热力学第二定律_1
热力学第二定律

热机在最理想的情况下,也不能把所吸收的热全部
转化为功,而有一个限度(极限)。η<1(η≠1)
2、卡诺循环
(1)设想由四个可逆步骤构成。 (汽箱中物质的量为1m膨胀:曲线AB段
从高温热源T2吸 热Q2, 作功W1;
ΔU=0 Q2 = -W1=RT2ln(V2/V1)
结论:热传递的自发过程具有不可逆性。
(2)热功转化的方向性: ① 功可以完全变为热,而不引起其他变化 —自发过程(经验所得);
② 热不可能完全变为功,而不引起其他变化
—非自发过程(经验所得)。
例1 重物推动活塞,活塞带动涡轮转动,活塞和涡轮与
水摩擦生热,功完全变为热;逆过程不可能自动实现。 即热完全变为功而不产生任何影响是不可能的。
2、克劳修斯不等式和熵增原理
(1)不等式:
掌握
卡诺定理
δQ1 / T1 +δQ2 / T2 ≤ 0
熵导出中推广了可逆情况,即∑(δQr / T)= 0 或 ∮(δQr / T)= 0 对任何不可逆过程可同样推广,即 ∑(δQ / T )< 0 或 ∮(δQ / T)< 0
综合得: ∑(δQ / T )≤ 0
(2)证明:见P55
在两个热源之间有卡诺热机R 和任意热机I 设ηI> ηR 则有:W/ > W 据能量守恒定律有:|QI /|< Q1| 从W/中取出W对热机R作功驱 动其反转,从低温热源取出Q1 转入到高温热源
结果是:高温热源没有任何变化;低温热源损失了 |Q1|- | Q1/|热;环境得到W/ –W功。
(见P52 图2.2 卡诺循环 ) ↑
↓
D(T1、V4、P4 )a,r←C(T1、V3、P3 )T,r
(3)结果分析:
物理化学03章_热力学第二定律

为什么要定义新函数?
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
§3.8 熵和能量退降
热力学第一定律表明:一个实际过程发生 后,能量总值保持不变。
热力学第二定律表明:在一个不可逆过程 中,系统的熵值增加。
能量总值不变,但由于系统的熵值增加, 说明系统中一部分能量丧失了作功的能力,这 就是能量“退降”。
能量 “退降”的程度,与熵的增加成正比
有三个热源 TA > TB > TC
从高“质量”的能贬值为低“质量”的能 是自发过程。
§3.9 热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热与功转换的不可逆性 热是分子混乱运动的一种表现,而功是分子 有序运动的结果。 功转变成热是从规则运动转化为不规则运动, 混乱度增加,是自发的过程; 而要将无序运动的热转化为有序运动的功就 不可能自动发生。
热力学第二定律的本质 气体混合过程的不可逆性 将N2和O2放在一盒内隔板的两边,抽去隔板, N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程, 是自发的过程,其逆过程决不会自动发生。
热力学第二定律的本质
热传导过程的不可逆性
处于高温时的系统,分布在高能级上的分子 数较集中;
而处于低温时的系统,分子较多地集中在低 能级上。
这与熵的变化方向相同。
热力学第二定律

第二章热力学第二定律2.1 自发变化的共同特征自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。
自发变化的共同特征—不可逆性任何自发变化的逆过程是不能自动进行的。
例如:(1)焦耳热功当量中功自动转变成热;(2)气体向真空膨胀(3)热量从高温物体传入低温物体;(4)浓度不等的溶液混合均匀;(5)锌片与硫酸铜的置换反应等,它们的逆过程都不能自动进行。
当借助外力,体系恢复原状后,会给环境留下不可磨灭的影响。
2.2热力学第二定律(T h e S e c o n d L a w o f T h e r m o d y n a m i c s)克劳修斯(Clausius)的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。
”开尔文(Kelvin)的说法:“不可能从单一热源取出热使之完全变为功,而不发生其它的变化。
” 后来被奥斯特瓦德(Ostward)表述为:“第二类永动机是不可能造成的”。
第二类永动机:从单一热源吸热使之完全变为功而不留下任何影响。
2.3卡诺循环与卡诺定理2.3.1卡诺循环(C a r n o t c y c l e)1824 年,法国工程师N.L.S.Carnot (1796~1832)设计了一个循环,以理想气体为工作物质,从高温T h热源吸收Q h的热量,一部分通过理想热机用来对外做功W,另一部分Q c的热量放给低温热源T c。
这种循环称为卡诺循环.1mol 理想气体的卡诺循环在pV图上可以分为四步:过程1:等温T h 可逆膨胀由 p 1V 1到p 2V 2(AB)10U ∆= 21h 1lnV W nRT V =- h 1Q W =- 所作功如AB 曲线下的面积所示。
过程2:绝热可逆膨胀由 p 2V 2T h 到p 3V 3T c (BC)20Q = ch 22,m d T V T W U C T =∆=⎰所作功如BC 曲线下的面积所示。
物理化学热力学第二定律quan1

环境是个大热源
克劳修斯表述
不可能将热从低温物体传至高温物体 而不引起其它变化。
空调,制冷
代价:耗功
热量不可能自发地、不付代价地从低 温物体传至高温物体。
§ 卡诺循环与卡诺定理
既然
t =100%不可能
热机能达到的最高效率有多少?
法国工程师卡诺 (S. Carnot), 1824年提出 卡诺循环
效率最高 热二律奠基人
已有知识:质点热运动高温时比低温剧烈;压强↓,气体质点 运动自由度↑;气态物质运动自由度最大;物质混合后体系更 混乱。
说明:体系混乱度越大,体系的熵值越大; S是体系
内部质点混乱度的量度
五、热力学第三定律和标准熵 1、规定熵与热力学第三定律
一般表述: “在 0K 时,排列得很整齐的完美 晶体,其熵值为零”
5619 = =21.4 J· K-1· mol-1 263
-1 -1
Δ S 总=Δ S +Δ S 环
= - 20.6 + 21.4 = 0.8 J·K · mol > 0
为自发不可逆过程
S水> S冰
由以上例题可得:凡是能使无序度增加的因素都会
对系统的熵值有贡献
▲ 同晶型的同种物质——S高温> S低温; ▲ 气态物质——S低压> S高压; ▲ 同种物质——S气> S液> S固; ▲ 物质混合——S混后> S混前;
亚(介)稳态的变化:过冷、过热的液体; 过饱和溶液等
A() 如: A( )
恒 压 △S 1 变 温 恒 压 △S 2 变 温
T , p ,S
S1 S 2
Ttrs
nC p ,m [ A( )]
T
热力学第二定律 概念及公式总结

热力学第二定律一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、 热力学第二定律1. 热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功 热 【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、 卡诺定理(在相同高温热源和低温热源之间工作的热机)ηη≤ηη (不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、 熵的概念1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+ηηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质 :周而复始 数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η(数值上相等) 4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
热力学第二定律

熵变
1.23×103 J · K -1 ×
熵的概念、 熵的概念、熵的热力学表示
1. 熵概念的引入 熵概念的引入——熵的热力学表示 熵的热力学表示 对可逆过程,由卡诺热机的效率公式, 对可逆过程, 卡诺热机的效率公式,
Q1吸 − | Q2放 | T1 −T2 = Q1吸 T1
Q1 Q2 + =0 T1 T2
引言
违背热力学第一定律的过程都不可能发生。 不违背热力学第一定律的过程不一定都可以发生。 自然过程是按一定方向进行的。
高温 物体 低温 物体 高温 物体 低温 物体
Q
会自动发生
Q
不会自动发生
续上
违背热力学第一定律的过程都不可能发生。 不违背热力学第一定律的过程不一定都可以发生。 自然过程是按一定方向进行的。
6
6/16
4 共 16 种微观态 5 种宏观态 1
4/16 1/16
10
2 10 23
有人计算过,概率这样小的事件 自宇宙存在以来都不会出现。
气体自由膨胀的不可逆性, 气体自由膨胀的不可逆性,从统计观点解释就是一个不 受外界影响的理想气体系统,其内部所发生的过程总是向着 受外界影响的理想气体系统,其内部所发生的过程 大(或 大)的方向进行的。
表述的等价性
举一个反证例子: 假如热量可以自动地从低温热源传向 高温热源,就有可能从单一热源吸取热量使之全部变为有用 功而不引起其它变化。
高温热源 高温热源
假 想自 的动 传 热 装 置
等价于
卡诺热机
低温热源 (但实际上是不可能的)
低温热源
凡例
热力学第二定律不但在两种表述上是等价的,而且它 在表明一切与热现象有关的实际宏观过程都是不可逆过程。 历史上的两种表述只是一种代表性的表述。
热力学第二定律1ppt课件

分热量给低温热源为代价,否则不能做功.
• 卡诺循环的热温商之和等于零,不可逆循环的热温商之和小
于零。
.
22
§3.3 熵
1.熵的导出
卡诺循环结论
2 pa
Q1 Q2 0 T1 T2 推广到任何可逆循环:
Q Ri0 或 Q 0
i Ti
TR
b 1
• 任意可逆循环的V 分割 红线恒温可逆, 蓝线绝热可逆.
2.卡诺定理
卡诺定理:在高低温两个热源间工作的所有热机中,以可逆 热机的热机效率为最大。(反证法)
.
21
irW Q1Q1Q 1Q21Q Q1 2
r
1Q2 Q1
1-T2 T1
结论:
1 2 0 TT
可逆循环取等号
1
2
• 循环过程是可以对外做功的.
• 理想气体卡诺热机的效率η恒小于1, 且只与两个热源的温度 (T1, T2)有关, 温差愈大, η愈高。也就是说,卡诺热机要对外
开尔文:从一个热源吸热,使之完全转化为功,而不产生其 它变化是不可能的。即热功转变的不可逆性。
热:能量传递的低 级形式:无序能
高级能可以无条件地 转变为低级能;低级 能全部转变为高级能 是有条件的——给环
境留下影响。
.
功是能量传递的高 级形式:有序能
10
第二类永动机是不可能造成的
.
11
对热力学第二定律的说明: (1)热力学第二定律是实验现象的总结。它不能被任 何方式加以证明,其正确性只能由实验事实来检验。 (2)热力学第二定律的各种表述在本质上是等价的, 由一种表述的正确性可推出另外一种表述的正确性。
热力学第二定律

卡诺循环
结论: (1)可逆热机的效率与两热源的温度有关。两个热 源的温差越大,效率越大,热量的利用也就越完全; (2)当Th-Tc=0,效率为零; (3)当Tc=0K,效率达到100%。 (4)如果把可逆的卡诺机倒开,就变为制冷机,此 时环境对体系作功,体系自低温热源吸收热量Q1,而
放给高温热源的热量Q2,这就是制冷机的原理。同样
卡诺循环
任何热机从高温(Th)热源吸热Qh,一部分转化为 功W,另一部分Qc传给低温(Tc)热源.将热机所作的功 与所吸的热之比值称为热机效率,或称为热机转换系 数,用η表示。η 恒小于1。
V2 R(Th - Tc )ln Tc V1 Th - Tc def W 1热机效率η V2 Q2 Th Th RTh ln V1
任意可逆循环的热温熵
证明如下: (1)在如图所示的任意可逆循环的曲线上取很靠近的PQ过程;
(2)通过P、Q点分别作RS和TU两条可逆绝热膨胀线;
(3)在P、Q之间通过O点作等温可逆膨胀线VW,使两个三 角形PVO和OWQ的面积相等; 这样使PQ过程与PVOWQ过程 所作的功相同。
同理,对MN过程作相同处理, 使MXO’YN折线所经过程作的功与 MN过程相同。VWYX就构成了一个 卡诺循环。
即ABCD曲线所围面积为热机所作的功。 由绝热过程:
ThV2γ-1=TcV3γ-1
ThV1γ-1=TcV4γ-1
V2 V3 = V1 V4
V2 V4 V2 V2 W RTh ln RTc ln RTh ln RTc ln V1 V3 V1 V1
V2 R(Th - Tc )ln V1
从卡诺循环得到的结论:
W Qh Qc Th Tc Qh Qh Th
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第二定律
教学目标
(1)知道宏观热学过程的方向性
(2)知道
(3)知道第二类永动机是不可能的
(4)知道能量耗散教学建议教材分析
分析一:本节内容首先由热现象的方向性,说明第二类永动机是不可能的,并在此基础上提出.
分析二:自然界中的能量是守恒的,但有些能量便于利用,而有些能量不便于利用,我们没办法将流失的内能重新收集起来加以利用,能量转化的方向性造成能源不可能“用之不完,取之不尽”.教法建议
建议:本节内容要求不高,只要求学生对有所了解,因此可采取学生自学,教师对难点简单引导的教学方法.教学设计方案
教学重点:知道热传导的方向性以及
教学难点:学生先自学,教师再难点简单引导、讲解.
探究活动
1
————来源网络整理,仅供供参考
题目:的发现过程
组织:个人
方案:科技小论文
评价:论文的科普性
————来源网络整理,仅供供参考 2。