2016-2017年湖北省宜昌市部分重点中学高一(上)数学期末试卷与答案

合集下载

【精品】2016-2017年湖北省宜昌市高一(上)期末数学试卷带解析

【精品】2016-2017年湖北省宜昌市高一(上)期末数学试卷带解析

2016-2017学年湖北省宜昌市高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5.00分)已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合∁U(A∩B)=()A.{3}B.{4,5}C.{3,4,5}D.{1,2,4,5}2.(5.00分)若,则a2017+b2017的值为()A.0 B.1 C.﹣1 D.1或﹣13.(5.00分)已知sin(﹣θ)<0,cos(﹣θ)<0,则角θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(5.00分)下列四组函数中表示相等函数的是()A.f(x)=,g(x)=x B.f(x)=x,g(x)=C.f(x)=lnx2,g(x)=2lnx D.f(x)=log a a x(a>0,a≠1),g(x)= 5.(5.00分)已知角α的终边过点P(﹣8m,﹣6sin30°),且cosα=﹣,则m 的值为()A.B.﹣ C.± D.±6.(5.00分)函数f(x)=e x﹣x﹣2的零点所在的区间为()A.(﹣1,0)B.(1,2) C.(0,1) D.(2,3)7.(5.00分)设扇形的周长为4cm,面积为1cm2,则扇形的圆心角的弧度数是()A.1 B.2 C.3 D.48.(5.00分)已知函数f(x)=,则的值是()A.B.﹣C.D.﹣9.(5.00分)已知简谐运动f(x)=Asin(ωx+φ),的部分图象如图示,则该简谐运动的最小正周期和初相φ分别为()A.B.C.D.10.(5.00分)设函数f(x)是定义在R上的奇函数,对任意x∈R都有f(x)=f (x+4),当x∈(﹣2,0)时,f(x)=2x,则f(2017)﹣f(2016)的值为()A.﹣1 B.1 C.D.﹣11.(5.00分)在区间(﹣,)内,函数y=tanx与函数y=sinx图象交点的个数为()A.5 B.4 C.3 D.212.(5.00分)已知实数a,b满足等式,下列四个关系式:①0<b<a<1;②0<a<b<1;③1<b<a;④a=b,其中不可能成立的关系式有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共4小题,每小题5分,共20分).13.(5.00分)计算:+=(e为自然对数的底数).14.(5.00分)若tanα=﹣2,则=.15.(5.00分)光线透过一块玻璃板,其强度要减弱,要使光线的强度减弱到原来的以下,至少需要这样的玻璃板块.(参考数据:lg2=0.3010,lg3=0.4771)16.(5.00分)函数y=sin(﹣),x∈[﹣2π,2π]的单调递减区间为.三、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程.17.(10.00分)(Ⅰ)求值:sin(﹣);(Ⅱ)已知f(α)=,若sinα=﹣,且α为第三象限角,求f(α)的值.18.(12.00分)已知函数f(x)=的定义域为A,函数g(x)=()x,(﹣1≤x≤0)的值域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|a≤x≤2a﹣1},且C⊆B,求实数a的取值范围.19.(12.00分)已知函数f(x)=sin(2x﹣).(Ⅰ)用“五点法”画出函数y=f(x)区间[0,π]内的图象;(Ⅱ)把f(x)的图象向左平移个单位,得到g(x)的图象,求函数g(x)在[0,]上的最小值及相应x的值.20.(12.00分)经市场调查,宜昌市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足f(t)=20﹣|t﹣10|(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数关系表达式;(2)求该种商品的日销售额y的最大值与最小值.21.(12.00分)已知函数f(x)=ax+(a∈R).(Ⅰ)讨论函数f(x)的奇偶性,并说明理由;(Ⅱ)若函数f(x)在x∈[2,+∞)上为增函数,求实数a的取值范围.22.(12.00分)已知集合M是满足下列性质的函数f(x)的全体:在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.(1)函数f(x)=是否属于集合M?说明理由;(2)若函数f(x)=kx+b属于集合M,试求实数k和b满足的约束条件;(3)设函数f(x)=lg属于集合M,求实数a的取值范围.2016-2017学年湖北省宜昌市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5.00分)已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合∁U(A∩B)=()A.{3}B.{4,5}C.{3,4,5}D.{1,2,4,5}【解答】解:A={1,3},B={3,4,5}⇒A∩B={3};所以C U(A∩B)={1,2,4,5},故选:D.2.(5.00分)若,则a2017+b2017的值为()A.0 B.1 C.﹣1 D.1或﹣1【解答】解:∵,∴b=0,a=﹣1,∴a2017+b2017=(﹣1)2017+02017=﹣1.故选:C.3.(5.00分)已知sin(﹣θ)<0,cos(﹣θ)<0,则角θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:sin(﹣θ)<0,∴sinθ>0,∴θ为第一、二象限角或y正半轴上的角;cos(﹣θ)<0,∴cosθ<0,∴θ为第二、三象限角或x负半轴上的角;∴角θ所在的象限是第二象限角.故选:B.4.(5.00分)下列四组函数中表示相等函数的是()A.f(x)=,g(x)=x B.f(x)=x,g(x)=C.f(x)=lnx2,g(x)=2lnx D.f(x)=log a a x(a>0,a≠1),g(x)=【解答】解:A.f(x)=|x|,两个函数的对应法则不相同,所以A不是同一函数.B.f(x)的定义域为R,而g(x)==x的定义域为(﹣∞,0)∪(0,+∞),所以定义域不同,所以B不是同一函数.C.f(x)=lnx2=2lnx,x≠0,g(x)=2lnx,x>0,两个函数的定义域不相同,所以C不是同一函数.D.f(x)=log a a x(a>0,a≠1)=x,g(x)==x,f(x)的定义域为R,而g (x)的定义域为R,两个函数的定义域和对应法则相同,所以D是同一函数.故选:D.5.(5.00分)已知角α的终边过点P(﹣8m,﹣6sin30°),且cosα=﹣,则m 的值为()A.B.﹣ C.± D.±【解答】解:角α的终边过点P(﹣8m,﹣6sin30°)=(﹣8m,﹣3),又c osα=﹣<0,∴角α的终边在第三象限,则m>0,∴|OP|=,由cosα==﹣,解得m=(m>0).故选:A.6.(5.00分)函数f(x)=e x﹣x﹣2的零点所在的区间为()A.(﹣1,0)B.(1,2) C.(0,1) D.(2,3)【解答】解:因为f(1)=e﹣3<0,f(2)=e2﹣e﹣2>0,所以零点在区间(1,2)上,故选:B.7.(5.00分)设扇形的周长为4cm,面积为1cm2,则扇形的圆心角的弧度数是()A.1 B.2 C.3 D.4【解答】解:设此扇形的圆心角弧度数为α,半径为r,则2r+rα=4,αr2=1,解得α=2,r=1.∴此扇形的圆心角弧度数为2.故选:B.8.(5.00分)已知函数f(x)=,则的值是()A.B.﹣C.D.﹣【解答】解:∵f(x)=,∴==﹣,∴f()=f(﹣)==.故选:C.9.(5.00分)已知简谐运动f(x)=Asin(ωx+φ),的部分图象如图示,则该简谐运动的最小正周期和初相φ分别为()A.B.C.D.【解答】解:由图象可得T=2(4﹣1)=6,由图象过点(1,2)且A=2可得.故选:C.10.(5.00分)设函数f(x)是定义在R上的奇函数,对任意x∈R都有f(x)=f (x+4),当x∈(﹣2,0)时,f(x)=2x,则f(2017)﹣f(2016)的值为()A.﹣1 B.1 C.D.﹣【解答】解:根据题意可得,f(0)=0,∴f(2017)﹣f(2016)=f(1)﹣f(0)=f(1)=﹣f(﹣1)=﹣(2﹣1)=﹣,故选:D.11.(5.00分)在区间(﹣,)内,函数y=tanx与函数y=sinx图象交点的个数为()A.5 B.4 C.3 D.2【解答】解:在同一直角坐标系中,分别作出函数y=tanx与函数y=sinx的图象,如图所示;观察图象知,在﹣π,0,π 处,两个函数的函数值都是0;即两个函数的图象有3个交点.故选:C.12.(5.00分)已知实数a,b满足等式,下列四个关系式:①0<b<a<1;②0<a<b<1;③1<b<a;④a=b,其中不可能成立的关系式有()A.1个 B.2个 C.3个 D.4个【解答】解:设=k,∴由对数的定义知,a=,b=故当k>0时,有0<b<a<1;①可能成立当k=0时,有a=b;④可能成立当k<0时,由1<a<b,②③不可能成立故选:B.二、填空题:本大题共4小题,每小题5分,共20分).13.(5.00分)计算:+=2π(e为自然对数的底数).【解答】解:原式=e+π+|e﹣π|=e+π+π﹣e=2π,故答案为:2π.14.(5.00分)若tanα=﹣2,则=.【解答】解:由tanα=﹣2,得==.故答案为:.15.(5.00分)光线透过一块玻璃板,其强度要减弱,要使光线的强度减弱到原来的以下,至少需要这样的玻璃板11块.(参考数据:lg2=0.3010,lg3=0.4771)【解答】解:由题得经过第n块玻璃板后,其光线的强度变为原来的(1﹣)n,由(1﹣)n<⇒nlg<lg⇒n>≈10.417.所以n取11.故答案为11.16.(5.00分)函数y=sin(﹣),x∈[﹣2π,2π]的单调递减区间为[] .【解答】解:函数y=sin(﹣)∴y=﹣sin(),由,可得:,k∈Z,则[﹣2π,2π]∩[]=[],k∈Z,∴单调递减区间为[],故答案为[].三、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程.17.(10.00分)(Ⅰ)求值:sin(﹣);(Ⅱ)已知f(α)=,若sinα=﹣,且α为第三象限角,求f(α)的值.【解答】解:(Ⅰ)sin(﹣)=﹣sin=﹣sin(5)=sin=;(Ⅱ)f(α)===﹣.sinα=﹣,且α为第三象限角,cosα=﹣=﹣.f(α)=﹣=﹣2.18.(12.00分)已知函数f(x)=的定义域为A,函数g(x)=()x,(﹣1≤x≤0)的值域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|a≤x≤2a﹣1},且C⊆B,求实数a的取值范围.【解答】解:(Ⅰ)由题意得:A=x|x≥2(2分),B=y|1≤y≤2,A∩B={2};(Ⅱ)由(Ⅰ)知:B={y|1≤y≤2},又C⊆B,①2a﹣1<a即a<1时,C=∅,满足,②2a﹣1≥a即a≥1时,要使C⊆B,则,解得:1≤a≤,综上,a∈(﹣∞,].19.(12.00分)已知函数f(x)=sin(2x﹣).(Ⅰ)用“五点法”画出函数y=f(x)区间[0,π]内的图象;(Ⅱ)把f(x)的图象向左平移个单位,得到g(x)的图象,求函数g(x)在[0,]上的最小值及相应x的值.【解答】解:函数f(x)=sin(2x﹣).列表如下:2x(2)f(x)的图象向左平移个单位,可得:g(x)=sin(2x+)∵x∈[0,]上,∴2x+∈[.]当2x+=时,即x=,g(x)取得最小值为=﹣1.20.(12.00分)经市场调查,宜昌市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足f(t)=20﹣|t﹣10|(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数关系表达式;(2)求该种商品的日销售额y的最大值与最小值.【解答】解:(1)依题意,可得:,所以;(2)当0≤t≤10时,y=(30+t)(40﹣t)=﹣(t﹣5)2+1225,y的取值范围是[1200,1225],在t=5时,y取得最大值为1225;当10<t≤20时,=(50﹣t)(40﹣t)=(t﹣45)2﹣25,y的取值范围是[600,1200),在t=20时,y取得最小值为600.综上所述,第五天日销售额y最大,最大为1225元;第20天日销售额y最小,最小为600元.21.(12.00分)已知函数f(x)=ax+(a∈R).(Ⅰ)讨论函数f(x)的奇偶性,并说明理由;(Ⅱ)若函数f(x)在x∈[2,+∞)上为增函数,求实数a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax+,a=0时,f(x)=为偶函数;a≠0时,由于f(﹣x)=﹣x+,f(x)=x+,∴f(x)≠±f(x),∴f(x)既不是奇函数也不是偶函数;(Ⅱ)f(x)=ax+,∴f′(x)=a﹣,令f′(x)=0,则a﹣=0,解得x=,令=2,解得a=;又f(x)在区间[2,+∞)是增函数,∴f′(x)≥0在x∈[2,+∞)上恒成立,实数a的取值范围是[,+∞).22.(12.00分)已知集合M是满足下列性质的函数f(x)的全体:在定义域D 内存在x0,使得f(x0+1)=f(x0)+f(1)成立.(1)函数f(x)=是否属于集合M?说明理由;(2)若函数f(x)=kx+b属于集合M,试求实数k和b满足的约束条件;(3)设函数f(x)=lg属于集合M,求实数a的取值范围.【解答】解:函数f(x)=,(1)由f(x0+1)=f(x0)+f(1),可得=+1,即,∵△<0,∴不存在存在x0.(2)f(x)=kx+b属于集合M,由f(x0+1)=f(x0)+f(1),可得:k(x+1)+b=kx+b+k+b,即kx+k+b=kx+k+2b,∴k∈R,b=0.(3)f(x)=lg,由f(x0+1)=f(x0)+f(1),可得:lg=lg+lg∴lg=lg+lg,∴.∵在定义域D内存在x0,∴令.则yx2+2xy+2y=2x2+2,即(y﹣2)x2+2xy+2y﹣2=0,∵y≠2,△≥0.∴.故得实数a的取值范围[,].赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

湖北省宜昌市金东方高中2016-2017学年高一上学期期末数学试卷 Word版含解析

湖北省宜昌市金东方高中2016-2017学年高一上学期期末数学试卷 Word版含解析

2016-2017学年湖北省宜昌市金东方高中高一(上)期末数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知三个集合U,A,B及元素间的关系如图所示,则(C U A)∩B=()A.{5,6}B.{3,5,6}C.{3}D.{0,4,5,6,7,8}2.若,不共线,且λ+μ=(λ,μ∈R),则()A.=,=B.λ=μ=0C.λ=0,=D.=,μ=03.在平行四边形ABCD中,点E为CD中点,=,=,则等于()A.﹣B.﹣C.D.4.函数f(x)=2x﹣8+log3x的零点一定位于区间()A.(5,6) B.(3,4) C.(2,3) D.(1,2)5.已知,则=()A.B.C.D.6.已知函数则f(x)在区间[0,]上的最大值与最小值分别是()A.1,﹣2 B.2,﹣1 C.1,﹣1 D.2,﹣27.若将函数y=cos 2x的图象向左平移个单位长度,则平移后图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)8.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷、0.76万公顷,则沙漠增加数y(万公顷)关于年数x的函数关系较为近似的是()A.y=0.2x B.C.D.y=0.2+log16x9.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.10.已知函数在(﹣∞,+∞)上单调递减,则a的取值范围是()A.(0,1) B.(0,)C.D.11.设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]12.已知函数f(x)=(a是常数,且a>0).对于下列命题:①函数f(x)的最小值是﹣1;②函数f(x)在R上是单调函数;③若f(x)>0在[,+∞)上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有f()>.其中正确命题的序号是()A.①②B.①③C.③④D.②④二、填空题:(本大题共4小题,每小题5分,共计20分.)13.设扇形的半径长为2,圆心角为,则扇形的面积是.14.化简f(α)==.15.已知函数g(x)=(a+1)x﹣2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log3(x+a)的图象上.则实数a=.16.关于函数f(x)=sin (2x﹣)(x∈R),给出下列三个结论:①对于任意的x∈R,都有f(x)=cos (2x﹣);②对于任意的x∈in R,都有f(x+)=f(x﹣);③对于任意的x∈R,都有f(﹣x)=f(+x).其中,全部正确结论的序号是.三、解答题:(解答应写出文字说明、证明过程或演算步骤.)17.计算(1)lg 8+lg 125﹣()﹣2+16+(﹣1)0(2)已知tanα=3,求的值.18.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}(1)若a=,求A∩B.(2)若A∩B=∅,求实数a的取值范围.19.已知函数f(x)=2sin (2x+).(1)求函数f(x)的最小正周期及其单调减区间;(2)用“五点法”画出函数g(x)=f(x),x∈[﹣,]的图象(完成列表格并作图),由图象研究并写出g(x)的对称轴和对称中心.20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求函数的解析式;(2)设π<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.21.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有成立.(1)判断f(x)在[﹣1,1]上的单调性,并证明它;(2)解不等式f(x2)<f(2x);(3)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.22.已知函数(1)判断f(x)的奇偶性并证明;(2)若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明;(3)若0<m<1,使f(x)的值域为[log m m(β﹣1),log m m(α﹣1)]的定义域区间[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,请说明理由.2016-2017学年湖北省宜昌市金东方高中高一(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知三个集合U,A,B及元素间的关系如图所示,则(C U A)∩B=()A.{5,6}B.{3,5,6}C.{3}D.{0,4,5,6,7,8}【考点】交、并、补集的混合运算.【分析】由图象可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},根据集合的混合运算法则即可得出答案.【解答】解:∵U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},∴C U A={0,4,5,6,7,8},∴(C U A)∩B={5,6},故选A.2.若,不共线,且λ+μ=(λ,μ∈R),则()A.=,=B.λ=μ=0C.λ=0,=D.=,μ=0【考点】平面向量的基本定理及其意义.【分析】,不共线,从而可以由平面向量基本定理得到λ=μ=0,即A正确.【解答】解:根据平面向量基本定理,由λ+μ=,得:λ=μ=0.故选:A.3.在平行四边形ABCD中,点E为CD中点,=,=,则等于()A.﹣B.﹣C.D.【考点】向量的几何表示;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由条件利用两个向量的加减法的法则,以及其几何意义,求得.【解答】解:由题意可得,=++=﹣++=﹣,故选:B.4.函数f(x)=2x﹣8+log3x的零点一定位于区间()A.(5,6) B.(3,4) C.(2,3) D.(1,2)【考点】函数零点的判定定理.【分析】根据连续函数f(x)的解析式,求出f(3)和f(4)的值,根据f(3)f(4)<0,由函数的零点的判定定理得出结论.【解答】解:∵函数f(x)=2x﹣8+log3x是连续函数,f(3)=﹣1,f(4)=log34>0,f(3)f(4)<0,故函数f(x)=2x﹣8+log3x的零点一定位于区间(3,4)内,故选B.5.已知,则=()A.B.C.D.【考点】运用诱导公式化简求值.【分析】将所求利用诱导公式化简,结合已知即可求值得解.【解答】解:∵,∴=cos[﹣()]=.故选:B.6.已知函数则f(x)在区间[0,]上的最大值与最小值分别是()A.1,﹣2 B.2,﹣1 C.1,﹣1 D.2,﹣2【考点】正弦函数的定义域和值域.【分析】根据正弦函数的图象和性质,即可求出函数的最大值和最小值.【解答】解:∵0≤x≤,∴≤2x≤,∴当2x=时,即sin(2x)=1时,函数取得最大值为2﹣1=1,当2x=时,即sin(2x)=时,函数取得最小值为﹣×2﹣1=﹣2,故选:A.7.若将函数y=cos 2x的图象向左平移个单位长度,则平移后图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,得出结论.【解答】解:由题意,将函数y=cos 2x的图象向左平移个单位得y=cos 2(x+)=cos(2x+)的图象,令2x+=kπ,求得x=﹣,故平移后函数的对称轴为x=﹣,k∈Z,故选:C.8.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷、0.76万公顷,则沙漠增加数y(万公顷)关于年数x的函数关系较为近似的是()A.y=0.2x B.C.D.y=0.2+log16x【考点】函数模型的选择与应用.【分析】将(1,0.2),(2,0.4),(3,0.76)分别代入四个选项,通过求值比较即可选出答案.【解答】解:将(1,0.2),(2,0.4),(3,0.76)代入y=0.2x,当x=3时,y=0.6,和0.76相差较大;将(1,0.2),(2,0.4),(3,0.76)代入,当x=3时,y=0.8,和0.76相差0.04;将(1,0.2),(2,0.4),(3,0.76)代入,当x取1,2,3所得的y值都与已知值相差甚远;将(1,0.2),(2,0.4),(3,0.76)代入y=0.2+log16x,当x=3时所得y值相差较大.综合以上分析,选用函数关系较为近似.故选B.9.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【考点】函数的图象.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f (x )=x a (x ≥0),g (x )=log a x 的图象,比照后可得答案. 【解答】解:当0<a <1时,函数f (x )=x a (x ≥0),g (x )=log a x 的图象为:此时答案D 满足要求,当a >1时,函数f (x )=x a (x ≥0),g (x )=log a x 的图象为:无满足要求的答案, 综上:故选D , 故选:D .10.已知函数在(﹣∞,+∞)上单调递减,则a 的取值范围是( )A .(0,1)B .(0,)C .D .【考点】函数单调性的性质.【分析】由已知,f 1(x )=(2a ﹣1)x +7a ﹣2,f 2(x )=a x 在各自的区间上均应是减函数,且当x=1时,应有f1(x)≥f2(x),求解即可.【解答】解:由已知,f1(x)=(2a﹣1)x+7a﹣2在(﹣∞,1)上单减,∴2a ﹣1<0,a<①f2(x)=a x在[1,+∞)上单减,∴0<a<1.②且当x=1时,应有f1(x)≥f2(x).即9a﹣3≥a,∴a≥③且由①②③得,a的取值范围是[,)故选C.11.设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]【考点】分段函数的应用.【分析】当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.【解答】解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.12.已知函数f(x)=(a是常数,且a>0).对于下列命题:①函数f(x)的最小值是﹣1;②函数f(x)在R上是单调函数;③若f(x)>0在[,+∞)上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有f()>.其中正确命题的序号是()A .①②B .①③C .③④D .②④【考点】命题的真假判断与应用.【分析】①由图只需说明在点x=0处函数f (x )的最小值是﹣1; ②只需说明函数f (x )在R 上的单调性即可;③只需说明f (x )>0在[,+∞)上恒成立,则当x=时,函数取得最小值,从而求得a 的取值范围是a >1;④已知函数在(﹣∝,0)上的图象在[0,+∞)上是下凹的,所以任取两点连线应在图象的上方,故D 正确. 【解答】解:函数f (x )=(a 是常数,且a >0)的图象如下图所示:①由图可得:当x=0时,函数f (x )的最小值是﹣1;故正确; ②由图象说明函函数f (x )在R 上不是单调函数;故错;③若f (x )>0在[,+∞)上恒成立,则f ()=a ﹣1>0,求得a 的取值范围是a >1;故正确;④已知函数函数在(﹣∞,0)上的图象在[0,+∞)上是下凹的,所以任取两点连线应在图象的上方,即f ()<,故错误.故正确命题的序号是:①③. 故选:B二、填空题:(本大题共4小题,每小题5分,共计20分.)13.设扇形的半径长为2,圆心角为,则扇形的面积是.【考点】扇形面积公式.【分析】设扇形的圆心角大小为α(rad),半径为r,则扇形的面积为S=r2α,由此得解.【解答】解:∵r=2,α=,∴SS=r2α=22×=.故答案为:.14.化简f(α)==﹣cosα.【考点】三角函数的化简求值.【分析】利用诱导公式化简f(α)的解析式,可得结果.【解答】解:f(α)===﹣cosα,故答案为:﹣cosα.15.已知函数g(x)=(a+1)x﹣2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log3(x+a)的图象上.则实数a=7.【考点】指数函数的图象与性质.【分析】令x﹣2=0,求出A点的坐标,将A带入f(x),求出a的值即可.【解答】解:令x﹣2=0,解得:x=2,此时g(2)=2,故定点A=(2,2),又点A又在函数f(x)=log3(x+a)的图象上,则log3(a+2)=2,解得:a=7,故答案为:7.16.关于函数f(x)=sin (2x﹣)(x∈R),给出下列三个结论:①对于任意的x∈R,都有f(x)=cos (2x﹣);②对于任意的x∈in R,都有f(x+)=f(x﹣);③对于任意的x∈R,都有f(﹣x)=f(+x).其中,全部正确结论的序号是①②③..【考点】正弦函数的图象.【分析】根据三角函数的图象和性质进行判断即可.【解答】解:①f(x)=cos[﹣(2x﹣)]=cos(﹣2x)=cos(2x﹣),故①正确,②f(x+)=sin[2(x+)﹣)]=﹣sin(2x﹣)],f(x﹣)=sin[2(x﹣)﹣)]=﹣sin(2x﹣),则f(x+)=f(x﹣)故②正确③f()=sin(2×﹣)=sin=1为最大值,故x=是函数的对称轴,故③正确,故答案为:①②③.三、解答题:(解答应写出文字说明、证明过程或演算步骤.)17.计算(1)lg 8+lg 125﹣()﹣2+16+(﹣1)0(2)已知tanα=3,求的值.【考点】同角三角函数基本关系的运用;对数的运算性质.【分析】(1)利用对数的运算法则、分数指数幂的运算法则,化简所给的式子,可得结果.(2)利用同角三角函数的基本关系,吧要求的式子化为,可得结果.【解答】解:(1)lg 8+lg 125﹣()﹣2+16+(﹣1)0 =lg1000﹣49+23+1=3﹣49+8+1=﹣37.(2)∵tanα=3,∴===.18.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}(1)若a=,求A∩B.(2)若A∩B=∅,求实数a的取值范围.【考点】集合关系中的参数取值问题;交集及其运算.【分析】(1)当a=时,A={x|},可求A∩B(2)若A∩B=∅,则A=∅时,A≠∅时,有,解不等式可求a 的范围【解答】解:(1)当a=时,A={x|},B={x|0<x<1}∴A∩B={x|0<x<1}(2)若A∩B=∅当A=∅时,有a﹣1≥2a+1∴a≤﹣2当A≠∅时,有∴﹣2<a≤或a≥2综上可得,或a≥219.已知函数f(x)=2sin (2x+).(1)求函数f(x)的最小正周期及其单调减区间;(2)用“五点法”画出函数g(x)=f(x),x∈[﹣,]的图象(完成列表格并作图),由图象研究并写出g(x)的对称轴和对称中心.【考点】五点法作函数y=Asin (ωx +φ)的图象;正弦函数的图象.【分析】(1)根据正弦函数的图象与性质,求出f (x )的最小正周期与单调减区间;(2)根据题意列出表格,根据表格画出函数在x ∈[﹣,]的图象,结合图象得出此函数没有对称轴,有一个对称中心. 【解答】解:(1)函数f (x )=2sin (2x +),∴f (x )的最小正周期为T==π; 令2kπ+≤2x +≤2kπ+,k ∈Z , 则2kπ+≤2x ≤2kπ+,k ∈Z ,kπ+≤x ≤kπ+,k ∈Z ;∴函数f (x )的单调减区间为[kπ+,kπ+](k ∈Z );(2)根据题意列出表格得:)根据表格画出函数g (x )=f (x ),x ∈[﹣,]的图象如图所示,从图象上可以直观看出,此函数没有对称轴,有一个对称中心,对称中心是(﹣,0).20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求函数的解析式;(2)设π<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)在同一坐标系中画出y=2sin(2x+)和直线y=m(m∈R)的图象,结合正弦函数的图象的特征,数形结合求得实数m的取值范围和这两个根的和.【解答】解:(1)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象,可得A=2,根据==﹣,求得ω=2.再根据五点法作图可得2×+φ=,∴φ=,f(x)=2sin(2x+).(2)如图所示,在同一坐标系中画出y=2sin(2x+)和直线y=m(m∈R)的图象,由图可知,当﹣2<m<0或<m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根.∴m的取值范围为:﹣2<m<0或<m<2;当﹣2<m<0时,两根和为;当<m<2时,两根和为.21.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有成立.(1)判断f(x)在[﹣1,1]上的单调性,并证明它;(2)解不等式f(x2)<f(2x);(3)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.【考点】函数恒成立问题;函数奇偶性的性质.【分析】(1)利用函数单调性的定义进行证明:在区间[﹣1,1]任取x1、x2,且x1<x2,利用函数为奇函数的性质结合已知条件中的分式,可以证得f(x1)﹣f (x2)<0,所以函数f(x)是[﹣1,1]上的增函数;(2)由(1)可得f(x)在[﹣1,1]递增,不等式即为﹣1≤x2<2x≤1,解不等式即可得到所求范围;(3)根据函数f(x)≤m2﹣2am+1对所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,说明f(x)的最大值1小于或等于右边,因此先将右边看作a的函数,m为参数系数,解不等式组,即可得出m的取值范围.【解答】解:(1)f(x)是[﹣1,1]上的增函数.理由:任取x1、x2∈[﹣1,1],且x1<x2,则f(x1)﹣f(x2)=f(x1)+f(﹣x2)∵>0,即>0,∵x1﹣x2<0,∴f(x1)﹣f(x2)<0.则f(x)是[﹣1,1]上的增函数.(2)由(1)可得f(x)在[﹣1,1]递增,可得不等式f(x2)<f(2x),即为即解得0<x≤,则解集为(0,];(3)要使f(x)≤m2﹣2am+1对所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,只须f(x)max≤m2﹣2am+1,即1≤m2﹣2am+1对任意的a∈[﹣1,1]恒成立,亦即m2﹣2am≥0对任意的a∈[﹣1,1]恒成立.令g(a)=﹣2ma+m2,只须,解得m≤﹣2或m≥2或m=0,则实数m的取值范围是{m|m=0或m≤﹣2或m≥2}.22.已知函数(1)判断f(x)的奇偶性并证明;(2)若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明;(3)若0<m<1,使f(x)的值域为[log m m(β﹣1),log m m(α﹣1)]的定义域区间[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,请说明理由.【考点】对数函数图象与性质的综合应用.【分析】(1)先求得f(x)的定义域为(﹣∞,﹣3)∪(3,+∞),关于原点对称.再验证,从而可得f(x)为奇函数;(2)f(x)的定义域为[α,β](β>α>0),则[α,β]⊂(3,+∞).设x1,x2∈[α,β],则x1<x2,且x1,x2>3,作差f(x1)﹣f(x2)==,从而可知当0<m <1时,log m,即f(x 1)>f (x 2);当m >1时,log m ,即f (x 1)<f (x 2),故当0<m <1时,f (x )为减函数;m >1时,f (x )为增函数. (3)由(1)得,当0<m <1时,f (x )在[α,β]为递减函数,故若存在定义域[α,β](β>α>0),使值域为[log m m (β﹣1),log m m (α﹣1)],则有,从而问题可转化为α,β是方程的两个解,进而问题得解.【解答】解:(1)由得f (x )的定义域为(﹣∞,﹣3)∪(3,+∞),关于原点对称.∵∴f (x )为奇函数 …(2)∵f (x )的定义域为[α,β](β>α>0),则[α,β]⊂(3,+∞). 设x 1,x 2∈[α,β],则x 1<x 2,且x 1,x 2>3,f (x 1)﹣f (x 2)==∵(x 1﹣3)(x 2+3)﹣(x 1+3)(x 2﹣3)=6(x 1﹣x 2)<0, ∴(x 1﹣3)(x 2+3)<(x 1+3)(x 2﹣3)即,∴当0<m <1时,log m ,即f (x 1)>f (x 2);当m >1时,log m ,即f (x 1)<f (x 2),故当0<m <1时,f (x )为减函数;m >1时,f (x )为增函数. …(3)由(1)得,当0<m<1时,f(x)在[α,β]为递减函数,∴若存在定义域[α,β](β>α>0),使值域为[log m m(β﹣1),log m m(α﹣1)],则有…∴∴α,β是方程的两个解…解得当时,[α,β]=,当时,方程组无解,即[α,β]不存在.…2017年3月10日。

湖北省宜昌市夷陵中学2016_2017学年高一数学上学期期末考试试题

湖北省宜昌市夷陵中学2016_2017学年高一数学上学期期末考试试题

x 4 2
B. g x sin D. g x sin
3 x 4 2 3 x 8 8
x 8 8
10. 如图,在直角梯形 ABCD 中, AB 2 AD 2 DC , E 为 BC 边上一点, BC 3EC , F 为 AE 的中点,则 BF ( A.
x x
(Ⅰ)如果 x (1,2) 时, f ( x ) 有意义,确定 a 的取值范围; (Ⅱ)当 a 0 ,若 f ( x ) 值域为 R ,求 a 的值;
f ( x) 1 对任意的 (Ⅲ)在(Ⅱ)条件下, g ( x) 为定义域为 R 的奇函数,且 x 0 时, g ( x) 10
x)
f (
1
x )
f (2 x) 成立,则称函数 (Ⅰ)若函数 f ( x ) 为理想函数, f ( x ) 为理想函数,
求 f (0) 的值; (Ⅱ)判断函数 g ( x) 2 x 1 ( x [0,1]) 是否为理想函数,并予以证明.
22. (本小题满分 12 分 )函数 f ( x) lg( a 4 2 1) ,
宜昌市夷陵中学 2016—2017 学年度第一学期期末考试
高一数学试卷
考试时间:120 分钟 满分:150 分
命题教师:杨郑国
是符合题目要求的 . 1. 已知集合 A x | x 2 x 2 0 , B x | A. A B B. B A
审题教师:杨明
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只有一项
B. 4


A.
3
B. 3
C.

2016-2017学年湖北省宜昌市部分重点中学高一(上)期末数学试卷

2016-2017学年湖北省宜昌市部分重点中学高一(上)期末数学试卷

2016-2017学年湖北省宜昌市部分重点中学高一(上)期末数学试卷一、选择题(每小题5分,共12题)1. 已知集合M ={x|−1≤x <3, x ∈R },N ={−1, 0, 1, 2, 3},则M ∩N = ( ) A.{−1, 0, 1, 2} B.{−1, 0, 2, 3} C.{0, 1, 2, 3} D.{0, 1, 2}2. 已知点M(5, −6)和向量a →=(1, −2),若NM →=3a →,则点N 的坐标为( ) A.(−3, 6) B.(2, 0) C.(6, 2) D.(−2, 0)3. 下列函数中,既是奇函数又存在零点的是( ) A.y =sin x B.y =cos x C.y =ln xD.y =1x4. 已知函数f(x)={4x ,x >0,f(x +1)−1,x <0,则f(−12)+f(12)=( )A.5B.3C.32D.525. 已知向量a →=(cos θ, sin θ),b →=(1, −2),若a → // b →,则代数式2sin θ−cos θsin θ+cos θ的值是( ) A.34 B.52C.5D.326. 用二分法研究函数f(x)=x 5+8x 3−1的零点时,第一次经过计算f(0)<0,f(0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为( ) A.(0.5, 1)f(0.25) B.(0, 0.5)f(0.125) C.(0, 0.5)f(0.25) D.(0.5, 1)f(0.75)7. 函数y =A sin (ωx +φ)在一个周期内的图象如图,此函数的解析式为( )A.y =2sin (2x +π3)B.y =2sin (2x +2π3)C.y =2sin (2x −π3) D.y =2sin (x 2−π3)8. 若a =log 0.50.2,b =log 20.2,c =20.2,则a ,b ,c 的大小关系是( ) A.b <c <a B.a <b <cC.b <a <cD.c <b <a9. 函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )A. B.C. D.10. 已知点P 在正△ABC 所确定的平面上,且满足PA →+PB →+PC →=AB →,则△ABP 的面积与△BCP 的面积之比为( ) A.1:2B.1:1C.1:4D.1:311. 若x log 32≥−1,则函数f(x)=4x −2x+1−3的最小值为( ) A.−3 B.−4 C.0 D.−32912. 定义域为R 的偶函数f(x)满足对∀x ∈R ,有f(x +2)=f(x)−f(1),且当x ∈[2, 3]时,f(x)=−2x 2+12x −18,若函数y =f(x)−log a (|x|+1)在(0, +∞)上至少有三个零点,则a 的取值范围是( ) A.(0,√22) B.(0,√33) C.(0,√66) D.(0,√55) 二、填空题(每小题5分,共4题)已知幂函数f(x)的图象经过点(3, 19),则f(4)=________.将函数y =cos x 的图象向右移________个单位,可以得到y =sin (x +π6)的图象.已知函数f(x)=x +lg 1+x1−x +5,且f(a)=6,则f(−a)=________.已知平面内有三个向量OA →,OB →,OC →,其中∠AOB =60∘,∠AOC =30∘,且|OA →|=2,|OB →|=2,|OC →|=4√3,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ=________. 三、解答题计算下列各式:(1)(235)0+2−2⋅|−0.064|13−(94)12;(2)lg 22+lg 2⋅lg 5+lg 5−2log 23⋅log 218.B 是单位圆O 上的点,点A(1, 0),点B 在第二象限.记∠AOB =θ且sin θ=45. (1)求B 点坐标; (2)求sin (π+θ)+2sin (π2−θ)2cos (π−θ)的值.已知全集U =R ,集合A ={x|y =√x 2−4x +3},B ={y|y =log 2x, 4<x <16}.(1)求图中阴影部分表示的集合C ;(2)若非空集合D ={x|4−a <x <a},且D ⊆(A ∪B),求实数a 的取值范围. 解答.(1)利用“五点法”画出函数f(x)=sin (12x +π6)在[−π3,11π3]内的简图(2)若对任意x ∈[0, 2π],都有f(x)−3<m <f(x)+3恒成立,求m 的取值范围.某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x (元)表示每张票价,用y (元)表示该影院放映一场的净收入(除去成本费用支出后的收入) 问:(1)把y 表示为x 的函数,并求其定义域;(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?已知函数g(x)=4x −a 2x是奇函数,f(x)=lg (10x +1)+bx 是偶函数.(1)求a 和b 的值.(2)说明函数g(x)的单调性;若对任意的t ∈[0, +∞),不等式g(t 2−2t)+g(2t 2−k)>0恒成立,求实数k 的取值范围.(3)设ℎ(x)=f(x)+12x ,若存在x ∈(−∞, 1],使不等式g(x)>ℎ[lg (10a +9)]成立,求实数a 的取值范围.参考答案与试题解析2016-2017学年湖北省宜昌市部分重点中学高一(上)期末数学试卷一、选择题(每小题5分,共12题)1.【答案】此题暂无答案【考点】交集根助运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】向量在于何中侧应用向量水较线定理平面向明的推标运算【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】函数零都问判定定理函数奇三性的判刺【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】函使的以值【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】三角函表的综简求值平面水因共线(平行)的坐似表阻【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】二分法求明程月近似解【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】由y=于si械(ωx+美)的部分角象六定其解断式【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】对数值于小的侧较【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】函根的盖调道及年调区间函表的透象【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】向量加根法的应盖向量三减弧合引算及码几何意义向都指减家及雨几何意义向量的明角轮法则向明的月响分其几何意义向量验我何表示向量的物明背钾与概念【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】对数值于小的侧较函根的萄送木其几何意义【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】函数水因期性函数根助点与驶还根的关系函数奇明性研性质【解析】此题暂无解析【解答】此题暂无解答二、填空题(每小题5分,共4题)【答案】此题暂无答案【考点】幂函数来概念斗解析式场定找域、值域函使的以值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数y射Asi过(ω复非φ)的图象变换【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函使的以值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】向量在于何中侧应用向明的月响分其几何意义【解析】此题暂无解析【解答】此题暂无解答三、解答题【答案】此题暂无答案【考点】对数都北算性质有于械闭数古的化简求值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】任意角使三角函如三角函表的综简求值象限射子轴线角【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】Ve都n资表达长合氧关系及运算交常并陆和集工混合运算并集较其运脱集合体包某关峡纯断及应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数于成立姆题五点法较函数熔=纯si隐(ωx+作)的图象【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数于析式偏速站及常用方法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数于成立姆题函数奇明性研性质函较绕肠由的判断与证明【解析】此题暂无解析【解答】此题暂无解答。

最新版湖北省宜昌市第一中学高一上学期期末考试数学Word版含答案

最新版湖北省宜昌市第一中学高一上学期期末考试数学Word版含答案

宜昌市第一中学2017年秋季学期高一年级期末考试数 学 试 题考试时间:120分钟 满分150分 命题人:杨天文 审题人:林绍华第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数34x y =的图象是 ( )A .B .C .D .2. ()12230.25(log 3)(log 4)-+的值为( )A .52B .2C .3D .4 3. 扇形的周长是4,面积为1,则该扇形的圆心角的弧度数是( )A .12B .1C .2D .4 4.将函数sin()y x ϕ=+(0ϕπ<<)的图像上的所有点的横坐标伸长到原来的2倍,(纵坐标不变),再将所得到的图像向左平移3π个单位,可以得到一个奇函数的图像,则ϕ的值为( ) A .56π B .23π C .3π D .6π 5.共点力()()12lg2,lg2,lg5,lg2==F F 作用在物体M 上,产生位移()2lg5,1=S ,则共点力对物体做的功为( )A .lg 2B .lg 5C .1D .2 6.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线30x y -=上,则3sin()2cos()2sin()sin()2πθπθπθπθ++----等于 ( )A .32-B .32C .0D .237.若定义域为R 的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)为偶函数,下列式子正确的是( )A. f(6)>f(7)B. f(6)>f(9)C. f(7)>f(9)D. f(7)>f(10) 8.函数()2sin()f x x ωϕ=+(0ω>)的图象经过,26A π⎛⎫-- ⎪⎝⎭、,24B π⎛⎫⎪⎝⎭两点,则ω( ) A .最大值为3 B .最小值为3 C .最大值为125 D .最小值为1259.函数()23sinlog 2f x x x π=+的零点的个数为( )A .3B .4C .5D .610.对于定义在R 上的函数)(x f ,有关下列命题:①若)(x f 满足)2017()2018(f f >,则)(x f 在R 上不是减函数;②若)(x f 满足)2()2(f f =-,则函数)(x f 不是奇函数;③若)(x f 满足在区间(),0-∞上是减函数,在区间[)0.+∞也是减函数,则)(x f 在R 上也是减函数;④若)(x f 满足)2018()2018(f f ≠-,则函数)(x f 不是偶函数.其中正确的命题序号是( )A .①②B .①④C .②③D .②④11.若tan 3tan 7πα=,则sin 75cos 14παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭( ) A .1 B .12 C .13 D .1412.已知集合M ={1,2,3},N ={1,2,3,4},定义函数N M f →:.若点A (1,f (1))、B (2,)2(f )、C (3,)3(f ),ΔABC 的外接圆圆心为D ,且)(R ∈=+λλ,则满足条件的函数)(x f 有( )A . 6个B . 10个C . 12个D . 16个第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题卡上)13.方程2(1)0x p x q --+=的解集为A ,方程2(1)0x q x p +-+=的解集为B ,已知{2}A B ⋂=-,则A B ⋃= .14.已知奇函数a x f x +-=131)(,)0(≠a ,则方程65)(=x f 的解=x ___ ___. 15.若t an α,tan β是方程2560++=x x 的两个根,且,(,)22ππαβ∈-,则αβ+= . 16.设()⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡∈+-⎪⎭⎫⎢⎣⎡∈+--=1,212221,01)21(22x x x x x f ,则()[]x x f f y -=所有零点的和是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分) (1)已知()f x =,,2παπ⎛⎫∈ ⎪⎝⎭.化简:()()cos cos f f αα+-; (2)求值:()sin 501310+tan .18.(本题满分12分)已知函数2()2sin 1f x x x θ=+-,1[]2x ∈. (1)当6πθ=时,求()f x 的最大值和最小值;(2)若()f x在1[]2x ∈上是单调函数,且[0,2)θπ∈,求θ的取值范围.19.(本题满分12分)已知向量(3,1)m =,向量n 是与向量m 夹角为3π的单位向量. ⑴求向量n ;⑵若向量n 与向量(3,1)q =-共线,且n 与213,x p x x +⎛⎫= ⎪⎭的夹角为钝角,求实数x 的取值范围.20.(本题满分12分)已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (1)函数()f x 的最小值和图像对称中心的坐标; (2)函数()f x 的单调增区间.21.(本题满分12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元. 该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件 的出厂单价就降低0.02元,但实际出厂单价不能低于51元. (1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数()P f x =的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元? (工厂售出一个零件的利润=实际出厂单价-单件成本)22.(本题满分12分)函数()y f x =是定义域为R 的奇函数,且对任意的x R ∈,都有(4)()f x f x+=成立,当(0,2)∈x 时,2()1f x x=-+.(1)求函数()f x的解析式;(2)求不等式()1f x>-的解集.宜昌市第一中学2017年秋季学期高一年级期末考试数学试题参考答案1---12 ADCA DBDD CBBC13.{2,1,1}-- 14.3log4x=15.34π-16.244317.解:(1)∵f(x)=,α∈(,π),∴f(cosα)+f(﹣cosα)=+=+=+=;……..5分(2)原式=sin50°•=cos40°•===1.……..10分18.解:(1)6πθ=时,2215()1()24f x x x x=+-=+-由31[]2x∈,当12x=-时,()f x 有最小值为54-,当12x=时,()f x 有最大值为14-………………6分(2)2()2sin1f x x xθ=+-的图象的对称轴为sinxθ=-,由于()f x在31[]2x∈上是单调函数,所以3sin2θ-≤-或1sin2θ-≥,………………8分即3sinθ≥1sin2θ≤-,所求θ的取值范围是2711[,][,]3366ππππ………………12分19.⑴设向量(,)n x y=,则22131x yx y⎧+=⎪+=,…….. 3分解之得:01x y =⎧⎨=⎩或212x y ⎧=⎪⎪⎨⎪=-⎪⎩, (0,1)n ∴=或31(,)22n =-;……….. 6分 ⑵∵向量n 与向量(3,1)q =-共线,∴31(,)2n =-,…… 7分又∵n 与213,x p x x +⎛⎫= ⎪⎭的夹角为钝角,0n p ∴<即321022x x x +-< ()()3110x x x +-<,………..……. 9分∴13x <-或01x <<. ……………..…..…..10分又当//n p )210++=x x,得1x =-,此时()13,12p n =-=-,向量n 与p 的夹角为π,∴1x ≠-. ………..…..11分故所求的实数x 的取值范围是1x <-或113x -<<-或01x << (12)分20. 解:1cos 23(1cos 2)()sin 21sin 2cos 22)224x x f x x x x x π-+=++=++=++…………………4分∴当2242x k πππ+=-,即3()8x k k Z ππ=-∈时, ()f x 取得最小值2………6分函数()f x 图像的对称中心坐标为,228ππ⎛⎫-∈ ⎪⎝⎭k k Z .…………………………8分(2) ()2)4f x x π=+由题意得: 222()242k x k k Z πππππ-≤+≤+∈即: 3()88k x k k Z ππππ-≤≤+∈因此函数()f x 的单调增区间为3[,]()88k k k Z ππππ-+∈ …………12分21. 解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x o 个,则x o =100+=550,因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元,…(2分) (2)当0<x ≤100时,P=60,当100<x <550时,P=60﹣0.02(x ﹣100)=62﹣,当x ≥550时 P=51,P=f (x )= (x ∈N ) …(7分)(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则L=(P ﹣40)x= (x ∈N )当x=500时 L=6000.当销售商一次订购500个零件时,该厂获得的利润为6000元.12分 22. 解:(1)当0x =时,(0)(0),(0)0f f f =-∴=………………………(1分)当(2,0)∈-x 时,2(0,2),()()1-∈=--=-x f x f x x ……………………(2分) 由(4)()f x f x +=,易求()20f k k Z =∈, ………(4分) 当(42,4)()∈-∈x k k k Z 时2(4)(2,0)()(4)(4)1-∈-∴=-=--x k f x f x k x k当(4,42)()∈+∈x k k k Z 时2(4)(0,2)()(4)(4)1-∈∴=-=--+x k f x f x k x k …………………………(6分)故当[42,42]()x k k k Z ∈-+∈时,函数()f x 的解析式为22(4)1,(42,4)()0,2(4)1,(4,42x k x k k f x x kx k x k k ⎧--∈-⎪==⎨⎪--+∈+⎩)()k Z ∈…………………………………(7分) (2)当2,2∈-x ()时,由()1f x >,得 22011-<<⎧⎨->-⎩x x 或20211<<⎧⎨-+>-⎩x x 或0x =解上述两个不等式组得2-<<x 10分)故()1f x >-的解集为{|424)x k x k k Z -<<∈…………………(12分)。

湖北省部分重点中学2016-2017学年高一上学期期末联考数学试题 Word版含答案

湖北省部分重点中学2016-2017学年高一上学期期末联考数学试题 Word版含答案

2016年秋季湖北省部分重点中学期末联考高一数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}3A x x =<,{}0B x x =>,则A B = ( )A .{}03x x <<B .{}0x x >C .{}3x x <D .R 2.已知α是锐角,那么2α是( )A .第一象限角B .第二象限角C .第一或第二象限角D .小于180︒的正角3.对于任意两个向量a b,,下列说法正确的是( ) A .若a b ,满足a b >,且a 与b 同向,则a b >B .当实数0λ=时,0a λ=C .a b a b ⋅≤D .a b a b -≤-4.已知扇形的周长是6cm ,面积是22cm ,则扇形的圆心角的弧度数是( ) A .1 B .4 C.1或4 D .2或45.设0.32a =,20.3b =,2log 3c =,则a b c ,,的大小关系是( ) A .a b c << B .c b a << C.c a b << D .b a c <<6.已知5AB a b =+ ,28BC a b =-+ ,()CD a b λ=-,且A ,B ,D 三点共线,则λ的值为( )A .3B .3- C.2 D .2-7.某同学骑车上学,离开家不久,发现作业本忘家里了,于是返回家找到作业本再上学,为了赶时间快速行驶,下图中横轴表示出发后的时间,纵轴表示离学校的距离,则较符合该同学走法的图是( )A .B . C. D .8.把函数()sin 36f x x π⎛⎫=-+ ⎪⎝⎭的周期扩大为原来的2倍,再将其图象向右平移3π个单位长度,则所得图象的解+析式为( )A .sin 66y x π⎛⎫=- ⎪⎝⎭B .cos6y x = C.23sin 32x y π⎛⎫=- ⎪⎝⎭D .3sin 62y x π⎛⎫=-- ⎪⎝⎭9.若12e e ,是夹角为60︒的两个单位向量,122a e e =+ ,1232b e e =-+ ,则a b,的夹角为( )A .60︒B .120︒ C.30︒ D .150︒ 10.设函数()f x =K ,定义函数()()()()K f x f x Kf x K f x K⎧≤⎪=⎨>⎪⎩,,,若对于函数()f x =x ,恒有()()K f x f x =,则( )A .K的最小值为.K 的最大值为1 C.K的最大值为.K 的最小值为111.如图,ABC △的外接圆的圆心为O ,2AB =,3AC =,BC =则AO BC ⋅=( )A .32 B .52C.2 D .3 12.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在403π⎛⎤ ⎥⎝⎦,上单调递增,在423ππ⎛⎤ ⎥⎝⎦,上单调递减,当[]2x ππ∈,时,不等式()33m f x m -≤≤+恒成立,则实数m 的取值范围为( ) A .112⎡⎤⎢⎥⎣⎦, B .()2-∞-, C. 542⎡⎤-⎢⎥⎣⎦, D .722⎡⎤-⎢⎥⎣⎦,二、填空题(每题5分,满分20分,将答案填在答题纸上)13.点C 在线段AB 上,且52AC CB =,AC AB λ=,BC AB μ= ,则λμ+= . 14.某班共有50名学生,通过调查发现有30人同时在张老师和王老师的朋友圈,只有1人不在任何一个老师的朋友圈,且张老师的朋友圈比王老师的朋友圈多7人,则张老师的朋友圈有 人.15.已知α为第四象限角,化简cos sin += .16.已知函数()()()5log 3333x x f x x ⎧-≠⎪=⎨=⎪⎩,,,若函数()()()2F x f x bf x c =++有五个不同的零点125x x x ,,…,,则()125f x x x +++=… .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知集合{}3327x A x =≤≤,{}2log 1B x x =>. (1)求()R A C B ;(2)已知集合{}1C x x a =<<,若C A C = ,求实数a 的取值集合. 18. (本小题满分12分) 已知()()()()()()2sin cos 2tan sin tan 3a a a f a a a πππππ-⋅-⋅-+=-+⋅-+.(1)化简()f a ; (2)若()18f a =,且42a ππ<<,求cos sin a a -的值; (3)若313a π=-,求()f a 的值. 19. (本小题满分12分) 已知sin 213a x π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,,)1b =- ,,()f x a b =⋅.(1)求()f x 的周期及单调减区间;(2)已知02x π⎡⎤∈⎢⎥⎣⎦,,求()f x 的值域.20. (本小题满分12分) 设a 是实数,()()221x f x a x R =-∈+. (1)证明:()f x 是增函数;(2)是否存在实数a ,使函数()f x 为奇函数? 21. (本小题满分12分)某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产一百台,需要新增加投入2.5万元.经调查,市场一年对此产品的需求量为500台,销售收入为()2162R t t t =-(万元),()05t <≤,其中t 是产品售出的数量(单位:百台). (1)把年利润y 表示为年产量x (单位:百台:的函数; (2)当年产量为多少时,工厂所获得年利润最大? 22. (本小题满分12分)如图,在OAB △中,14OC OA = ,12OD OB =,AD 与BC 交于点M ,设OA a = ,OB b = .(1)用a b ,表示OM;(2)在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过点M ,设OE pOA =,OF qOB = ,求证:13177p q+=. 2016~2017学年度上学期孝昌一中、应城一中、孝感一中三校期末联考高一数学参考答案一、选择题二、填空题:13.7314.43 15.ααsin cos - 16.12log 5 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分10分)解:(1)}31|{}2733|{≤≤=≤≤=x x x A x ……………….1分}2|{}1log |{2>=>=x x x x B ,}2{≤=∴x x B C R ………………….2分∴)(B C A R }.2x 1{x ≤≤= ………………….4分(2) C A C = A C ⊆∴. ………………….5分 ①当1a ≤时,C =∅,此时C A ⊆; ………………….7分 ②当1a >时,C A ⊆,则1a 3<≤; ………………….9分综合①②,可得a 的取值范围是(]3,∞- ………………….10分 18、(本小题满分12分)解: (1) 由诱导公式 f (α)=sin 2α·cos α·tan α -sin α -tan α =sin α·cosα. …………….4分(2)由f (α)=sin αcos α=18可知(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×18=34. ……….6分 又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0.∴cos α-sin α=-32. ………8分 (3) ∵α=-31π3=-6×2π+5π3, ∴f ⎝ ⎛⎭⎪⎫-31π3=cos ⎝ ⎛⎭⎪⎫-31π3·sin ⎝ ⎛⎭⎪⎫-31π3=cos ⎝ ⎛⎭⎪⎫-6×2π+5π3·sin ⎝ ⎛⎭⎪⎫-6×2π+5π3=cos 5π3·sin 5π3=12·⎝ ⎛⎭⎪⎫-32=-34. …….12分 19、(本小题满分12分) 解:(1) 1)32sin(3)(--=⋅=πx b a x f …………………1 分所以)(x f 的周期ππ==22T . …………………3 分 令3511222,2321212k x k k x k πππππππππ+≤-≤++≤≤+解得1211125ππππ+≤≤+k x k …………………5 分 511[,],1212k k k Z ππππ∴++∈为)(x f 的单调减区间. …………………6 分(2) 因为20,2,sin(2)123333x x x πππππ≤≤-≤-≤≤-≤ ……………9分所以.251)23(3)(min -=--⋅=x f .13113)(max -=-⋅=x f ……11分 所以)(x f 的值域为]13,25[--………………12分20、(本小题满分12分) 解:(1)证明:设x 1<x 2,则 f (x 2)-f (x 1)=>0,即f (x 2)>f (x 1).∴f (x )在R 上为增函数. …………………………….. 6分 (2) 存在a =1,使)(x f 为奇函数 …………………………….. 8分 若)(x f 为奇函数,则f (-x )=a -22-x +1=a -2x +11+2x,-f (x )=-a +22x +1,由 f (-x )=-f (x ),得a -2x +11+2x =-a +22x+1, …………………………….10分 ∴(a -1)(2x +1)=0恒成立,∴a =1. …………………………….. 12分 (也可先由0)0(=f 得到a =1,将a =1代入解+析式,再证明)(x f 为奇函数.) 21、(本小题满分12分) 解:(1)当05x <≤时21()60.5 2.52f x x x x =---213.50.52x x =-+- …………3分 当5x >时21()6550.5 2.52f x x =⨯-⨯--17 2.5x =- …………5分即=y 21 3.50.5()217 2.5x x f x x⎧-+-⎪=⎨⎪-⎩ (05)(5)x x <≤> …………6分(2)当05x <≤时21()(71)2f x x x =--+21745()228x =--+ ∴当 3.5(0.5]x =∈时,max 45() 5.6258f x == ………………8分 当5x >时,()f x 为(5,)+∞上的减函数, 则()(5)17 2.55 4.5f x f <=-⨯= ….10分 又5.625 4.5>∴max ()(3.5) 5.625f x f == ……….11分故当年产量为350台时,工厂所获年利润最大. …………12分22、(本小题满分12分)(1)解 设OM →=m a +n b ,则AM →=(m -1)a +n b ,AD →=-a +12b .∵点A 、M 、D 共线,∴AM →与AD →共线,∴m -1-1=n12,∴m +2n =1.① …………3分CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=-14a +b .∵点C 、M 、B 共线,∴CM →与CB →共线,∴m -14-14=n1, ∴4m +n =1.② …………6分联立①②可得m =17,n =37,∴OM →=17a +37b . …………8分(2)证明 EM →=⎝ ⎛⎭⎪⎫17-p a +37b ,EF →=-p a +q b , ∵EF →与EM →共线, ∴17-p-p =37q,∴17q -pq =-37p ,即17p +37q =1. ……………12分。

湖北省宜昌一中高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

湖北省宜昌一中高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某一中高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A=,则A∩B=()A.(e,4)B.[e,4)C.[1,+∞)D.[1,4)2.函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π3.下列函数是幂函数的是()A.y=x4+x2B.y=10x C.y=D.y=x+14.在四边形ABCD中,若,则四边形ABCD是()A.矩形 B.菱形 C.正方形D.平行四边形5.如图,函数f(x)的图象是折线段ABC,其中点A,B,C的坐标分别为(0,4),(2,0),(6,4),则f{f[f(2)]}=()A.0 B.2 C.4 D.66.已知,则sinα的值为()A.B. C.D.7.已知a>1,函数y=a x与y=log a(﹣x)的图象只可能是()A.B. C.D.8.对整数n≥3,记f(n)=log23•log34…log n﹣1n,则f(22)+f(23)+…+fA.55 B.1024 C.54 D.10009.f(x)是奇函数,对任意的实数x,y,有f(x+y)=f(x)+f(y),且当x<0时,f(x)>0,则f(x)在区间[a,b]上()A.有最小值f(a)B.有最大值f(a)C.有最大值D.有最小值10.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=m(0<m<A)的三个相邻交点的横坐标分别为3,5,11,则f(x)的单调递减区间是()A.[8k,8k+4],k∈Z B.[8kπ,8kπ+4],k∈ZC.[8k﹣4,8k],k∈Z D.[8kπ﹣4,8kπ],k∈Z11.已知α>0且a≠1,函数f(x)=满足对任意实数x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,则a的取值X围是()A.B.(0,1)C.(1,+∞)D.12.在平面直角坐标系xOy中,已知任意角θ以x轴非负半轴为始边,若终边经过点P(x0,y0)且|OP|=r(r>0),定义sicosθ=,称“sicosθ”为“正余弦函数”.对于正余弦函数y=sicosx,有同学得到如下结论:①该函数的图象与直线y=有公共点;②该函数的一个对称中心是;③该函数是偶函数;④该函数的单调递增区间是.以上结论中,所有正确的序号是()A.①②③④ B.③④ C.①② D.②④二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.已知函数f(x)=4x2﹣kx﹣8在区间[2,+∞)上具有单调性,则实数k的取值X围是.14.=.15.工艺扇面是中国书画一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为120°,外圆半径为60cm,内圆半径为30cm.则制作这样一面扇面需要的布料为cm2(用数字作答,π取3.14).16.x为实数,[x]表示不超过x的最大整数,若函数{x}=x﹣[x],则方程2016x+=0的实数解的个数是.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.计算:(1)sin(2)已知=3,求的值.18.已知函数f(x)=sin2x+2x,x∈R.(1)求函数f(x)的值域;(2)y=f(x)的图象可由y=sin2x的图象经过怎样的变换得到?写出你的变换过程.19.已知函数f(x)=b•a x(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B (3,24).(1)求f(x)的表达式;(2)设函数g(x)=f(x)﹣2×3x,求g(x+1)>g(x)时x的取值X围.20.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:t(时) 0 3 6 9 12 15 18 21 24y(米) 1.5 1.0 0.5 1.0 1.5 1 0.5 0.99 1.5经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b(A>0,ω>0)(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式(2)依据规定,当海浪高度高于1.25米时才对冲浪爱好者开放,则一天内的上午8:00至晚上24:00之间,有多少时间可供冲浪爱好者进行运动?21.已知函数.(1)判断函数f(x)的奇偶性;(2)求证;(3)若,,求f(a)的值.22.已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|)(Ⅰ)某某数a,b的值;(Ⅱ)若不等式f(log2k)>f(2)成立,某某数k的取值X围;(Ⅲ)定义在[p,q]上的一个函数m(x),用分法T:p=x0<x1<…<x i<…<x n=q将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得和式恒成立,则称函数m(x)为在[p,q]上的有界变差函数,试判断函数f(x)是否为在[1,3]上的有界变差函数?若是,求M的最小值;若不是,请说明理由.(参考公式:…+f(x n))2015-2016学年某某省某某一中高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A=,则A∩B=()A.(e,4)B.[e,4)C.[1,+∞)D.[1,4)【考点】交集及其运算.【专题】集合思想;定义法;集合.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中lnx≥1=lne,得到x≥e,即A=[e,+∞),由<2,得到0<x<4,即B=(0,4),则A∩B=[e,4),故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π【考点】三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.下列函数是幂函数的是()A.y=x4+x2B.y=10x C.y=D.y=x+1【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;函数的性质及应用.【分析】根据幂函数的定义判断即可.【解答】解:由函数的定义知:A是四次函数,B是指数函数,C是幂函数,幂函数x前面的系数必须为1,D是一次函数,故选:C.【点评】本题考查函数的定义,解题时要认真审题,仔细解题.4.在四边形ABCD中,若,则四边形ABCD是()A.矩形 B.菱形 C.正方形D.平行四边形【考点】向量的加法及其几何意义.【专题】作图题.【分析】根据向量加法的平行四边形法则,即可得解【解答】解:∵在四边形ABCD中,若,且共起点∴由向量加法加法的平行四边形法则知,线段AC是以AB、AD为邻边的平行四边形的对角线∴四边形ABCD是平行四边形故选D【点评】本题考查向量的加法.共起点的两个向量相加时满足平行四边形法则;首尾相接的两个向量相加时满足三角形法则;多个向量相加时满足多边形法则.属简单题5.如图,函数f(x)的图象是折线段ABC,其中点A,B,C的坐标分别为(0,4),(2,0),(6,4),则f{f[f(2)]}=()A.0 B.2 C.4 D.6【考点】函数的值.【专题】计算题;数形结合;数形结合法;函数的性质及应用.【分析】结合函数的性质和图象求解.【解答】解:∵函数f(x)的图象是折线段ABC,其中点A,B,C的坐标分别为(0,4),(2,0),(6,4),∴f(2)=0,f[f(2)]=f(0)=4,f{f[f(2)]}=f(4)=2.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.6.已知,则sinα的值为()A.B. C.D.【考点】两角和与差的正弦函数.【专题】函数思想;综合法;三角函数的图像与性质.【分析】由题意和诱导公式,结合二倍角公式可得.【解答】解:∵,∴sin(﹣)=,∴sinα=cos(α﹣)=1﹣2sin2(﹣)=,故选:D.【点评】本题考查三角函数公式的应用,涉及整体思想和二倍角公式,属基础题.7.已知a>1,函数y=a x与y=log a(﹣x)的图象只可能是()A.B. C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】根据y=a x是增函数,函数y=log a(﹣x)的定义域为(﹣∞,0),且在定义域内为减函数,从而得出结论.【解答】解:已知a>1,故函数y=a x是增函数.而函数y=log a(﹣x)的定义域为(﹣∞,0),且在定义域内为减函数,故选B.【点评】本题主要考查函数的定义域、单调性,函数的图象,属于基础题.8.对整数n≥3,记f(n)=log23•log34…log n﹣1n,则f(22)+f(23)+…+fA.55 B.1024 C.54 D.1000【考点】对数的运算性质.【专题】计算题;规律型;函数的性质及应用.【分析】化简已知条件,代入所求的表达式化简求解即可.【解答】解:对整数n≥3,记f(n)=log23•log34…log n﹣1n=log2n,f(22)+f(23)+…+ff (x)是奇函数,对任意的实数x,y,有f(x+y)=f(x)+f(y),且当x<0时,f(x)>0,则f(x)在区间[a,b]上()A.有最小值f(a)B.有最大值f(a)C.有最大值D.有最小值【考点】抽象函数及其应用;函数奇偶性的性质.【专题】转化思想;定义法;函数的性质及应用.【分析】根据函数奇偶性和单调性的定义和性质判断函数的单调性即可.【解答】解:设x1<x2,则设x1﹣x2<0,此时f(x1﹣x2)>0,∵f(x)是奇函数,则即f(x1﹣x2)=f(x1)+f(﹣x2)>0,即f(x1)﹣f(x2)>0,则f(x2)<f(x1),即f(x)单调递减;则函数f(x)在区间[a,b]上为减函数,则最大值为f(a),故选:B.【点评】本题主要考查抽象函数的应用,利用赋值法结合函数单调性和奇偶性的定义是解决本题的关键.10.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=m(0<m<A)的三个相邻交点的横坐标分别为3,5,11,则f(x)的单调递减区间是()A.[8k,8k+4],k∈Z B.[8kπ,8kπ+4],k∈ZC.[8k﹣4,8k],k∈Z D.[8kπ﹣4,8kπ],k∈Z【考点】正弦函数的图象.【专题】函数思想;综合法;三角函数的图像与性质.【分析】根据三个点的横坐标判断f(x)的周期和对称轴,求出ω,φ,得到f(x)的解析式,结合正弦函数的单调性列出不等式解出.【解答】解:∵f(x)=Asin(ωx+φ)与y=m的三个相邻交点横坐标分别为3,5,11,∴f(x)的周期T=11﹣3=8,且f(4)=A,f(8)=﹣A,∴ω=,φ=﹣.∴f(x)=Asin (),令+2kπ≤≤+2kπ,解得4+8k≤x≤8+8k,k∈Z.故选:C.【点评】本题考查了正弦函数的图象与性质,属于中档题.11.已知α>0且a≠1,函数f(x)=满足对任意实数x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,则a的取值X围是()A.B.(0,1)C.(1,+∞)D.【考点】分段函数的应用;函数的值.【专题】转化思想;分析法;函数的性质及应用;不等式的解法及应用.【分析】由题意可得(x1﹣x2)(f(x1)﹣f(x2))>0,可得f(x)在R上为增函数,运用单调性的定义可得a﹣1>0,(a﹣1)•0+3a﹣4≤a0,解不等式即可得到所求X围.【解答】解:x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),可得(x1﹣x2)(f(x1)﹣f(x2))>0,由题意可得f(x)在R上为增函数,当x≤0时,f(x)递增,即有a﹣1>0,解得a>1;当x>0时,f(x)递增,可得a>1;又f(x)为R上的增函数,可得(a﹣1)•0+3a﹣4≤a0,解得a≤.综上可得,a的X围是1<a≤.故选:A.【点评】本题考查函数的单调性的判断和运用,注意运用一次函数和指数函数的单调性,以及分界点的情况,考查运算能力,属于中档题和易错题.12.在平面直角坐标系xOy中,已知任意角θ以x轴非负半轴为始边,若终边经过点P(x0,y0)且|OP|=r(r>0),定义sicosθ=,称“sicosθ”为“正余弦函数”.对于正余弦函数y=sicosx,有同学得到如下结论:①该函数的图象与直线y=有公共点;②该函数的一个对称中心是;③该函数是偶函数;④该函数的单调递增区间是.以上结论中,所有正确的序号是()A.①②③④ B.③④ C.①② D.②④【考点】正弦函数的图象;余弦函数的图象.【专题】新定义;转化思想;转化法;三角函数的图像与性质.【分析】根据题意,求出函数y=f(x)=sicosθ=sin(x+),再利用三角函数的图象与性质,对题目中的命题进行分析判定即可.【解答】解:对于①,根据三角函数的定义可知x0=rcosx,y0=rsinx,所以sicosθ===sinx+cosx=sin(x+),因为﹣1≤sin(x+)≤1,所以﹣≤sin(x+)≤,即该函数的最大值为<,其图象与直线y=无公共点,①错误;对于②,因为y=sicosθ=f()=sin(+)=0,所以该函数的图象关于点(,0)对称,②正确;对于③,函数y=sicosθ=f(x)=sin(x+)的图象不关于y轴对称,不是偶函数,③错误;对于④,因为y=f(x)=sicosθ=sin(x+),所以由2kπ﹣≤x+≤2kπ+,可得2kπ﹣≤x≤2kπ+,k∈Z即该函数的单调递增区间为[2kπ﹣,2kπ+],k∈Z,④正确.综上可得,正确的命题有2个,是②④.故选:D.【点评】本题主要考查了三角函数的图象和性质的应用问题,解题的关键是求出函数y=sicosθ的表达式,是综合性题目.二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.已知函数f(x)=4x2﹣kx﹣8在区间[2,+∞)上具有单调性,则实数k的取值X围是(﹣∞,16].【考点】二次函数的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】已知函数f(x)=4x2﹣kx﹣8,求出其对称轴x,根据二次函数的性质得到关于k 的不等式,解出即可,从而求出k的X围.【解答】解:∵函数f(x)=4x2﹣kx﹣8的对称轴为:x=,∵函数f(x)=4x2﹣kx﹣8在[2,+∞)上具有单调性,根据二次函数的性质可知对称轴x=≤2,解得:k≤16;故答案为:(﹣∞,16].【点评】此题主要考查二次函数的图象及其性质,利用对称轴在区间上移动得出,此题是一道基础题.14.=.【考点】两角和与差的正切函数.【专题】三角函数的求值.【分析】原式中的“1”化为tan45°,利用两角和与差的正切函数公式及特殊角的三角函数值化简即可求出值.【解答】解:原式==tan(45°+15°)=tan60°=.故答案为:【点评】此题考查了两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.15.工艺扇面是中国书画一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为120°,外圆半径为60cm,内圆半径为30cm.则制作这样一面扇面需要的布料为2826cm2(用数字作答,π取3.14).【考点】扇形面积公式.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】由扇形的面积公式,可得制作这样一面扇面需要的布料.【解答】解:由扇形的面积公式,可得制作这样一面扇面需要的布料为×60×60﹣×30×30≈2826.故答案为:2826.【点评】本题考查扇形的面积公式,考查学生的计算能力,比较基础.16.x为实数,[x]表示不超过x的最大整数,若函数{x}=x﹣[x],则方程2016x+=0的实数解的个数是2.【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】方程2016x+=0的实数解的个数即函数y=﹣﹣2016x的图象与函数y={x}的图象的交点个数.【解答】解:∵x为实数,[x]表示不超过x的最大整数,∴由题意,函数{x}=x﹣[x],表示x的小数部分,方程2016x+=0的实数解的个数即函数y=﹣﹣2016x的图象与函数y={x}的图象的交点个数,根据函数y=y=﹣﹣2016x的单调性,可得函数y=﹣﹣2016x的图象与函数y={x}图象的交点个数为2.∴方程2016x+=0的实数解的个数是2.故答案为:2.【点评】本题考查方程的实数解的个数的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)sin(2)已知=3,求的值.【考点】有理数指数幂的化简求值;运用诱导公式化简求值.【专题】计算题;转化思想;综合法;函数的性质及应用;三角函数的求值.【分析】(1)利用三角函数诱导公式求解.(2)由=3,推导出x2+x﹣2=47,3﹣x=()﹣x=1,由此能求出.【解答】解:(1)sin=sin+cos﹣tan=﹣1==﹣1.(2)∵=3,∴x+=7,∴x2+x﹣2=47,3﹣x=()﹣x=1,∴==.【点评】本题考查三角函数求值、有理数指数幂化简求值,是基础题,解题时要认真审题,注意诱导公式、有理数指数幂性质、运算法则的合理运用.18.已知函数f(x)=sin2x+2x,x∈R.(1)求函数f(x)的值域;(2)y=f(x)的图象可由y=sin2x的图象经过怎样的变换得到?写出你的变换过程.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】计算题;数形结合;三角函数的求值;三角函数的图像与性质.【分析】(1)先根据同角三角函数的基本关系、根据二倍角公式和两角和与差的正弦公式化简为y=Asin(ωx+Φ)+b的形式,即可得到答案.(2)根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:(1)∵f(x)=sin2x+2sinxcosx+3cos2x=sin2x+cos2x+2=2sin(2x+)+2,∴由sin(2x+)∈[﹣1,1],可得:f(x)=2sin(2x+)+2∈[0,4].(2)由y=sin2x的图象向左平移个单位可得函数y=sin2(x+)=sin(2x+)的图象,再把所得图象上点的纵坐标变为原来的2倍,可得函数f(x)=2sin(2x+)的图象.再把所得图象沿着y轴向上平移2个单位,可得函数f(x)=2sin(2x+)+2的图象.【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的图象和性质,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.19.已知函数f(x)=b•a x(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B (3,24).(1)求f(x)的表达式;(2)设函数g(x)=f(x)﹣2×3x,求g(x+1)>g(x)时x的取值X围.【考点】指数函数的图像与性质.【专题】函数思想;综合法;函数的性质及应用.【分析】(1)根据函数f(x)=b•a x(其中a,b为常量,且a>0,a≠1)的图象经过点A (1,6),B(3,24),把A(1,6),B(3,24)代入f(x)=b•a x,解此方程组即可求得a,b,的值,从而求得f(x);(2)求出g(x+1),g(x),问题转化为3•2x﹣4•2x>0,解出即可.【解答】解:(1)把A(1,6),B(3,24)代入f(x)=b•a x,得,结合a>0且a≠1,解得:,∴f(x)=3•2x.(2)由(1)得:g(x)=3•2x﹣2×3x,g(x+1)=3•2x+1﹣2×3x+1,由g(x+1)>g(x)得:3•2x+1﹣2•3x+1﹣3•2x+2•3x>0,∴3•2x﹣4•2x>0,∴>,解得:x<.【点评】此题是个中档题.考查待定系数法求函数的解析式,和利用指数函数的单调性求函数的最值,体现了转化的思想,同时考查学生灵活应用知识分析解决问题的能力.20.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:t(时) 0 3 6 9 12 15 18 21 24y(米) 1.5 1.0 0.5 1.0 1.5 1 0.5 0.99 1.5经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b(A>0,ω>0)(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式(2)依据规定,当海浪高度高于1.25米时才对冲浪爱好者开放,则一天内的上午8:00至晚上24:00之间,有多少时间可供冲浪爱好者进行运动?【考点】在实际问题中建立三角函数模型;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;转化思想;综合法;三角函数的图像与性质.【分析】(1)设函数f(t)=Asin(ωt+φ)+k(A>0,ω>0),由已知先求出函数的周期T,从而求出ω,进而能求出φ,得到函数近似表达式.(2)由题意cos t>,从而12k﹣4<t<12k+4(k∈z),由此能求出一天内的上午8:00至晚上24:00之间,有多少时间可供冲浪爱好者进行运动.【解答】解:(1)设函数f(t)=Asin(ωt+φ)+k(A>0,ω>0)∵同一周期内,当t=12时y max=1.5,当t=6时y min=0.5,∴函数的周期T=2(12﹣6)=12,得ω==,A=(1.5﹣0.5)=,且k=(1.5+0.5)=1∴f(t)=sin(t+φ)+1,再将(6,0.5)代入,得0.5=sin(×6+φ)+1,解之得φ=,∴函数近似表达式为f(t)=sin(t+)+1,即y=cos t+1.(2)由题意,可得+1>0.75,即cos t>,解之得,k∈Z.即12k﹣4<t<12k+4(k∈z),∴在同一天内取k=0、1、2得0<t<4,8<t<16,20<t≤24∴在规定时间上午8:00时至晚上20:00时之间,从8点到16点共8小时的时间可供冲浪者进行运动.【点评】本题考查三角函数及其在生产生活中的实际应用,是中档题,解题时要认真审题,注意三角函数性质的合理运用.21.已知函数.(1)判断函数f(x)的奇偶性;(2)求证;(3)若,,求f(a)的值.【考点】函数奇偶性的性质;对数的运算性质;对数函数图象与性质的综合应用.【专题】函数的性质及应用.【分析】(1)先看函数定义域是否关于原点对称,再看f(x)与f(﹣x)的关系.(2)应用对数的运算法则计算f(x1)+f(x2)的值.(3)由(2)的结论知,先求f(b),进而求f(a)的值.【解答】解:(1)由得函数f(x)的定义域为{x|﹣1<x<1},又,所以函数f(x)为奇函数.(2)证明:∵=,又∵f()==,∴.(3)解:由(2)的结论知,又由(1)知,∴.【点评】本题考查函数的奇偶性、对数运算性质,注意函数特征,属于基础题.22.已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|)(Ⅰ)某某数a,b的值;(Ⅱ)若不等式f(log2k)>f(2)成立,某某数k的取值X围;(Ⅲ)定义在[p,q]上的一个函数m(x),用分法T:p=x0<x1<…<x i<…<x n=q将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得和式恒成立,则称函数m(x)为在[p,q]上的有界变差函数,试判断函数f(x)是否为在[1,3]上的有界变差函数?若是,求M的最小值;若不是,请说明理由.(参考公式:…+f(x n))【考点】函数恒成立问题;二次函数在闭区间上的最值.【专题】函数的性质及应用.【分析】(I)由已知中g(x)在区间[2,3]的最大值为4,最小值为1,结合函数的单调性及最值,我们易构造出关于a,b的方程组,解得a,b的值;(Ⅱ)由(1)参数a,b的值,代入可得函数解析式,根据二次函数的图象和性质,可将问题转化为距离Y轴距离远的问题,进而构造关于k的方程求出K值.(III)根据有界变差函数的定义,我们先将区间[1,3]进行划分,进而判断是否恒成立,进而得到结论.【解答】解:(Ⅰ)∵函数g(x)=ax2﹣2ax+1+b,因为a>0,所以g(x)在区间[2,3]上是增函数,又∵函数g(x)故在区间[2,3]上的最大值为4,最小值为1,,解得;…(Ⅱ)由已知可得f(x)=g(|x|)=x2﹣2|x|+1为偶函数,所以不等式f(log2k)>f(2)可化为|log2k|>2,…解得k>4或0<k<;…(Ⅲ)函数f(x)为[1,3]上的有界变差函数.因为函数f(x)为[1,3]上的单调递增函数,且对任意划分T:1=x0<x1<…<x i<…<x n=3有f(1)=f(x0)<f(x1)<…<f(x I)<…<f(x n)=f(3)所以=f(x1)﹣f(x0)+f(x2)﹣f(x1)<…<f(x n)﹣f(x n﹣1)=f(x n)﹣f(x0)=f(3)﹣f(1)=4恒成立,所以存在常数M,使得恒成立.M的最小值为4…【点评】本题考查的知识点是函数恒成立问题,二次函数在闭区间上的最值,新定义,其中(1)的关键是分析出函数的单调性,(2)要用转化思想将其转化为绝对值比较大小(3)的关键是真正理解新定义的含义.。

湖北省部分重点中学2016-2017学年高一上学期期末联考数学试题扫描版含答案

湖北省部分重点中学2016-2017学年高一上学期期末联考数学试题扫描版含答案

2016~2017学年度上学期孝昌一中、应城一中、孝感一中三校期末联考高一数学参考答案一、选择题二、填空题:13.7314.43 15.ααsin cos - 16.12log 5 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分10分)解:(1)}31|{}2733|{≤≤=≤≤=x x x A x……………….1分}2|{}1l o g |{2>=>=x x x x B ,}2{≤=∴x x B C R ………………….2分 ∴)(B C A R }.2x 1{x ≤≤= ………………….4分(2) C A C = A C ⊆∴. ………………….5分①当1a ≤时,C =∅,此时C A ⊆; ………………….7分 ②当1a >时,C A ⊆,则1a 3<≤; ………………….9分综合①②,可得a 的取值范围是(]3,∞- ………………….10分 18、(本小题满分12分) 解:(1)由诱导公式f (α)=sin 2α·cos α·tan α-sin α-tan α=sinα·cosα. …………….4分(2)由f (α)=sin αcos α=18可知(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×18=34. ……….6分 又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0.∴cos α-sin α=-32. ………8分(3) ∵α=-31π3=-6×2π+5π3, ∴f ⎝⎛⎭⎫-31π3=cos ⎝⎛⎭⎫-31π3·sin ⎝⎛⎭⎫-31π3 =cos ⎝⎛⎭⎫-6×2π+5π3·sin ⎝⎛⎭⎫-6×2π+5π3=cos 5π3·sin 5π3=12·⎝ ⎛⎭⎪⎫-32=-34. …….12分 19、(本小题满分12分) 解:(1) 1)32sin(3)(--=⋅=πx x f …………………1 分所以)(x f 的周期ππ==22T . …………………3 分 令3511222,2321212k x k k x k πππππππππ+≤-≤++≤≤+ 解得1211125ππππ+≤≤+k x k …………………5 分 511[,],1212k k k Z ππππ∴++∈为)(x f 的单调减区间. …………………6 分(2)因为20,2,sin(2)123333x x x πππππ≤≤-≤-≤≤-≤ ……………9分所以.251)23(3)(min -=--⋅=x f .13113)(max -=-⋅=x f ……11分 所以)(x f 的值域为]13,25[--………………12分20、(本小题满分12分) 解:(1)证明:设x 1<x 2,则f (x 2)-f (x 1)=>0,即f (x 2)>f (x 1).∴f (x )在R 上为增函数. …………………………….. 6分 (2) 存在a =1,使)(x f 为奇函数 …………………………….. 8分 若)(x f 为奇函数,则f (-x )=a -22-x +1=a -2x +11+2x,-f (x )=-a +22x +1,由 f (-x )=-f (x ),得a -2x +11+2x =-a +22x +1, …………………………….10分∴(a -1)(2x +1)=0恒成立,∴a =1. …………………………….. 12分 (也可先由0)0(=f 得到a =1,将a =1代入解析式,再证明)(x f 为奇函数.) 21、(本小题满分12分)解:(1)当05x <≤时21()60.5 2.52f x x x x =---21 3.50.52x x =-+- …………3分当5x >时21()6550.5 2.52f x x =⨯-⨯--17 2.5x =- …………5分即=y 21 3.50.5()217 2.5x x f x x⎧-+-⎪=⎨⎪-⎩ (05)(5)x x <≤> …………6分(2)当05x <≤时21()(71)2f x x x =--+21745()228x =--+∴当 3.5(0.5]x =∈时,max 45() 5.6258f x == ………………8分 当5x >时,()f x 为(5,)+∞上的减函数, 则()(5)17 2.55 4.5f x f <=-⨯= ….10分又5.625 4.5>∴max ()(3.5) 5.625f x f == ……….11分故当年产量为350台时,工厂所获年利润最大. …………12分 22、(本小题满分12分)(1)解 设OM →=m a +n b ,则AM →=(m -1)a +n b ,AD →=-a +12b .∵点A 、M 、D 共线,∴AM →与AD →共线,∴m -1-1=n12,∴m +2n =1.① …………3分CM →=OM →-OC →=⎝⎛⎭⎫m -14a +n b ,CB →=-14a +b . ∵点C 、M 、B 共线,∴CM →与CB →共线,∴m -14-14=n1, ∴4m +n =1.② …………6分联立①②可得m =17,n =37,∴OM →=17a +37b . …………8分(2)证明 EM →=⎝⎛⎭⎫17-p a +37b ,EF →=-p a +q b , ∵EF →与EM →共线, ∴17-p-p =37q,∴17q -pq =-37p ,即17p +37q =1. ……………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年湖北省宜昌市部分重点中学高一(上)期末数学试卷一、选择题(每小题5分,共12题)1.(5.00分)已知集合M={x|﹣1≤x<3,x∈R},N={﹣1,0,1,2,3},则M ∩N=()A.{﹣1,0,2,3} B.{﹣1,0,1,2} C.{0,1,2}D.{0,1,2,3} 2.(5.00分)已知点M(5,﹣6)和向量=(1,﹣2),若=3,则点N的坐标为()A.(2,0) B.(﹣3,6)C.(6,2) D.(﹣2,0)3.(5.00分)下列函数中,既是奇函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=4.(5.00分)已知函数f(x)=,则f(﹣)+f()=()A.3 B.5 C.D.5.(5.00分)已知向量=(cosθ,sinθ),=(1,﹣2),若∥,则代数式的值是()A.B.C.5 D.6.(5.00分)用二分法研究函数f(x)=x5+8x3﹣1的零点时,第一次经过计算f (0)<0,f(0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为()A.(0,0.5)f(0.125)B.(0.5,1)f(0.25)C.(0.5,1)f(0.75)D.(0,0.5)f(0.25)7.(5.00分)函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(﹣)D.y=2sin(2x﹣)8.(5.00分)若a=log0.50.2,b=log20.2,c=20.2,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.b<a<c D.c<b<a9.(5.00分)函数y=log a x,y=a x,y=x+a在同一坐标系中的图象可能是()A.B.C.D.10.(5.00分)已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1 B.1:2 C.1:3 D.1:411.(5.00分)若xlog32≥﹣1,则函数f(x)=4x﹣2x+1﹣3的最小值为()A.﹣4 B.﹣3 C.D.012.(5.00分)定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是()A.B.C.D.二、填空题(每小题5分,共4题)13.(5.00分)已知幂函数f(x)的图象经过点(3,),则f(4)=.14.(5.00分)将函数y=cosx的图象向右移个单位,可以得到y=sin(x+)的图象.15.(5.00分)已知函数=.16.(5.00分)已知平面内有三个向量,其中∠AOB=60°,∠AOC=30°,且,,,若,则λ+μ=.三、解答题17.(10.00分)计算下列各式:(1);(2).18.(10.00分)B是单位圆O上的点,点A(1,0),点B在第二象限.记∠AOB=θ且sinθ=.(1)求B点坐标;(2)求的值.19.(12.00分)已知全集U=R,集合A=,B={y|y=log2x,4<x <16},(1)求图中阴影部分表示的集合C;(2)若非空集合D={x|4﹣a<x<a},且D⊆(A∪B),求实数a的取值范围.20.(12.00分)(1)利用“五点法”画出函数在内的简图(2)若对任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范围.21.(12.00分)某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入)问:(1)把y表示为x的函数,并求其定义域;(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?22.(14.00分)已知函数是奇函数,f(x)=lg(10x+1)+bx是偶函数.(1)求a和b的值.(2)说明函数g(x)的单调性;若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.(3)设,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.2016-2017学年湖北省宜昌市部分重点中学高一(上)期末数学试卷参考答案与试题解析一、选择题(每小题5分,共12题)1.(5.00分)已知集合M={x|﹣1≤x<3,x∈R},N={﹣1,0,1,2,3},则M ∩N=()A.{﹣1,0,2,3} B.{﹣1,0,1,2} C.{0,1,2}D.{0,1,2,3}【解答】解:∵M={x|﹣1≤x<3,x∈R},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1,2},故选:B.2.(5.00分)已知点M(5,﹣6)和向量=(1,﹣2),若=3,则点N的坐标为()A.(2,0) B.(﹣3,6)C.(6,2) D.(﹣2,0)【解答】解:设点N的坐标为(x,y),由点M(5,﹣6)得=(5﹣x,﹣6﹣y),又向量=(1,﹣2),且=3,所以,解得;所以点N的坐标为(2,0).故选:A.3.(5.00分)下列函数中,既是奇函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=【解答】解:y=cosx是偶函数,不满足条件.y=sinx既是奇函数又存在零点,满足条件.y=lnx的定义域为(0,+∞),为非奇非偶函数,不满足条件.y=是奇函数,但没有零点,不满足条件.故选:B.4.(5.00分)已知函数f(x)=,则f(﹣)+f()=()A.3 B.5 C.D.【解答】解:∵函数f(x)=,∴f(﹣)=f()﹣1=﹣1=1,f()==2,∴f(﹣)+f()=1+2=3.故选:A.5.(5.00分)已知向量=(cosθ,sinθ),=(1,﹣2),若∥,则代数式的值是()A.B.C.5 D.【解答】解:向量=(cosθ,sinθ),=(1,﹣2),若∥,可得:sinθ=﹣2cosθ.==5.故选:C.6.(5.00分)用二分法研究函数f(x)=x5+8x3﹣1的零点时,第一次经过计算f (0)<0,f(0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为()A.(0,0.5)f(0.125)B.(0.5,1)f(0.25)C.(0.5,1)f(0.75)D.(0,0.5)f(0.25)【解答】解:令f(x)=x5+8x3﹣1,则f(0)<0,f(0.5)>0,∴f(0)•f(0.5)<0,∴其中一个零点所在的区间为(0,0.5),第二次应计算的函数值应该为f(0.25)故选:D.7.(5.00分)函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(﹣)D.y=2sin(2x﹣)【解答】解:由已知可得函数y=Asin(ωx+ϕ)的图象经过(﹣,2)点和(﹣,2)则A=2,T=π即ω=2则函数的解析式可化为y=2sin(2x+ϕ),将(﹣,2)代入得﹣+ϕ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,当k=0时,φ=此时故选:A.8.(5.00分)若a=log0.50.2,b=log20.2,c=20.2,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.b<a<c D.c<b<a【解答】解:a=log0.50.2>log0.50.25=2,b=log20.2<log21=0,c=20.2<21=2.又∵c=20.2>0,∴b<c<a,故选:B.9.(5.00分)函数y=log a x,y=a x,y=x+a在同一坐标系中的图象可能是()A.B.C.D.【解答】解:对于A:由指数函数和对数函数的单调性可知a>1,此时直线y=x+a 的截距不满足条件.对于B:指数函数和对数函数的单调性不相同,不满足条件.对于C:由指数函数和对数函数的单调性可知0<a<1,此时直线y=x+a的截距满足条件.对于D:由指数函数和对数函数的单调性可知0<a<1,此时直线y=x+a的截距a>1不满足条件.故选:C.10.(5.00分)已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1 B.1:2 C.1:3 D.1:4【解答】解:∵,∴==,∴=2,即点P为线段AC的靠近点A的三等分点,∴△ABP的面积与△BCP的面积之比==,故选:B.11.(5.00分)若xlog32≥﹣1,则函数f(x)=4x﹣2x+1﹣3的最小值为()A.﹣4 B.﹣3 C.D.0【解答】解:∵xlog32≥﹣1,∴,∴,设,则f(x)=4x﹣2x+1﹣3,则g(t)=,当t=1时,g(t)有最小值g(1)=﹣4,即函数f(x)=4x﹣2x+1﹣3的最小值为﹣4,故选:A.12.(5.00分)定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是()A.B.C.D.【解答】解:因为f(x+2)=f(x)﹣f(1),且f(x)是定义域为R的偶函数令x=﹣1 所以f(﹣1+2)=f(﹣1)﹣f(1),f(﹣1)=f(1)即f(1)=0 则有,f(x+2)=f(x)f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2图象为开口向下,顶点为(3,0)的抛物线∵函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,∵f(x)≤0,∴g(x)≤0,可得a<1,要使函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,令g(x)=log a(|x|+1),如图要求g(2)>f(2),可得就必须有log a(2+1)>f(2)=﹣2,∴可得log a3>﹣2,∴3<,解得﹣<a<又a>0,∴0<a<,故选:A.二、填空题(每小题5分,共4题)13.(5.00分)已知幂函数f(x)的图象经过点(3,),则f(4)=.【解答】解:设幂函数f(x)=x a,其图象过点(3,),则3a=a=﹣2∴f(x)=x﹣2∴f(4)=4﹣2=.故答案为:.14.(5.00分)将函数y=cosx的图象向右移个单位,可以得到y=sin(x+)的图象.【解答】解:∵y=cosx=sin(+x),其图象向右平移个单位得到y=sin(x+)的图象.故答案为:15.(5.00分)已知函数=4.【解答】解:∵f(a)=a+lg+5=6,∴a+lg=1,f(﹣a)=﹣a+lg+5=﹣(a+lg)+5=﹣1+5=4,故答案为:4.16.(5.00分)已知平面内有三个向量,其中∠AOB=60°,∠AOC=30°,且,,,若,则λ+μ=4或2.【解答】解:①当OB,OC在OA同侧时,过点C作CE∥OB交OA的延长线于点E,过点C作CF∥OA交OB的延长线于点F,则=+.∵∠AOB=60°,∠AOC=30°,∴∠OCE=∠COF=∠COE=30°,,∴||=||=4,∵,,∴λ=μ=2,∴λ+μ=4.②当OB,OC在OA同侧时,过点C作CE∥OB交OA的延长线于点E,过点C作CF∥OA交OB的延长线于点F,则=+.∵∠AOB=60°,∠AOC=30°,∴∠OCE=∠COF=90°,∠COE=30°,,∴||=4,||=8,∵,,∴λ=4,μ=﹣2,∴λ+μ=2.故答案为:4或2三、解答题17.(10.00分)计算下列各式:(1);(2).【解答】解:(1)=1+×()﹣=﹣,(2)原式==lg2+lg5﹣3×(﹣3)=1+9=10.18.(10.00分)B是单位圆O上的点,点A(1,0),点B在第二象限.记∠AOB=θ且sinθ=.(1)求B点坐标;(2)求的值.【解答】解:(1)∵点A是单位圆与x轴正半轴的交点,点B在第二象限.设B点坐标为(x,y),则y=sinθ=.,即B点坐标为:;(2).19.(12.00分)已知全集U=R,集合A=,B={y|y=log2x,4<x <16},(1)求图中阴影部分表示的集合C;(2)若非空集合D={x|4﹣a<x<a},且D⊆(A∪B),求实数a的取值范围.【解答】解:(1)由图知:C=A∩(∁U B),由x2﹣4x+3≥0,解得x≥3或x≤1,则A=(﹣∞,1]∪[3,+∞)由y=log2x,4<x<16,则B=(2,4),∴∁U B=(﹣∞,2]∪[4,+∞),∴C=A∩(∁U B)=(﹣∞,1]∪[4,+∞),(2)∵A∪B=(﹣∞,1]∪(2,+∞),由非空集合D={x|4﹣a<x<a},且D⊆(A∪B),∴或,解得a为空集,∴a∈∅20.(12.00分)(1)利用“五点法”画出函数在内的简图(2)若对任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范围.【解答】解:(1)根据题意,函数在内的列表如下:在平面直角坐标系内可得图象如下:(2)通过图象可知:当x∈[0,2π]时,函f(x)值域为,要使f(x)﹣3<m<f(x)+3恒成立,即:解得:,∴m的取值范围是.21.(12.00分)某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入)问:(1)把y表示为x的函数,并求其定义域;(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?【解答】解:(1)电影院共有1000个座位,电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,∴x>5.75,∴票价最低为6元,票价不超过10元时:y=1000x﹣5750,(6≤x≤10的整数),票价高于10元时:y=x[1000﹣30(x﹣10)]﹣5750=﹣30x2+1300x﹣5750,∵,解得:5<x<38,∴y=﹣30x2+1300x﹣5750,(10<x≤38的整数);(2)对于y=1000x﹣5750,(6≤x≤10的整数),x=10时:y最大为4250元,对于y=﹣30x2+1300x﹣5750,(10<x≤38的整数);当x=﹣≈21.6时,y最大,∴票价定为22元时:净收人最多为8830元.22.(14.00分)已知函数是奇函数,f(x)=lg(10x+1)+bx是偶函数.(1)求a和b的值.(2)说明函数g(x)的单调性;若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.(3)设,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.【解答】解:(1)由g(0)=0得,a=1,则,经检验g(x)是奇函数,故a=1,由f(﹣1)=f(1)得,则,故,经检验f(x)是偶函数∴a=1,…(4分)(2)∵,且g(x)在(﹣∞,+∞)单调递增,且g(x)为奇函数.∴由g(t2﹣2t)+g(2t2﹣k)>0恒成立,得g(t2﹣2t)>﹣g(2t2﹣k)=g(﹣2t2+k),∴t2﹣2t>﹣2t2+k,t∈[0,+∞)恒成立即3t2﹣2t>k,t∈[0,+∞)恒成立令F(x)=3t2﹣2t,在[0,+∞)的最小值为∴…(9分)(3)h(x)=lg(10x+1),h(lg(10a+9))=lg[10lg(10a+9)+1]=lg(10a+10)则由已知得,存在x∈(﹣∞,1],使不等式g(x)>lg(10a+10)成立,而g(x)在(﹣∞,1]单增,∴∴∴又又∵∴∴…(14分)。

相关文档
最新文档