2019-2020学年湖北省武汉市高一下学期期中联考数学试题及其详细解析
2019-2020学年湖北省武汉市三校联合体高一下学期期中数学试卷 (解析版)

2019-2020学年高一第二学期期中数学试卷一、选择题(共12小题)1.已知(x,3),(3,1),且∥,则x=()A.9B.﹣9C.1D.﹣12.若,,和的夹角为30°,则在方向上的投影为()A.2B.C.D.43.在△ABC中,a=3,b=5,sin A,则sin B=()A.B.C.D.14.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=()A.33B.72C.84D.1895.在△ABC中,∠A=90°,,,则k的值是()A.5B.﹣5C.D.6.△ABC的三内角A,B,C所对边长分别是a,b,c,若,则角B 的大小为()A.B.C.D.7.下列命题正确的是()A.若,则B.,则0C.若与是共线向量,与是共线向量,则与是共线向量D.若与是单位向量,则18.如图,在△OAB中,P为线段AB上的一点,x y,且3,则()A.x,y B.x,y C.x,y D.x,y9.已知△ABC中,,,,则△ABC的面积为()A.B.C.D.10.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为()A.尺B.尺C.尺D.尺11.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时()A.5海里B.5海里C.10海里D.10海里12.已知函数,则()A.2018B.2019C.4036D.4038二、填空题:(本大题共4小题,每小题5分,共20分.)13.在△ABC中,若a<b<c,且c2<a2+b2,则△ABC为三角形.14.若向量、满足,,且与的夹角为,则.15.数列{a n}的前n项的和S n=3n2+n+1,则此数列的通项公式.16.已知平面上不重合的四点P,A,B,C满足且,那么实数m的值为.三、解答题:(本大题共六小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.求与向量,夹角相等的单位向量的坐标.18.设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sin B cos A=sin A cos C+cos A sin C.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.19.已知等差数列{a n}满足:a1=2,且a1、a2、a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.20.已知数列{a n}满足a1=1,.(1)求证数列为等差数列;(2)设b n=a n a n+1,求数列{b n}的前n项和T n.21.在△ABC中,内角A,B,C的对边分别为a,b,c,且(a﹣c)(sin A+sin C)+(b ﹣a)sin B=0.(1)求C;(2)若c=2,2sin2A+sin(2B+C)=sin C,求△ABC的面积.22.已知各项均为正数的数列{a n}满足a n+12﹣a n+1a n﹣2a n2=0(n∈N*),且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式a n;(2)若b n=a n a n,S n=b1+b2+…+b n,求S n+n•2n+1>50成立的正整数n的最小值.参考答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的.)1.已知(x,3),(3,1),且∥,则x=()A.9B.﹣9C.1D.﹣1【分析】利用向量共线定理即可得出.解:∵向量∥,∴9﹣x=0,解得x=9.故选:A.【点评】本题考查了向量共线定理,属于基础题.2.若,,和的夹角为30°,则在方向上的投影为()A.2B.C.D.4【分析】本题根据向量在方向上的投影公式为,然后代入进行向量的计算可得正确选项.解:由题意,可知向量在方向上的投影为2.故选:C.【点评】本题主要考查利用向量求投影的问题.考查了转化思想,定义法,向量的运算,以及逻辑思维能力和数学运算能力.本题属基础题.3.在△ABC中,a=3,b=5,sin A,则sin B=()A.B.C.D.1【分析】由正弦定理列出关系式,将a,b及sin A的值代入即可求出sin B的值.解:∵a=3,b=5,sin A,∴由正弦定理得:sin B.故选:B.【点评】此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.4.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=()A.33B.72C.84D.189【分析】根据等比数列{a n}中,首项a1=3,前三项和为21,可求得q,根据等比数列的通项公式,分别求得a3,a4和a5代入a3+a4+a5,即可得到答案.解:在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21故3+3q+3q2=21,∴q=2,∴a3+a4+a5=(a1+a2+a3)q2=21×22=84故选:C.【点评】本题主要考查了等比数列的性质.要理解和记忆好等比数列的通项公式,并能熟练灵活的应用.5.在△ABC中,∠A=90°,,,则k的值是()A.5B.﹣5C.D.【分析】由题意利用两个向量的数量积公式、两个向量垂直的性质,求出k的值.解:△ABC中,∵∠A=90°,,,∴2(2﹣k)+3×2=0,求得k=5,故选:A.【点评】本题主要考查两个向量的数量积公式、两个向量垂直的性质,属于基础题.6.△ABC的三内角A,B,C所对边长分别是a,b,c,若,则角B 的大小为()A.B.C.D.【分析】利用正弦定理化简已知可得c2+a2﹣b2ac,由余弦定理可得cos B,结合范围B∈(0,π),即可解得B的值.解:在△ABC中,由正弦定理,可得:sin B,sin A,sin C,∵,可得:,整理可得:c2+a2﹣b2ac,∴由余弦定理可得:cos B,∵B∈(0,π),∴B.故选:B.【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.7.下列命题正确的是()A.若,则B.,则0C.若与是共线向量,与是共线向量,则与是共线向量D.若与是单位向量,则1【分析】当时,可得A、C不正确,把平方可得0,得到B正确,根据1×1cos,可得D不正确.解:当时,成立,而的大小和方向都是不确定的,故A不正确.由可得,∴0,故B正确.当时,与是共线向量,与是共线向量,但与的大小和方向都是不确定的,故C不正确.若与是单位向量,则1×1cos cos,故D不正确.故选:B.【点评】本题考查两个向量共线的定义和性质,两个向量的数量积的定义,注意零向量的情况,这是解题的易错点.8.如图,在△OAB中,P为线段AB上的一点,x y,且3,则()A.x,y B.x,y C.x,y D.x,y【分析】由3,利用向量三角形法则可得,化为,又x y,利用平面向量基本定理即可得出.解:∵3,∴,化为,又x y,∴,y.故选:D.【点评】本题考查了向量三角形法则、平面向量基本定理,考查了推理能力与计算能力,属于基础题.9.已知△ABC中,,,,则△ABC的面积为()A.B.C.D.【分析】根据余弦定理和三角形的面积公式即可求出.解:由余弦定理a2=b2+c2﹣2bc cos A,∴5=b2+c2﹣bc=(b+c)2﹣3bc=2(bc)2﹣3bc,解得bc,或bc=﹣1(舍去),∴S△ABC bc sin A,故选:D.【点评】本题主要考查余弦定理的应用,考查学生对公式的应用,属于基础题.10.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为()A.尺B.尺C.尺D.尺【分析】利用等差数列的求和公式即可得出.解:由题意可得:每天织布的量组成了等差数列{a n},a1=5(尺),S30=9×40+30=390(尺),设公差为d(尺),则30×5390,解得d.故选:C.【点评】本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于基础题.11.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时()A.5海里B.5海里C.10海里D.10海里【分析】如图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在直角三角形ABC中,得AB=5,由此能求出这艘船的速度.解:如图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在直角三角形ABC中,得AB=5,于是这艘船的速度是10(海里/小时).故选:C.【点评】本题考查三角形知识的实际运用,解题时要注意数形结合思想的灵活运用.12.已知函数,则()A.2018B.2019C.4036D.4038【分析】根据题意,求出f(1﹣x)的解析式,进而可得f(1﹣x)+f(x)=2,又由f()+f()+f()+f()+……+f()+f(),分析可得答案.解:根据题意,函数,则f(1﹣x)=(1﹣x)+3sin(x)x﹣3sin(x),则f(1﹣x)+f(x)=2,f()+f()+f()+f()+……+f()+f()=1009×2=2018.故选:A.【点评】本题考查函数值的计算,注意分析f(x)+f(1﹣x)的值,属于基础题.一、选择题13.在△ABC中,若a<b<c,且c2<a2+b2,则△ABC为锐角三角形.【分析】利用余弦定理即可得出.解:∵c2<a2+b2,∴cos C0,∴C为锐角.∵a<b<c,∴C为最大角.∴△ABC为锐角三角形.故答案为:锐角.【点评】本题考查了余弦定理的应用,属于基础题.14.若向量、满足,,且与的夹角为,则13﹣6.【分析】根据条件可求出,然后进行数量积的运算即可求出的值.解:∵,,且与的夹角为,∴,∴.故答案为:.【点评】本题考查了向量数量积的运算及计算公式,考查了计算能力,属于基础题.15.数列{a n}的前n项的和S n=3n2+n+1,则此数列的通项公式.【分析】首先根据S n=3n2+n+1求出a1的值,然后根据a n=S n﹣S n﹣1求出当n≥时数列的递推关系式,最后计算a1是否满足该关系式.解:当n=1时,a1=5,当n≥2时,a n=S n﹣S n﹣1=3n2+n+1﹣3(n﹣1)2﹣n+1﹣1=6n﹣2,故数列的通项公式为,故答案为.【点评】本题主要考查数列递推式的知识点,解答本题的关键是利用a n=S n﹣S n﹣1求出数列的通项公式,此题难度一般.16.已知平面上不重合的四点P,A,B,C满足且,那么实数m的值为3.【分析】利用向量基本定理结合向量的减法,代入化简,即可得到结论.解:由题意,根据向量的减法有:,,∵∴()+()=﹣m;∴(m﹣2),∵,∴m﹣2=1,∴m=3.故答案为:3【点评】本题考查平面向量的基本定理及其意义、向量数乘的运算及其几何意义等基础知识,属于基础题.三、解答题:(本大题共六小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.求与向量,夹角相等的单位向量的坐标.【分析】设,则cos cos可得,解方程可求解:设,则cos cos∴∴或∴,【点评】本题主要考查了向量数量积性质的坐标表示的应用,解题的关键是熟练应用公式18.设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sin B cos A=sin A cos C+cos A sin C.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【分析】(Ⅰ)根据2sin B cos A=sin A cos C+cos A sin C,可得2sin B cos A=sin(A+C),从而可得2sin B cos A=sin B,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A,可求a的值,进而可求B,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sin B cos A=sin A cos C+cos A sin C∴2sin B cos A=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sin B>0∴2sin B cos A=sin B∴cos A∵A∈(0,π)∴A;(Ⅱ)∵b=2,c=1,A∴a2=b2+c2﹣2bc cos A=3∴b2=a2+c2∴B∵D为BC的中点,∴AD.【点评】本题考查余弦定理的运用,考查三角函数知识,解题的关键是确定三角形中的边与角.19.已知等差数列{a n}满足:a1=2,且a1、a2、a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.【分析】(1)利用等差数列与等比数列的通项公式即可得出;(2)利用等差数列的前n项和公式可得S n,再利用一元二次不等式的解法即可得出.解:(1)设等差数列{a n}的公差为d,∵a1=2,且a1、a2、a5成等比数列.∴a1a5,即(2+d)2=2(2+4d),解得d=0或4.∴a n=2,或a n=2+4(n﹣1)=4n﹣2.(2)当a n=2时,S n=2n,不存在正整数n,使得S n>60n+800.当a n=4n﹣2时,S n2n2,假设存在正整数n,使得S n>60n+800,即2n2>60n+800,化为n2﹣30n﹣400>0,解得n>40,∴n的最小值为41.【点评】本题考查了等差数列的通项公式及其前n项和公式、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.20.已知数列{a n}满足a1=1,.(1)求证数列为等差数列;(2)设b n=a n a n+1,求数列{b n}的前n项和T n.【分析】(1)首先利用数列的递推关系式的应用求出数列为等差数列.(2)利用(1)的结论,进一步利用裂项相消法的应用求出数列的和.解:(1)数列{a n}满足a1=1,.整理得a n a n+1=2a n﹣2a n+1,故(常数),所以数列是以1为首项,为公差的等差数列.(2)由于数列是以1为首项,为公差的等差数列.所以,故所以,则:2.【点评】本题考查的知识要点:数列的递推关系式的应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.21.在△ABC中,内角A,B,C的对边分别为a,b,c,且(a﹣c)(sin A+sin C)+(b ﹣a)sin B=0.(1)求C;(2)若c=2,2sin2A+sin(2B+C)=sin C,求△ABC的面积.【分析】(1)直接利用三角函数关系式的恒等变换和正弦定理及余弦定理的应用求出C 的值.(2)利用三角函数关系式的恒等变换和分类讨论思想的应用求出三角形的角和边,进一步求出三角形的面积.解:(1)△ABC中,内角A,B,C的对边分别为a,b,c,且(a﹣c)(sin A+sin C)+(b﹣a)sin B=0.利用正弦定理得:(a﹣c)(a+c)+(b﹣a)b=0,整理得:a2﹣c2+b2﹣ab=0,即,由于0<C<π,所以:C.(2)由于2sin2A+sin(2B+C)=sin C,整理得2sin2A+sin(2π﹣2A﹣C)=sin C,化简得:,所以,由于,所以.故或,解得或,①当A时,由于C,所以B,且c=2,则利用勾股定理设a=x,b=2x,故:(2x)2﹣x2=4,解得x,所以.②当A时,C,所以B.同理解得b.所以.综上所述:.【点评】本题考查的知识要点:正弦定理余弦定理和三角形面积公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.22.已知各项均为正数的数列{a n}满足a n+12﹣a n+1a n﹣2a n2=0(n∈N*),且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式a n;(2)若b n=a n a n,S n=b1+b2+…+b n,求S n+n•2n+1>50成立的正整数n的最小值.【分析】(Ⅰ)根据数列是一个各项均为正数的数列{a n}满足a n+12﹣a n+1a n﹣2a n2=0,把这个式子分解,变为两个因式乘积的形式,(a n+1+a n)(a n+1﹣2a n)=0,注意数列是一个正项数列,得到a n+1﹣2a n=0,得到数列是一个等比数列,写出通项.(Ⅱ)本题构造了一个新数列,要求新数列的和,注意观察数列是有一个等差数列和一个等比数列乘积组成,需要用错位相减来求和,两边同乘以2,得到结果后观察S n+n•2n+1>50成立的正整数n的最小值.解:(Ⅰ)∵a n+12﹣a n+1a n﹣2a n2=0,∴(a n+1+a n)(a n+1﹣2a n)=0,∵数列{a n}的各项均为正数,∴a n+1+a n>0,∴a n+1﹣2a n=0,即a n+1=2a n,所以数列{a n}是以2为公比的等比数列.∵a3+2是a2,a4的等差中项,∴a2+a4=2a3+4,∴2a1+8a1=8a1+4,∴a1=2,∴数列{a n}的通项公式a n=2n.(Ⅱ)由(Ⅰ)及b n得,b n=﹣n•2n,∵S n=b1+b2++b n,∴S n=﹣2﹣2•22﹣3•23﹣4•24﹣﹣n•2n①∴2S n=﹣22﹣2•23﹣3•24﹣4•25﹣﹣(n﹣1)•2n﹣n•2n+1②①﹣②得,S n=2+22+23+24+25++2n﹣n•2n+1,要使S n+n•2n+1>50成立,只需2n+1﹣2>50成立,即2n+1>52,∴使S n+n•2n+1>50成立的正整数n的最小值为5.【点评】数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.。
湖北省2019-2020学年高一数学下册期中检测题1-附答案(已审阅)

湖北省武汉市部分重点中学2019-2020学年度下学期高一年级期中测试数 学 试 卷(理科)全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知向量a =(-1 ,2),且向量,b a ⊥ 则b 等于( )A. (2,1)B. (-1,2)C. (-2,1)D.(-2,-2)2.设ABC ∆的内角A,B,C所对的边分别为a, b, c ;且三内角A,B,C依次成等差数列, 三边a, b, c 依次成等比数列,则ABC ∆ 的形状为( )A.正三角形B.直角三角形C.钝角三角形D.等腰直角三角形3. 已知数列{a n }和{n b }均为等差数列,其前n 项和分别为Sn 和Tn ,并且37n n S n T n +=,则55a b 等于( )A.17B.421C.835D.324.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;且a=3,c=45O.则角B等于( ) A.600B. 600或1200C.150D.150或7505.设12345,,,,A A A A A 是平面中给定的5个不同的点,则同一平面内使123450MA MA MA MA MA ++++=成立的点M 的个数为( )A.0B.1C.5D.106.小王从甲地到乙地往返的时速分别为a 和b (0<a<b ),其全程的平均时速为v ,则( )<v<2a b+ D. v=2a b+ 7. 设点O在ABC ∆的内部,且有230OA OB OC ++= ,则ABC ∆的面积与ABC ∆的面积之比为( )A.32B.53C.2 D .38.已知数列{a n }为等差数列,若13121a a <- 且它的前n 项和n S 有最大值,那么n S 取最小正数时n 的值是( )A.22B.23C.24D.259.已知的平面向量a 和b ,且≠0a ,a ≠ b ,1b =,a 和b -a 夹角为135o ,则a 的取值范围为( )A.0,1⎡⎤⎣⎦B.()1,2C.(D.,12⎤⎥⎢⎥⎣⎦10.已知函数(x)xf e x =+,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形其中,正确的判断是( ) A.①④B.②③C.①③D.②④11.设a + b = 2, b >0,则1||2||a a b+的最小值为( ) A.12B.34C.1D.5412.设a 是已知的平面向量且≠0a ,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ; 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是 A.4B.3C .2D.1第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(23)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,把答案写在题中横线上) 13.如图4,在平行四边形ABCD 中 ,AP ⊥BD ,垂足为P ,=AP =14.已知O为坐标原点,向量(sin ,1)OA θ=,(cos ,0)OB θ=,(sin ,2)OC θ=-,()02cos sin ,1P αα=--.若O,P,C三点共线,求得OA OB + 的值为 .15.已知数列{n b }的通项公式为12,n n b -= 数列{a n }(n N *∈)满足222,,na nb b b + 成等比数列,若12340m a a a a a ++++≤ ,则m 的最大值是 .16.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;则下列命题正确的序号是 ①若cos 2Acos 2B≤ ,则b a ≤; ②若sinA cosB,=,则=2πC ;③若sin sin 2A2B=;则AB= ; ④若2ab c >,则3C π< ;⑤若(3n)+=≤nnna b c ,则ABC ∆为锐角三角形. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知()f x 是定义域为R 的偶函数,()00,f = 当0≤x 时,2()0+b =+≤f x x x c 的解集为4,0x ⎡⎤∈-⎣⎦(Ⅰ)求()f x 的解析式;(Ⅱ) 求不等式(x 1)5+≤f 的解集.18.(本小题满分12分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶。
湖北省2019-2020学年高一数学下册期中检测题2-附答案(已纠错)

湖北省武汉市部分重点中学2019-2020学年度下学期高一年级期中考试数 学 试 卷(文科)命题人:武汉市第四中学 审题人:武汉市第四十九中全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知向量a =(-1 ,2),且向量,b a ⊥ 则b 等于( )A. (2,1)B. (-1,2)C.(-2,1)D.(-2,-2)2. 如图,正六边形ABCDEF 中, BA CD EF ++=( )A .0B .BEC .AD D .CF3.实数b 是2和8的等比中项,则b 的值为( )A.4B.-4C.±4D.164 .设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;且三内角A,B,C依次成等差数列, 三边,,a b c 依次成等比数列,则ABC ∆ 的形状为( )A.正三角形B.直角三角形C.钝角三角形D.等腰直角三角形5.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;且,c=0.则角B等于( ) A .600B.600或120C.15D. 150或7506.已知数列{a n }和{ b n }均为等差数列,其前n 项和分别为Sn 和Tn ,并且37n n S n T n +=,则55a b 等于( )A. 17B.421C.835D.327. 设点O在ABC ∆ 的内部,且有230OA OB OC ++= ,则ABC ∆的面积与的面积之比为( )A.32B.53C.2D.38.已知数列{a n }为等差数列,若13121a a <- 且它的前n 项和n S 有最大值,那么n S 取最小正数时n 的值是( )A.12B.22C.23D.259.设12345,,,,A A A A A 是平面中给定的5个不同的点,则同一平面内使123450MA MA MA MA MA ++++=成立的点M 的个数为( )A.5个B.0个C.1个D.10个10已知函数(x)xf ex =+,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形; ②△AB C 可能是直角三角形 ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形 其中,正确的判断是( ) A.①③ B.①④ C.②③ D.②④11.设a + b = 2, b >0, 则1||2||a a b+的最小值为( ) A.12B.34C.1D.5412..设a 是已知的平面向量且≠0a ,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ; 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是 A.1B.2C.3D.4第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(23)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,把答案写在题中横线上) 13.如图4,在平行四边形ABCD 中 ,AP ⊥BD ,垂足为P ,=AP =14.已知数列{n b }的通项公式为12,n n b -= 数列{a n }(n N *∈)满足222,,na nb b b + 成等比数列,求数列{a n }的通项公式a n=(n N *∈).15.已知O为坐标原点,向量(sin ,1)OA θ=,(cos ,0)OB θ=,(sin ,2)OC θ=-,()02cos sin ,1P αα=-- .若O,P,C三点共线,求得OA OB + 的值为 .16.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;则下列命题正确的序号是 ①若cos 2Acos 2B≤ ,则b a ≤; ②若sinA cosB,=,则=2πC ;③若sin sin 2A2B=;则AB= ; ④若2ab c >,则3C π< ;⑤若333+=a b c ,则ABC 为锐角三角形.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知()f x 是定义域为R 的偶函数,()00,f =当0≤x 时,2()0+b =+≤f x x x c 的解集为4,0x ⎡⎤∈-⎣⎦(Ⅰ)求()f x 的解析式;(Ⅱ) 求不等式(x)5≤f 的解集.18.(本小题满分12分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶。
湖北省2019-2020学年高一数学下册期中检测题2-附答案(已审阅)

湖北省武汉市部分重点中学2019-2020学年度下学期高一年级期中考试数 学 试 卷(文科)命题人:武汉市第四中学 审题人:武汉市第四十九中全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知向量a =(-1 ,2),且向量,b a ⊥ 则b 等于( )A. (2,1)B. (-1,2)C.(-2,1)D.(-2,-2)2. 如图,正六边形ABCDEF 中, BA CD EF ++=( )A .0B .BEC .AD D .CF3.实数b 是2和8的等比中项,则b 的值为( )A.4B.-4C.±4D.164 .设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;且三内角A,B,C依次成等差数列, 三边,,a b c 依次成等比数列,则ABC ∆ 的形状为( )A.正三角形B.直角三角形C.钝角三角形D.等腰直角三角形5.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;且,c=0.则角B等于( ) A .600B.600或120C.15D. 150或7506.已知数列{a n }和{ b n }均为等差数列,其前n 项和分别为Sn 和Tn ,并且37n n S n T n +=,则55a b 等于( )A. 17B.421C.835D.327. 设点O在ABC ∆ 的内部,且有230OA OB OC ++= ,则ABC ∆的面积与的面积之比为( )A.32B.53C.2D.38.已知数列{a n }为等差数列,若13121a a <- 且它的前n 项和n S 有最大值,那么n S 取最小正数时n 的值是( )A.12B.22C.23D.259.设12345,,,,A A A A A 是平面中给定的5个不同的点,则同一平面内使123450MA MA MA MA MA ++++=成立的点M 的个数为( )A.5个B.0个C.1个D.10个10已知函数(x)xf ex =+,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形; ②△AB C 可能是直角三角形 ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形 其中,正确的判断是( ) A.①③ B.①④ C.②③ D.②④11.设a + b = 2, b >0, 则1||2||a a b+的最小值为( ) A.12B.34C.1D.5412..设a 是已知的平面向量且≠0a ,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ; 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是 A.1B.2C.3D.4第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(23)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,把答案写在题中横线上) 13.如图4,在平行四边形ABCD 中 ,AP ⊥BD ,垂足为P ,=AP =14.已知数列{n b }的通项公式为12,n n b -= 数列{a n }(n N *∈)满足222,,na nb b b + 成等比数列,求数列{a n }的通项公式a n=(n N *∈).15.已知O为坐标原点,向量(sin ,1)OA θ=,(cos ,0)OB θ=,(sin ,2)OC θ=-,()02cos sin ,1P αα=-- .若O,P,C三点共线,求得OA OB + 的值为 .16.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ;则下列命题正确的序号是 ①若cos 2Acos 2B≤ ,则b a ≤; ②若sinA cosB,=,则=2πC ;③若sin sin 2A2B=;则AB= ; ④若2ab c >,则3C π< ;⑤若333+=a b c ,则ABC 为锐角三角形.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知()f x 是定义域为R 的偶函数,()00,f =当0≤x 时,2()0+b =+≤f x x x c 的解集为4,0x ⎡⎤∈-⎣⎦(Ⅰ)求()f x 的解析式;(Ⅱ) 求不等式(x)5≤f 的解集.18.(本小题满分12分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶。
2019-2020学年湖北省武汉市高一下学期期中联考数学试题

湖北省武汉市2019-2020学年高一下学期期中联考数学试卷试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题卡上.) 1. 数列{}n a 是等差数列,23a =,59a =,则6S =( ). A .12B .24C .36D .722.若向量a v ,b v 满足()5a a b ⋅-=vv v ,||2a =v ,1b =v ,则向量a v ,b v 的夹角为( )A .6π B .3πC . 23πD . 56π3.在ABC ∆中,4a b B π===,则A 等于 ( )A .6πB .3πC .3π或23πD .6π或56π4. 在ABC V 中,12BD DC =u u u r u u u r,则AD u u u r =( )A .1344AB AC +u u u r u u u r B .2133AB AC +u u u r u u u r C .1233AB AC +u u u r u u u rD .2133AB AC -u u ur u u u r5. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,此日脚痛减一半,六朝才得到其关,要见此日行数里,请公仔细算相还”,其意思为:“有一个人要去378里外的地方,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问第四天走了( ) A. 96里B. 24里C. 192 里D. 48里6. 已知数列{}n a 是等比数列,数列{}n b 是等差数列,若1598a a a ⋅⋅=-,2583b b b π++=,则4637sin1b b a a +-的值是( )A.12 B.12-D.-7. 钝角三角形ABC 2AB =,3BC =,则AC = ( )B.C.D.8.已知ABC V 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若2cos a B c =,则该三角形一定是( ) A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形9.如图,已知等腰ABC V 中,3AB AC ==,4BC =,点P 是边BC 上的动点,则()AP AB AC ⋅+u u u r u u u r u u u r( )A .为定值10B .为定值6C .最大值为18D .与P 的位置有关(第9题图)10.在ABC V 中,三边长可以组成公差为1的等差数列,最大角的正弦值为32,则这个三角形的面积为( ) A .1516 B .153 C .154D .15311.如图所示,为了测量A 、B 处岛屿的距离,小明在D 处观测,A 、B 分别在D 处的北偏西15o 、北偏东45o 方向,再往正东方向行驶10海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60o 方向,则A 、B 两岛屿的距离为( )海里.A .56B .106C .102D .202(第11题图)12.数列{}n a 的前n 项和为n S ,()()1211n n n n a a n +++=⋅-,20211001S =,则2a 的值为( )A .9-B .8C .1019-D .1018二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填在答题卡相应位置上.)13.已知a r ,b r 均为单位向量,它们的夹角为23π,则a b -=r r .14.在数列{}n a 中,13a =,212n n n a a +=+,则n a =15.设等比数列{}n a 满足1330a a +=,2410a a +=,则123n a a a a ⋅⋅⋅……的最大值为 16. 已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,3c =且(sin sin )(3)()sin C B b a b A -+=+,则ABC ∆面积的最大值为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面直角坐标系中,已知()1,2a =-r ,()3,4b =r.(Ⅰ)若()()3a b a kb -+r r r r∥,求实数k 的值;(Ⅱ)若()a tb b -⊥r r r,求实数t 的值.18.(本小题满分12分)已知数列{}n a 是等差数列,1=10a -,公差0d ≠,且245,,a a a 是等比数列; (Ⅰ)求n a ;(Ⅱ)求数列{}||n a 的前n 项和n T .19.(本小题满分12分)在四边形ABCD 中,90ADC ∠=o,45A ∠=o,1AB =,3BD =. (Ⅰ)求cos ADB ∠;(Ⅱ)若DC =,求BC .20.(本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知17a =-,公差d 为整数,且4n S S ≥; (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和n T .21.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且222cos sin sin cos sin A A B C B +=+.(Ⅰ)求角C ; (Ⅱ)若c =ABC ∆的面积是,求ABC ∆的周长.22.(本小题满分12分)设正项数列{}n a 的前n 项和为n S ,且满足:24a =,21444n n a S n +=++,n N *∈.(I )求数列{}n a 的通项公式;(II )若正项等比数列{}n b 满足11b a =,34b a =,且1nn n c a b +=,数列{}n c 的前n 项和为n T ,若对任意n N *∈,均有2828n T m n n ⋅≥-恒成立,求实数m 的取值范围.高一数学试题答案14. n 453+15. 729 16. 三、解答题:本大题共6小题,共70分 17.(本题10分)(Ⅰ)()1,2a =-rQ ,()3,4b =r ,()()()331,23,40,10a b ∴-=--=-r r , ()()()1,23,431,42a kb k k k +=-+=+-r r,()()3//a b a kb -+r r r r Q ,()10310k ∴-+=,解得13k =-……………………………5分(Ⅱ)()()()1,23,413,24a tb t t t -=--=---r r,()a tb b -⊥r r r Q ,()()()3134242550a tb b t t t ∴-⋅=⨯-+⨯--=--=r r r,解得15t =-. ……………………………………………………………………………10分18.(本小题满分12分) (Ⅰ)由题意:()()()210104103d d d -+-+=-+ 计算得:()20d =或0舍去所以212n a n =-;………………………………………………………6分(Ⅱ)当16n ≤≤时,0n a ≤,即有211n n T S n n =-=-; 当7n ≥时,0n a >,6621160n n T S S S n n =--=-+,即有2211,161160,7n n n n T n n n ⎧-≤≤=⎨-+≥⎩.………………………………………………12分19.(本小题满分12分)(Ⅰ)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,31sin 45sin ADB=︒∠,所以sin ADB ∠=.由题设知,90ADB ∠<︒,所以cos 6ADB ∠==.…………6分(Ⅱ)由题设及(1)知,cos sin 6BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠92236=+-⨯9=. 所以3BC =.………………………………………………………………12分20.(本小题满分12分)(1) 由 等差数列{}n a 的前n 项n S 满足4n S S ≥,170a =-<, 得 a 4≤0,a 5≥0,于是-7+3d ≤0,-7+4d ≥0, 解得74≤d ≤73,因为公差d 为整数, 因此d =2.故数列{a n }的通项公式为29n a n =- ……………………………………6分 (2) ()()1111292722927n b n n n n ⎛⎫==- ⎪----⎝⎭,于是12n n T b b b =+++……1111111275532927n n ⎛⎫=⨯-+-++- ⎪------⎝⎭…… ()1112727727nn n ⎛⎫=--=- ⎪--⎝⎭ ∴n T =()727nn --…………………………………………………………12分21.(本小题满分12分)(1)由222cos sin sin cos sin A A B C B +=+,得21sin sin sin A A B -+221sin sin C B =-+,即2sin sin sin C A B +22sin sin A B =+. 由正弦定理可得222a b c ab +-=, 由余弦定理可得cos 12C =, ∵C ∈(0,π), 所以3C π=. ………………………………………………6分(2)1sin 2ABC S ab C ∆===20ab =,因为222c a b ab =+-,c =2241a b +=,()2222414081a b a ab b +=++=+=,9a b +=所以ABC ∆的周长为9……………………………………………………12分22.(本小题满分12分)(1)因为21444n n a S n +=++,所以()214414n n a S n -=+-+(n ≥2),两式相减得:a n +12﹣a n 2=4a n +4,即a n +12=(a n +2)2(n ≥2), 又因为数列{a n }的各项均为正数,所以a n +1=a n +2(n ≥2), 又因为a 2=4,16=a 12+4+4,可得a 1=2,所以当n =1时上式成立,即数列{a n }是首项为1、公差为2的等差数列, 所以a n =2+2(n ﹣1)=2n ;……………………………………………………4分 (2)由(1)可知b 1=a 1=2,b 3=a 4=8,所以b n =2n;c n =()112n n ++⋅.()2312232212n n n T n n +=⋅+⋅++⋅++⋅……① ()341222232212n n n T n n ++=⋅+⋅++⋅++⋅……②① —②得:()3412822212n n n T n ++-=++++-+⋅……()()()()232122242232124421122n n nn n n n n ++++=+++++-+⋅=+--+⋅=-⋅……22n n T n +=⋅…………………………………………………………………………8分2828n T m n n ⋅≥-恒成立,等价于()2247n n m n n +⋅≥-恒成立,所以272nn m -≥恒成立, 设k n =272n n -,则k n +1﹣k n =1252n n +-﹣272nn -=1922n n +-, 所以当n ≤4时k n +1>k n ,当n >4时k n +1<k n , 所以123456k k k k k k <<<<>>……所以当k n 的最大值为k 5=332,故m ≥332, 即实数m 的取值范围是:[332,+∞).…………………………………………12分。
湖北省武汉市部分重点中学2019-2020学年高一下学期期中考试数学试题含解析

数学试卷
全卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.
第Ⅰ卷(选择题共80分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在数列 中, , ,则 的值为( )
【解析】
【分析】
由 ,都有 ,可得 ,再根据等差数列的性质即可判断.
【详解】 等差数列 的公差 , ,都有 ,
,
.
故选: .
【点睛】本题考查等差数列的性质,属于基础题.
12.给定两个单位向量 , ,且 ,点 在以 为圆心的圆弧 上运动, ,则 的最小值为( )
A. B. C. D.
【答案】B
【解析】
试题解析:(Ⅰ)由
又 所以 .
(Ⅱ)由余弦定理有 ,解得 ,所以
点睛:在利用余弦定理进行求解时,往往利用整体思想,可减少计算量,若本题中的
.
19.设 为等差数列 的前 项和, , .
(1)求数列 的通项公式;
(2)求 的最大值及此时 的值.
【答案】(1) ;(2)当 时, 有最大值为
【解析】
【分析】
【点睛】本题考查等差数列通项公式以及前 项和的综合应用,难度较易.其中第二问还可以先将 的表达式求解出来,然后根据二次函数的对称轴以及开口方向亦可确定出 的最大值以及取最大值时 的值.
20.已知向量 , 且 .
(1)求 及 ;
(2)若 ,求 的最大值和最小值.
【答案】(1) (2) ;
【解析】
试题分析:
②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用 这个结论.
2019-2020学年湖北省武汉市三校联合体2019级高一下学期期中考试数学试卷及答案

2019-2020学年武汉市三校联合体2019级高一下学期期中考试数学试卷★祝考试顺利★一、选择题(共12小题)1.已知a→=(x,3),b→=(3,1),且a→∥b→,则x=()A.9 B.﹣9 C.1 D.﹣12.若|a→|=4,|b→|=2,a→和b→的夹角为30°,则a→在b→方向上的投影为()A.2 B.√3C.2√3D.43.在△ABC中,a=3,b=5,sin A=13,则sin B=()A.15B.59C.√53D.14.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=()A.33 B.72 C.84 D.1895.在△ABC中,∠A=90°,AB→=(2−k,2),AC→=(2,3),则k的值是()A.5 B.﹣5 C.32D.−326.△ABC的三内角A,B,C所对边长分别是a,b,c,若sinB−sinAsinC =√3a+ca+b,则角B的大小为()A.π6B.5π6C.π3D.2π37.下列命题正确的是()A .若a →⋅b →=b →⋅c →,则a →=c →B .|a →+b →|=|a →−b →|,则a →⋅b →=0C .若a →与b →是共线向量,b →与c →是共线向量,则a →与c →是共线向量D .若a →0与b →0是单位向量,则a →0⋅b →0=1 8.如图,在△OAB 中,P 为线段AB 上的一点,OP →=x OA →+y OB →,且BP →=3PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =149.已知△ABC 中,a =√5,A =π3,b +c =√2bc ,则△ABC 的面积为( ) A .58B .√34C .√3D .5√3810.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )。
湖北省武汉市2019-2020学年高一下学期期中联考数学试题+Word版含答案

数学试卷试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题卡上.) 1. 数列{}n a 是等差数列,23a =,59a =,则6S =( ). A .12B .24C .36D .722.若向量a v ,b v 满足()5a a b ⋅-=vv v ,||2a =v ,1b =v ,则向量a v ,b v 的夹角为( )A .6π B .3πC . 23πD . 56π3.在ABC ∆中,4a b B π===,则A 等于 ( )A .6πB .3πC .3π或23πD .6π或56π4. 在ABC V 中,12BD DC =u u u r u u u r,则AD u u u r =( )A .1344AB AC +u u u r u u u r B .2133AB AC +u u u r u u u r C .1233AB AC +u u u r u u u rD .2133AB AC -u u ur u u u r5. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,此日脚痛减一半,六朝才得到其关,要见此日行数里,请公仔细算相还”,其意思为:“有一个人要去378里外的地方,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问第四天走了( ) A. 96里B. 24里C. 192 里D. 48里6. 已知数列{}n a 是等比数列,数列{}n b 是等差数列,若1598a a a ⋅⋅=-,2583b b b π++=,则4637sin1b b a a +-的值是( )A.12 B.12-D.-7. 钝角三角形ABC 2AB =,3BC =,则AC = ( )B.C.D.8.已知ABC V 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若2cos a B c =,则该三角形一定是( ) A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形9.如图,已知等腰ABC V 中,3AB AC ==,4BC =,点P 是边BC 上的动点,则()AP AB AC ⋅+u u u r u u u r u u u r( )A .为定值10B .为定值6C .最大值为18D .与P 的位置有关(第9题图)10.在ABC V 中,三边长可以组成公差为1的等差数列,最大角的正弦值为32,则这个三角形的面积为( ) A .1516 B .153 C .154D .15311.如图所示,为了测量A 、B 处岛屿的距离,小明在D 处观测,A 、B 分别在D 处的北偏西15o 、北偏东45o 方向,再往正东方向行驶10海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60o 方向,则A 、B 两岛屿的距离为( )海里.A .56B .106C .102D .202(第11题图)12.数列{}n a 的前n 项和为n S ,()()1211n n n n a a n +++=⋅-,20211001S =,则2a 的值为( )A .9-B .8C .1019-D .1018 二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填在答题卡相应位置上.)13.已知a r ,b r 均为单位向量,它们的夹角为23π,则a b -=r r .14.在数列{}n a 中,13a =,212n n n a a +=+,则n a =15.设等比数列{}n a 满足1330a a +=,2410a a +=,则123n a a a a ⋅⋅⋅……的最大值为 16. 已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,3c =且(sin sin )(3)()sin C B b a b A -+=+,则ABC ∆面积的最大值为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面直角坐标系中,已知()1,2a =-r ,()3,4b =r.(Ⅰ)若()()3a b a kb -+r r r r∥,求实数k 的值;(Ⅱ)若()a tb b -⊥r r r,求实数t 的值.18.(本小题满分12分)已知数列{}n a 是等差数列,1=10a -,公差0d ≠,且245,,a a a 是等比数列; (Ⅰ)求n a ;(Ⅱ)求数列{}||n a 的前n 项和n T .19.(本小题满分12分)在四边形ABCD 中,90ADC ∠=o,45A ∠=o,1AB =,3BD =. (Ⅰ)求cos ADB ∠;(Ⅱ)若DC =,求BC .20.(本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知17a =-,公差d 为整数,且4n S S ≥; (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和n T .21.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且222cos sin sin cos sin A A B C B +=+.(Ⅰ)求角C ; (Ⅱ)若c =ABC ∆的面积是,求ABC ∆的周长.22.(本小题满分12分)设正项数列{}n a 的前n 项和为n S ,且满足:24a =,21444n n a S n +=++,n N *∈.(I )求数列{}n a 的通项公式;(II )若正项等比数列{}n b 满足11b a =,34b a =,且1nn n c a b +=,数列{}n c 的前n 项和为n T ,若对任意n N *∈,均有2828n T m n n ⋅≥-恒成立,求实数m 的取值范围.高一数学试题答案14. n 453+15. 729 16. 三、解答题:本大题共6小题,共70分 17.(本题10分)(Ⅰ)()1,2a =-rQ ,()3,4b =r ,()()()331,23,40,10a b ∴-=--=-r r , ()()()1,23,431,42a kb k k k +=-+=+-r r,()()3//a b a kb -+r r r r Q ,()10310k ∴-+=,解得13k =-……………………………5分(Ⅱ)()()()1,23,413,24a tb t t t -=--=---r r,()a tb b -⊥r r r Q ,()()()3134242550a tb b t t t ∴-⋅=⨯-+⨯--=--=r r r,解得15t =-. ……………………………………………………………………………10分18.(本小题满分12分) (Ⅰ)由题意:()()()210104103d d d -+-+=-+ 计算得:()20d =或0舍去所以212n a n =-;………………………………………………………6分(Ⅱ)当16n ≤≤时,0n a ≤,即有211n n T S n n =-=-; 当7n ≥时,0n a >,6621160n n T S S S n n =--=-+,即有2211,161160,7n n n n T n n n ⎧-≤≤=⎨-+≥⎩.………………………………………………12分19.(本小题满分12分)(Ⅰ)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,31sin 45sin ADB=︒∠,所以sin ADB ∠=.由题设知,90ADB ∠<︒,所以cos 6ADB ∠==.…………6分(Ⅱ)由题设及(1)知,cos sin 6BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠92236=+-⨯9=. 所以3BC =.………………………………………………………………12分20.(本小题满分12分)(1) 由 等差数列{}n a 的前n 项n S 满足4n S S ≥,170a =-<, 得 a 4≤0,a 5≥0,于是-7+3d ≤0,-7+4d ≥0, 解得74≤d ≤73,因为公差d 为整数, 因此d =2.故数列{a n }的通项公式为29n a n =- ……………………………………6分 (2) ()()1111292722927n b n n n n ⎛⎫==- ⎪----⎝⎭,于是12n n T b b b =+++……1111111275532927n n ⎛⎫=⨯-+-++- ⎪------⎝⎭…… ()1112727727nn n ⎛⎫=--=- ⎪--⎝⎭ ∴n T =()727nn --…………………………………………………………12分21.(本小题满分12分)(1)由222cos sin sin cos sin A A B C B +=+,得21sin sin sin A A B -+221sin sin C B =-+,即2sin sin sin C A B +22sin sin A B =+. 由正弦定理可得222a b c ab +-=, 由余弦定理可得cos 12C =, ∵C ∈(0,π), 所以3C π=. ………………………………………………6分(2)1sin 2ABC S ab C ∆===20ab =,因为222c a b ab =+-,c =2241a b +=,()2222414081a b a ab b +=++=+=,9a b +=所以ABC ∆的周长为9……………………………………………………12分22.(本小题满分12分)(1)因为21444n n a S n +=++,所以()214414n n a S n -=+-+(n ≥2),两式相减得:a n +12﹣a n 2=4a n +4,即a n +12=(a n +2)2(n ≥2), 又因为数列{a n }的各项均为正数,所以a n +1=a n +2(n ≥2), 又因为a 2=4,16=a 12+4+4,可得a 1=2,所以当n =1时上式成立,即数列{a n }是首项为1、公差为2的等差数列, 所以a n =2+2(n ﹣1)=2n ;……………………………………………………4分 (2)由(1)可知b 1=a 1=2,b 3=a 4=8,所以b n =2n;c n =()112n n ++⋅.()2312232212n n n T n n +=⋅+⋅++⋅++⋅……① ()341222232212n n n T n n ++=⋅+⋅++⋅++⋅……②① —②得:()3412822212n n n T n ++-=++++-+⋅……()()()()232122242232124421122n n nn n n n n ++++=+++++-+⋅=+--+⋅=-⋅……22n n T n +=⋅…………………………………………………………………………8分2828n T m n n ⋅≥-恒成立,等价于()2247n n m n n +⋅≥-恒成立,所以272nn m -≥恒成立, 设k n =272n n -,则k n +1﹣k n =1252n n +-﹣272nn -=1922n n +-, 所以当n ≤4时k n +1>k n ,当n >4时k n +1<k n , 所以123456k k k k k k <<<<>>……所以当k n 的最大值为k 5=332,故m ≥332, 即实数m 的取值范围是:[332,+∞).…………………………………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一 项是符合题目要求的,请将正确答案填涂在答题卡上.)
1. 数列an 是等差数列, a2 3 , a5 9 ,则 S6 ( ).
A.12
形一定是( )
A. 等腰三角形
B. 直角三角形
C. 等边三角形
D. 等腰直角三角形
9. 如 图 , 已 知 等 腰 ABC 中 , AB AC 3 , BC 4 , 点 P 是 边 BC 上 的 动 点 , 则
AP AB AC
()
A.为定值 10 C.最大值为 18
B.为定值 6 D.与 P 的位置有关
22.(本小题满分 12 分)
设正项数列
an
的前
n 项和为
Sn
,且满足:
a2
4
,
a2 n1
4Sn
4n
4
,n
N
.
(I)求数列an 的通项公式;
(II)若正项等比数列 bn 满足 b1 a1 ,b3 a4 ,且 cn an1bn ,数列 cn 的前 n 项和为
Tn ,若对任意 n N ,均有 Tn m 8n2 28n 恒成立,求实数 m 的取值范围.
(第 9 题图)
10.在 ABC 中,三边长可以组成公差为 1 的等差数列,最大角的正弦值为
3
,则这个三角
2
形的面积为( )
A. 15 16
B. 15 3 16
C. 15 4
D. 15 3 4
11.如图所示,为了测量 A 、 B 处岛屿的距离,小明在 D 处观测, A 、 B 分别在 D 处的北偏
西15 、北偏东 45 方向,再往正东方向行驶10 海里至 C 处,观测 B 在 C 处的正北方向,A 在
(Ⅰ)求 an ;
(Ⅱ)求数列| an | 的前 n 项和 Tn .
19.(本小题满分 12 分)
在四边形 ABCD 中, ADC 90 , A 45 , AB 1, BD 3 . (Ⅰ)求 cos ADB ; (Ⅱ)若 DC 2 ,求 BC .
第3页,共8页
20.(本小题满分 12 分)
第4页,共8页
高一数学试题答案
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分
题号 1
2
3
4
5
6
7
8
9
10 11 12
答案 C C C B B D D A A B A B
C 处的北偏西 60 方向,则 A 、 B 两岛屿的距离为( )海里.
A. 5 6
B.10 6
C.10 2
D. 20 2
(第 11 题图)
n n 1
12.数列 an 的前 n 项和为 Sn , an an1 n 1 2 , S2021 1001 ,则 a2 的值为( )
A. 9
B. 8
个人要去 378 里外的地方,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,
走了 6 天后到达目的地”,请问第四天走了( )
A. 96 里
B. 24 里
C. 192 里
D. 48 里
6. 已知数列an 是等比数列,数列bn 是等差数列,若 a1 a5 a9 8 , b2 b5 b8 3 ,
则 sin b4 b6 的值是( ) 1 a3a7
A. 1
B. 1
C. 3
D. 3
2
2
2
2
7. 钝角三角形 ABC 的面积是 3 3 , AB 2 , BC 3,则 AC ( ) 2
A. 7
B. 15
C. 17
D. 19
第1页,共8页
8.已知 ABC 的三个内角 A , B , C 的对边分别为 a , b , c ,若 2a cos B c ,则该三角
在平面直角坐标系中,已知 a 1, 2 , b 3, 4 .
(Ⅰ)若
3a b ∥ a kb
,求实数 k 的值;
(Ⅱ)若
a tb
b
,求实数
t
的值.
18.(本小题满分 12 分)
已知数列 an 是等差数列, a1= 10 ,公差 d 0 ,且 a2 , a4 , a5 是等比数列;
AD
=(
3
)
3
A.
1
AB
3
AC
2
B.
2
AB
1
AC
C.
1
AB
2
AC
4
4
33
33
D. 5 6
D. 或 5 66
D.
2
AB
1
AC
33
5. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,
此日脚痛减一半,六朝才得到其关,要见此日行数里,请公仔细算相还”,其意思为:“有一
B.24
C.36
ቤተ መጻሕፍቲ ባይዱ
D.72
2.若向量
a
,
b
满足
a
(a
b)
5
,
|
a
|
2
,
b
1,则向量 a , b 的夹角为(
)
A.
6
B.
3
C. 2 3
3.在 ABC 中, a 2 3, b 2 2, B ,则 A 等于 ( ) 4
A.
B.
C. 或 2
4.
6 在 ABC
中, BD
1
3 DC
,则
16. 已知 a, b, c 分别为 ABC 的三个内角 A, B,C 的对边, c 3且
(sin C sin B)(b 3) (a b) sin A ,则 ABC 面积的最大值为
.
三、解答题(本大题共 6 小题,共 70 分,解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分 10 分)
C. 1019
D.1018
第2页,共8页
二13、.已填知空a题,(b本 均大为题单共位4向小量题,,它每们小的题夹5角分为,2共
20 分,请将正确答案填在答题卡相应位置上.)
,则 a b
.
3
14.在数列 an 中, a1 3 , an1 an 22n ,则 an
15.设等比数列 an 满足 a1 a3 30 , a2 a4 10 ,则 a1 a2 a3 ……an 的最大值为
等差数列 an 的前 n 项和为 Sn ,已知 a1 7 ,公差 d 为整数,且 Sn S4 ;
(Ⅰ)求数列an 的通项公式;
(Ⅱ)设 bn
1 an an 1
,求数列
bn
的前 n 项和 Tn .
21.(本小题满分 12 分)
在 ABC 中,内角 A , B , C 的对边分别为 a , b , c ,且 cos2 A sin Asin B cos2 C sin2 B . (Ⅰ)求角 C ; (Ⅱ)若 c 21 ,且 ABC 的面积是 5 3 ,求 ABC 的周长.