ 平面1B EF .(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.20. 已知椭圆C :22221x y a b +=(0a b >> )的离心率3e =,直线310x y -= 被以椭圆C 的短轴3(1)求椭圆C 的方程;(2)过点(40)M , 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅ ,求λ 的取值范围.21. 已知函数3()ln(1)ln(1)(3)f x x x k x x =+---- (k ∈R )(1)当3k = 时,求曲线()y f x = 在原点O 处的切线方程; (2)若()0f x > 对(01)x ∈, 恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 23cos 0ρθθ-=. (1)写出直线l 的普通方程及曲线C 的直角坐标方程;(2)已知点(01)P ,,点(30)Q ,直线l 过点Q 且曲线C 相交于A ,B 两点,设线段AB 的中点为M ,求PM的值.23.选修4-5:不等式选讲 已知函数()23f x x x =-++. (1)求不等式()15f x ≤的解集;(2)若2()x a f x -+≤对x ∈R 恒成立,求a 的取值范围.广西区2018年3月高三年级第二次高考模拟联合考试数学参考答案(理科)一、选择题1-5:DADBC 6-10:ACDBA 11、12:CC 二、填空题13.7 14.140- 15.4- 16.15π 三、解答题 17. 1)设数列{}n a 的公差为d由题意可知3142215210S S S a a a d =++⎧⎪=⎨⎪≠⎩,整理得1112a d a =⎧⎨=⎩ ,即112a d =⎧⎨=⎩所以21na n =-(2)由(1)知21n a n =- ,∴2n S n = ,∴416S = ,836S = ,又248nS S S= ,∴22368116n == ,∴9n = ,公比8494S q S ==18.由已知得,问卷调查中,从四个小组中抽取的人数分别为3 ,4 ,2 ,1 , 从参加问卷调查的10 名学生中随机抽取两名的取法共有21045C = 种,这两名学生来自同一小组的取法共有22234210C C C ++= 种.所以所求概率102459P == (2)由(1)知,在参加问卷调查的10 名学生中,来自甲、丙两小组的学生人数分别为3 ,2 .X 的可能取值为0 ,1 ,2 ,22251(0)10C P X C === ,1132253(1)5C C P X C === ,23253(2)10C P X C === .所以X 的分布列为()012105105E X =⨯+⨯+⨯=19.(1)证明:取11A B 的中点N ,连接AN , 因为1=3B M MA ,所以M 为1A N 的中点,又G 为1AA 的中点,所以GM AN ∥ , 因为GM ∥ 平面1B EF ,GM ⊂ 平面11ABB A ,平面11ABB A 平面11B EFB E =所以1GM B E ∥ ,即1AN B E ∥ ,又1B N AE ∥ ,所以四边形1AEB N 为平行四边形,则1AEB N = ,所以E 为AB 的中点.(2)解:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz - ,不妨令正方体的棱长为2 , 则1(222B ,,) ,(210)E ,, ,(021)F ,, ,1(202)A ,, ,可得1(012)B E =--,, ,(211)EF =-,, ,设()m x y z =,, 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ ,令2z = ,得(142)m =--,, 易得平面11ABC D 的一个法向量为1(202)n DA ==,,所以42cos422221m n m n m n⋅===⨯, 故所求锐二面角的余弦值为424220.解:(1)因为原点到直线310x -=的距离为12, 所以22213()(2b += (0b > ),解得1b = . 又22222314c b e a a ==-= ,得2a =所以椭圆C 的方程为2214x y += . (2) 当直线l 的斜率为0 时,12MA MB λ=⋅=当直线l 的斜率不为0 时,设直线l :4x my =+ ,11()A x y , ,22()B x y , ,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩ ,得22(4)8120m y my +++=由22=6448(4)0mm ∆-+> ,得212m >,所以122124y y m =+2221122212(1)31112(1)44m MA MB m m y m m λ+=⋅=++==-++由212m > ,得2330416m <<+ ,所以39124λ<< . 综上可得:39124λ<≤ ,即39(12]4λ∈, 21.解:(1)当3k = 时,211()9(1)11f x x x x'=+--+- ,∴(0)11f '= 故曲线()y f x = 在原点O 处的切线方程为11y x =(2)22223(1)()1k x f x x+-'=- 当(01)x ∈, 时,22(1)(01)x-∈, ,若23k -≥ ,2223(1)0k x +-> ,则()0f x '> ,∴()f x 在(01), 上递增,从而()(0)0f x f >= .若23k <-,令2()01(01)3f x x k '=⇒=--, ,当2(01)3x k∈--,时,()0f x '< ,当1)x ∈ 时,()0f x '> ,∴min 2()(1)(0)03f x f f k=--<= 则23k <-不合题意. 故k 的取值范围为2[)3-+∞, 22.解:(1)由直线l 的参数方程消去t ,得l 的普通方程为sin cos cos 0x y ααα-+= , 由2sin23cos 0ρθθ-= 得22sin 23cos 0ρθρθ-=所以曲线C 的直角坐标方程为223y x =(2)易得点P 在l ,所以3tan 30PQ k α===-,所以56πα= 所以l 的参数方程为32112x y t ⎧=-⎪⎪⎨⎪=+⎪⎩ , 代入223y x = 中,得21640t t ++= .设A ,B ,M 所对应的参数分别为1t ,2t ,0t . 则12082t t t +==- ,所以08PM t == 23.解:(1)因为213()532212x x f x x x x --<-⎧⎪=-⎨⎪+>⎩,,≤≤, ,13x <-≤所以当3x <- 时,由()15f x ≤ 得83x -<-≤ ; 当32x -≤≤ 时,由()15f x ≤ 得32x -≤≤ ; 当2x > 时,由()15f x ≤ 得27x <≤ 综上,()15f x ≤ 的解集为[87]-, (2)(方法一)由2()x a f x -+≤ 得2()a x f x +≤ ,因为()(2)(3)5f x x x --+=≥ ,当且仅当32x -≤≤ 取等号,所以当32x -≤≤ 时,()f x 取得最小值5 .所以,当0x = 时,2()x f x +取得最小值5 ,故5a ≤ ,即a 的取值范围为(5]-∞, (方法二)设2()g x xa =-+ ,则max ()(0)g x g a == ,当32x -≤≤ 时,()f x 的取得最小值5 ,所以当0x = 时,2()x f x +取得最小值5 ,故5a ≤ ,即a 的取值范围为(5]-∞,。

广西南宁市第三中学2018届高三第二次模拟考试英语试题(附答案)$852204

广西南宁市第三中学2018届高三第二次模拟考试英语试题(附答案)$852204

南宁三中2018届高三第二次模拟考试英语试题本试题卷共10页。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. Where did the woman hear about the coffee shop?A. From a friend.B. From her sister.C. From the Internet.2. When is the woman leaving for vacation?A. In two weeks.B. In one week.C. In three weeks.3. What does Judy want the man to do?A. Read a story.B. Discuss the article.C. Keep the magazine.4. What is the man doing?A. Cooking the pork.B. Enjoying a sandwich.C. Complaining about the fish.5. Where are the speakers?A. At a library.B. In a bookstore.C. In a museum.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6至7题。

广西2018届高三第二次模拟数学(理)试题含答案

广西2018届高三第二次模拟数学(理)试题含答案

广西2018届高三第二次模拟数学(理)试题含答案广西区2018年3月高三年级第二次高考模拟联合考试数学(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合2{|20}A x x =->,{|0}B x x =>,则AB =( )A .(0B .(2)(0)-∞-+∞,, C .(2)+∞ D .(2)(0)-∞+∞,,2.复数13ii -=+ ( ) A .931010i - B .131010i + C .931010i + D .131010i - 3. 以下关于双曲线M :228x y -=的判断正确的是( ) A .M 的离心率为2 B .M 的实轴长为2C.M 的焦距为16 D .M 的渐近线方程为y x =± 4.若角α 的终边经过点(123)-, ,则tan()3πα+= ( )A .7-B .37- C.335D .35 5.某几何体的三视图如图所示,其中俯视图中的圆的半径为2,则该几何体的体积为( )A .51296π-B .296 C.51224π- D .5126.设x ,y 满足约束条件330280440x y x y x y -+⎧⎪+-⎨⎪+-⎩≥≤≥,则3z x y =+的最大值是( )A .9B .8 C.3 D .47.执行如图所示的程序框图,若输入的11k =,则输出的S =( )A .12B .13 C.15 D .188.我国南宋著名数学家秦九韶发现了三角形三边求三角形面积的“三斜求积公式”,设ABC △三个内角A ,B ,C所对的边分别为a ,b ,c ,面积为S ,则“三斜求积公式”为S =.若2sin 24sin a C A =,2(sin sin )()(27)sin a C B c b a A -+=-,则用“三斜求积公式”求得的S =( )AB 1551561579.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于100 的产品为优质产品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100 件这种产品,并测量了每件产品的质量指标值(都在区间[90110], 内),将这些数据分成4 组:[9095), ,[95100), ,[100105), ,[105110], ,得到如下两个频率分布直方图:已知这2 种配方生产的产品利润y (单位:百元)与其质量指标值t 的关系式均为19509510011001052105t t y t t -<⎧⎪<⎪=⎨<⎪⎪⎩,,≤,≤,≥.若以上面数据的频率作为概率,分别从用A 配方和B 配方生产的产品中随机抽取一件,且抽取的这2 件产品相互独立,则抽得的这两件产品利润之和为0 的概率为( )A .0.125B .0.195 C.0.215 D .0.235 10. 设38a =,0.5log 0.2b =,4log 24c =,则( )A .a c b <<B .a b c << C.b a c << D .b c a << 11. 将函数sin 2cos2y x x =+的图象向左平移ϕ(02πϕ<<)个单位长度后得到()f x 的图象,若()f x 在5()4ππ,上单调递减,则ϕ的取值范围为( ) A .3()88ππ,B .()42ππ, C.3[]88ππ, D .[)42ππ, 12.过圆P :221(1)4x y ++=的圆心P 的直线与抛物线C :23y x = 相交于A ,B 两点,且3PB PA =,则点A 到圆P 上任意一点的距离的最大值为( ) A .116 B .2 C.136 D .73第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()AB m n =, ,(21)BD =, ,(38)AD =, ,则mn = . 14.71(4)2x - 的展开式中3x 的系数为 . 15. 若函数32()3f x x x a =--(0a ≠)只有2个零点,则a = . 16.在等腰三角形ABC 中,23A π∠=,23AB =,将它沿BC 边上的高AD 翻折,使BCD △ 为正三角形,则四面体ABCD 的外接球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知公差不为0的等差数列{}n a 的前n 项和n S ,11S +,3S ,4S 成等差数列,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)若4S ,6S ,10S 成等比数列,求n 及此等比数列的公比.18. 4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解高三学生课外阅读情况,10(1)从参加问卷调查的 名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的10 名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用X 表示抽得甲组学生的人数,求X 的分布列及数学期望.19. 如图,在正方体1111ABCD A BC D - 中,F ,G 分别是棱1CC ,1AA 的中点,E 为棱AB 上一点,113B M MA = 且GM ∥ 平面1B EF .(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.20. 已知椭圆C :22221x y a b +=(0a b >> )的离心率32e = ,直线310x y -= 被以椭圆C 的短轴为3(1)求椭圆C 的方程;(2)过点(40)M , 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅ ,求λ 的取值范围.21. 已知函数3()ln(1)ln(1)(3)f x x x k x x =+---- (k ∈R )(1)当3k = 时,求曲线()y f x = 在原点O 处的切线方程; (2)若()0f x > 对(01)x ∈, 恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 23cos 0ρθθ-=. (1)写出直线l 的普通方程及曲线C 的直角坐标方程;(2)已知点(01)P ,,点(30)Q ,直线l 过点Q 且曲线C 相交于A ,B 两点,设线段AB 的中点为M ,求PM的值.23.选修4-5:不等式选讲 已知函数()23f x x x =-++. (1)求不等式()15f x ≤的解集;(2)若2()x a f x -+≤对x ∈R 恒成立,求a 的取值范围.广西区2018年3月高三年级第二次高考模拟联合考试数学参考答案(理科)一、选择题1-5:DADBC 6-10:ACDBA 11、12:CC 二、填空题13.7 14.140- 15.4- 16.15π 三、解答题 17. 1)设数列{}n a 的公差为d由题意可知3142215210S S S a a a d =++⎧⎪=⎨⎪≠⎩,整理得1112a d a =⎧⎨=⎩ ,即112a d =⎧⎨=⎩所以21na n =-(2)由(1)知21n a n =- ,∴2n S n = ,∴416S = ,836S = ,又248nS S S= ,∴22368116n == ,∴9n = ,公比8494S q S ==18.由已知得,问卷调查中,从四个小组中抽取的人数分别为3 ,4 ,2 ,1 , 从参加问卷调查的10 名学生中随机抽取两名的取法共有21045C = 种,这两名学生来自同一小组的取法共有22234210C C C ++= 种.所以所求概率102459P == (2)由(1)知,在参加问卷调查的10 名学生中,来自甲、丙两小组的学生人数分别为3 ,2 .X 的可能取值为0 ,1 ,2 ,22251(0)10C P X C === ,1132253(1)5C C P X C === ,23253(2)10C P X C === .所以X 的分布列为()012105105E X =⨯+⨯+⨯=19.(1)证明:取11A B 的中点N ,连接AN ,因为1=3B M MA ,所以M 为1A N 的中点,又G 为1AA 的中点,所以GM AN ∥ , 因为GM ∥ 平面1B EF ,GM ⊂ 平面11ABB A ,平面11ABB A 平面11B EFB E =所以1GM B E ∥ ,即1AN B E ∥ ,又1B N AE ∥ ,所以四边形1AEB N 为平行四边形,则1AEB N = ,所以E 为AB 的中点.(2)解:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz - ,不妨令正方体的棱长为2 , 则1(222B ,,) ,(210)E ,, ,(021)F ,, ,1(202)A ,, ,可得1(012)B E =--,, ,(211)EF =-,, ,设()m x y z =,, 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ ,令2z = ,得(142)m =--,, 易得平面11ABC D 的一个法向量为1(202)n DA ==,,所以42cos422221m n m n m n⋅===⨯, 故所求锐二面角的余弦值为424220.解:(1)因为原点到直线310x y -=的距离为12, 所以22213()(2b += (0b > ),解得1b = . 又22222314c b e a a ==-= ,得2a =所以椭圆C 的方程为2214x y += . (2) 当直线l 的斜率为0 时,12MA MB λ=⋅=当直线l 的斜率不为0 时,设直线l :4x my =+ ,11()A x y , ,22()B x y , ,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩ ,得22(4)8120m y my +++=由22=6448(4)0mm ∆-+> ,得212m >,所以122124y y m =+21122212(1)312(1)44m MA MB y m m λ+=⋅===-++由212m > ,得2330416m <<+ ,所以39124λ<< . 综上可得:39124λ<≤ ,即39(12]4λ∈, 21.解:(1)当3k = 时,211()9(1)11f x x x x'=+--+- ,∴(0)11f '= 故曲线()y f x = 在原点O 处的切线方程为11y x =(2)22223(1)()1k x f x x +-'=-当(01)x ∈, 时,22(1)(01)x-∈, ,若23k -≥ ,2223(1)0k x +-> ,则()0f x '> ,∴()f x 在(01),上递增,从而()(0)0f x f >= .若23k <-,令2()01(01)3f x x k '=⇒=--, ,当2(01)3x k∈--,时,()0f x '< ,当1)x ∈ 时,()0f x '> ,∴min 2()(1)(0)03f x f f k=--<= 则23k <-不合题意. 故k 的取值范围为2[)3-+∞, 22.解:(1)由直线l 的参数方程消去t ,得l 的普通方程为sin cos cos 0x y ααα-+= , 由2sin23cos 0ρθθ-= 得22sin 23cos 0ρθρθ-=所以曲线C 的直角坐标方程为223y x =(2)易得点P 在l ,所以3tan 30PQ k α===-,所以56πα= 所以l的参数方程为112x y t ⎧=⎪⎪⎨⎪=+⎪⎩ ,代入2y = 中,得21640t t ++= .设A ,B ,M 所对应的参数分别为1t ,2t ,0t . 则12082t t t +==- ,所以08PM t == 23.解:(1)因为213()532212x x f x x x x --<-⎧⎪=-⎨⎪+>⎩,,≤≤, ,13x <-≤所以当3x <- 时,由()15f x ≤ 得83x -<-≤ ; 当32x -≤≤ 时,由()15f x ≤ 得32x -≤≤ ; 当2x > 时,由()15f x ≤ 得27x <≤ 综上,()15f x ≤ 的解集为[87]-, (2)(方法一)由2()x a f x -+≤ 得2()a x f x +≤ ,因为()(2)(3)5f x x x --+=≥ ,当且仅当32x -≤≤ 取等号,所以当32x -≤≤ 时,()f x 取得最小值5 .所以,当0x = 时,2()x f x +取得最小值5 ,故5a ≤ ,即a 的取值范围为(5]-∞, (方法二)设2()g x xa =-+ ,则max ()(0)g x g a == ,当32x -≤≤ 时,()f x 的取得最小值5 ,所以当0x = 时,2()x f x +取得最小值5 ,故5a ≤ ,即a 的取值范围为(5]-∞,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南宁三中2018届高三第二次模拟考试数学试题(文科)全卷满分150分 考试用时120分钟一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合,,则( )A.B.C.D.2.已知复数512z i=+,则z =( )A. 1B.5D. 53.甲、乙两人参加歌唱比赛,晋级概率分别为45和34,且两人是否晋级相互独立,则两人中恰有一人晋级的概率为( )A.1920B.35C. 25D.7204.设等差数列的前项和为,若,则( )A.21B. 22C. 23D. 245.下列命题中,正确的是( ) A. 若22a b c c<,则a b <B. 若ac bc >,则a b >C. 若a b >,c d >,则a c b d ->-D. 若a b >,c d >,则ac bd >6.如图所示的流程图,最后输出的n 的值为( )A. 3B. 4C. 5D. 67.若抛物线在处的切线的倾斜角为,则( )A.45B.12C.45-D.12-8.一个几何体的三视图如图所示,则该几何体外接球的体积为( )A.6πC.2D.9.若将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度,则平移后图象的对称轴为( ) A.()24k x k Z ππ=+∈ B. ()212k x k Z ππ=+∈C.()4x k k Z ππ=+∈ D. ()12x k k Z ππ=+∈10.已知命题:p x R ∃∈,220x ax a ++≤,若命题p 是假命题,则实数a 的取值范围是( ) A. ()0,1B. (]0,1C. ()(),01,-∞⋃+∞D. ][(),01,-∞⋃+∞11.已知圆()22:200M x y ay a +-=>截直线0x y +=所得线段的长度是,则圆与圆()()22:111N x y -+-=的位置关系是( )A. 内切B. 相交C. 外切D. 相离12.已知当()1,x ∈+∞时,关于x 的方程()ln 21x x k xk+-=-有唯一实数解,则k 的取值范围是( )A. ()3,4B. ()4,5C. ()5,6D. ()6,7二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a 与b 的夹角为,且||1,|2|5a a b =-=,则||b _______. 14.若实数,满足约束条件,则的最小值为__________.15.设数列{}n a 的前项和为,且11a =,131n n a S +=+,则4S =__________.16.如图,在正三棱柱111ABC A B C -中,若1AB =,则1AB 与1C B 所成角的余弦值为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本题满分12分)在锐角中,角,,的对边分别为,,cos cos 2sin A B b C =(Ⅰ)求角的大小;(Ⅱ)已知sin 4,sin a CA=ABC ∆的面积为,求边长的值.18.(本题满分12分)如图,三棱锥中,平面,,,是的中点,是的中点,点在上,. (1)证明:平面;(2)若,求点到平面的距离.19.(本题满分12分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2018年1月1日到 2018年4月30日这120天对某居民区的PM2.5平均浓度的监测数据统计如下:(Ⅰ)在这120天中采用分层抽样的方法抽取30天的数据做进一步分析,每一组应抽取多少天? (Ⅱ)在(I )中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率.20.(本题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为,且过点)2T .(1)求椭圆的方程;(2)已知直线与椭圆交于,两点,求(为坐标原点)的面积取最大值时直线的方程.21.(本题满分12分)已知函数()cos f x x x ax a =-+,π[0,]2x ∈,(0)a ≠. (Ⅰ)当1=a 时,求)('x f 的最小值; (Ⅱ)求证:()f x 有且仅有一个零点.请考生在(22)、(23)两题中任选一题作答,如果多答,则按做的第一题记分. 22.(本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(为参数),以为极点,轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为()6R πθρ=∈.(1)求曲线的极坐标方程;(2)设直线与曲线相交于两点,求的值.23.(本题满分10分)选修4-5:不等式选讲已知函数()222f x x a x b =++-+(0,0)a b >>的最小值为3. (1)求a b +的值;(2)求证:3413log a b a b ⎛⎫+≥-+⎪⎝⎭.南宁三中2018届高三第二次模拟考试数学试题(文科)参考答案1.B 【解析】由题得=={x|0,1,2},所以A∩B={0,1,2}.故选B.2.C 【解析】512z i ====+故选C3.D 【解析】根据题意,恰有一人晋级就是甲晋级乙没有晋级或甲没有晋级乙晋级,则所求概率是4334711544520-+-=()()故选D . 4.A 【解析】由题意=15,,∴. 故选A .5.A 【解析】对于A .∵22a b c c <即20a b c-<,∴a b <,正确;对于B .∵ac bc >即()0a b c ->,c 的正负不知道,则a ,b 大小也无法判断,错误;对于C .∵a b >,c d >,无法判断a c -与b d -的大小关系,错误;对于D .∵a b >,c d >,不知道a ,b ,c ,d 正负,无法判断ac 与bd 的大小关系,故选A .6.C 【解析】执行程序有:n=1,n=n+1=2,此时,2n=4,n 2=4,故有n=n+1=3, 此时2n=8,n 2=9,故有n=n+1=4, 此时2n=16,n 2=16,故有n=n+1=5,此时2n=32,n 2=25,即满足2n>n 2故输出n 的值5. 故选:C .7.A 【解析】因为,所以, 则该切线的斜率, 则 .故选A .8.B 【解析】根据几何体的三视图,可知该几何体是底面是正方形,一条侧棱垂直于底面的四棱锥,即这五个点都是棱长为的正方体的顶点,所以该几何体的外接球就是对应正方体的外接球,所以外接球的直径是正方体的对角线为,所以半径,从而求的球的体积为,故选B.9.B 【解析】平移后函数解析式为,令,则,.故选B . 10.A 【解析】P 为假,即“∀x ∈R ,x 2+2ax +a >0”为真,∴△=4a2−4a<0⇒0<a<1.本题选择A选项.11.B【解析】圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,2a∴===则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN=,R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B.12.B【解析】因为()ln21x x k xk+-=-,所以ln21x x xkx+=-,令()l n2,(1)1x x xf x xx+=>-,则()()2ln3(1)1x xf x xx--=>-',再令()()1g ln3(1)10x x x x g xx'=-->∴=->()()()000040,(5)0,4,5,0-ln30g g x g x x x<>∴∃∈=∴-=,因为关于x的方程()ln21x x k xk+-=-有唯一实数解,所以()()()()000000000000ln21ln24,5111x x x xx x xk f x xx x x+-+=====∈---,选B.13.1【解析】,向量与的夹角为,0,解得,故答案为.14.2【解析】作出可行域如图所示,设,则表示可行域内的点与原点的距离的平方.由图知,所以.故答案为:2.15.【解析】①,②,①②得:,又∴数列 首项为1,公比为的等比数列,∴. 故结果为85; 16.18【解析】取1BB 中点D ,11B C 中点E ,AB 中点F 则1//DE BC ,1//DF AB即EDF ∠为所求角,设1BB x =,12AB x =,得2EF x =DE DF x ==2222714cos 28x x x EDF x +-∠== 17.【解析】(1)由已知得,由正弦定理得, ∴, 又在中,, ∴ 所以 ∴.(2)由已知及正弦定理 又 S ΔABC =,∴,得 由余弦定理 得.18.【解析】(Ⅰ)证明:如图,取AD 中点G ,连接GE ,GF ,则GE //AC ,GF //AB ,因为GE ∩GF =G ,AC ∩AB =A ,所以平面GEF //平面ABC , 所以EF //平面ABC . (Ⅱ)∵平面ABC ,∴. 又∴平面PAB . 又∴, ∴.记点P到平面BCD的距离为d,则∴,∴,所以,点P到平面BCD的距离为.19.【解答】(Ⅰ)这120天中抽取30天,采取分层抽样,抽样比k==,第一组抽取32×=8天;第二组抽取64×=16天;第三组抽取16×=4天;第四组抽取8×=2天(Ⅱ)设PM2.5的平均浓度在(75,115]内的4天记为A,B,C,D,PM2.5的平均浓度在115以上的两天记为1,2.所以6天任取2天的情况有:AB,AC,AD,A1,A2,BC,BD,B1,B2,CD,C1,C2,D1,D2,12,共15种记“恰好有一天平均浓度超过115(微克/立方米)”为事件A,其中符合条件的有:A1,A2,B1,B2,C1,C2,D1,D2,共8种所以,所求事件A的概率P(A)=20.【解析】(1)依题意得解得∴椭圆的方程为.(2)由消去整理得,其中设,则,,∴,又原点到直线的距离.∴,令,则,∴当时,取得最大值,且,此时,即. ∴直线的方程为∴的面积取最大值时直线的方程为.21.(Ⅰ)解:依题意()cos sin f x x x x a '=--.令()cos sin g x x x x a =--,π[0,]2x ∈,则()2sin cos 0g x x x x '=--≤.所以()g x 在区间π[0,]2上单调递减. 所以)('x f 的最小值为122sin22cos)2()(min --=--==πππππa g x g . (Ⅱ)证明:由(Ⅰ)知,()g x 在区间π[0,]2上单调递减,且(0)1g a =-,ππ()22g a =--. 当1a ≥时,()f x 在π[0,]2上单调递减. 因为(0)0f a =>,ππ()(1)022f a =-<,所以()f x 有且仅有一个零点. 当π02a --≥,即π2a ≤-时,()0g x ≥,即()0f x '≥,()f x 在π[0,]2上单调递增.因为(0)0f a =<,ππ()(1)022f a =->, 所以()f x 有且仅有一个零点.当π12a -<<时,(0)10g a =->,ππ()022g a =--<, 所以存在0π(0,)2x ∈,使得0()0g x =.x ,()f x ',()f x 的变化情况如下表:所以()f x 在0(0,)x 上单调递增,在0(,)2x 上单调递减.因为(0)f a =,ππ()(1)22f a =-,且0a ≠, 所以2ππ(0)()(1)022f f a =-<,所以()f x 有且仅有一个零点. 综上所述,()f x 有且仅有一个零点.22.【解析】(1)将方程消去参数得,∴曲线的普通方程为, 将代入上式可得, ∴曲线的极坐标方程为:. (2)设两点的极坐标方程分别为, 由消去得,根据题意可得是方程的两根, ∴, ∴.23.【解析】(1)()222f x x a x b =++-+()()222x a x b ≥+--+2a b =++所以23a b ++=,即1a b += (2)由1a b +=,则原式等价为:341log 2a b ⎛⎫+≥⎪⎝⎭,即419a b +≥,而()41414559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当41b aa b a b ⎧=⎪⎨⎪+=⎩,即21,33a b ==时,“=”成立, 故原不等式成立。

相关文档
最新文档