2016八年级数学下册19.2.2一次函数课时训练2(无答案)(新版)新人教版

合集下载

新人教版八年级下《19.2.2一次函数》课时练习含答案

新人教版八年级下《19.2.2一次函数》课时练习含答案

一定是正比例函数,正比例函数一定是一次函数.
3.
下列函数(1)y=3πx;(2)y=8x-6;(3)y=
1 x
;(4)y=
1 2
-8x;(5)y=5
x2
-4x+1
中,是一次
函数的有( )
A.4 个 B.3 个
C.2 个
D.1 个
答案:B
知识点:一次函数的定义
1 解析:解答:(1)y=3πx (2)y=8x-6 (4)y= 2 -8x 是一次函数,因为它们符合一次函数的定
人教版数学八年级下册第 19 章第 2 节第 2 课时一次函数同步检测
一、选择题 1.函数 y=mxm-1+(m-1)是一次函数,则 m 值( )
A.m≠0 B.m=2 C.m=2 或 4 D.m>2
答案:B
知识点:一次函数的定义
解析:解答: 由 y=mxm-1+(m-1)是一次函数,得
m−1=1 且 m≠0,
1 D.直线 y=- 2 x+1 不过第三象限,说法正确,故此选项正确;
故选:D. 分析:根据一次函数的性质 k<0,y 随 x 的增大而减小可得 A 错误;根据一次函数与 y 轴的交点的 坐标为(0,b)可得 B 错误;根据凡是函数图象经过的点必能满足解析式可得 C 错误;根据 k、b
1 的值可判断出 y=- 2 x+1 经过一、二、四象限可得 D 正确.
减小,函数从左到右下降.由于 y=kx+b 与 y 轴交于 (0,b),当 b>0 时,(0,b)在 y 轴的正半轴
上,直线与 y 轴交于正半轴;当 b<0 时,(0,b)在 y 轴的负半轴,直线与 y 轴交于负半轴.
12.若函数 y=-2mx-( m2 -4)的图象经过原点,且 y 随 x 的增大而增大,则( )

人教版 八年级下册数学19.2 一次函数 课时训练(含答案)

人教版 八年级下册数学19.2 一次函数 课时训练(含答案)

人教版 八年级下册数学19.2 一次函数 课时训练一、选择题1. 一次函数y =-2x +3的图象不经过的象限是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. (2019•陕西)若正比例函数2y x =-的图象经过点O(a –1,4),则a 的值为 A .–1 B .0 C .1 D .23. (2019•陕西)在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为 A .(2,0) B .(–2,0) C .(6,0) D .(–6,0)4. 如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么()A .00k b >>,B .00k b ><,C .00k b <>,D .00k b <<,5. (2019•沈阳)已知一次函数y=(k+1)x+b 的图象如图所示,则k 的取值范围是A .k<0B .k<-1C .k<1D .k>-16. 如图,A 、B的坐标分别为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b的值为( )A. 2B. 3C. 4D. 57. 若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )8. (2019•威海)甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.下列说法错误的是 A .甲队每天修路20米 B .乙队第一天修路15米 C .乙队技术改进后每天修路35米 D .前七天甲、乙两队修路长度相等二、填空题9. 将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.10. 若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.11. (2019•天津)直线21y x =-与x 轴交点坐标为__________.12. (2019•贵阳)在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是__________.13. 为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.14. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将∠ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.三、解答题15. 求一次函数32y x =+的图象与两坐标轴围成的三角形面积.16. (2019•陕西)根据记录,从地面向上11 km 以内,每升高1 km ,气温降低6 °C ;又知在距离地面11 km 以上高空,气温几乎不变.若地面气温为m(°C),设距地面的高度为x(km)处的气温为y(°C)(1)写出距地面的高度在11 km以内的y与x之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26 °C时,飞机距离地面的高度为7 km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12 km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12 km时,飞机外的气温.17. 某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运.如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x(时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人各连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?18. 刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息()<≤小时再往A镇参加救灾.一分队出发后得a a03知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为()4a+千米/时.⑴若二分队在营地不休息,问二分队几小时能赶到A镇?⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x (小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义.人教版 八年级下册数学19.2 一次函数 课时训练-答案一、选择题1. 【答案】C 【解析】在一次函数y =-2x +3中,k =-2<0,图象经过第二、四象限;∵b =3>0,∴图象经过第一象限,则不经过第三象限.2. 【答案】A【解析】∵函数2y x =-过O(a –1,4),∴2(1)4a --=,∴1a =-,故选A .3. 【答案】B【解析】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+,此时与x 轴相交,则0y =, ∴360x +=,即2x =-, ∴点坐标为(–2,0), 故选B .4. 【答案】B【解析】一次函数y kx b =+的图象经过第一象限,且与轴负半轴相交,画出大致图像,则0k >,0b <5. 【答案】B【解析】∵观察图象知:y 随x 的增大而减小, ∴k+1<0, 解得:k<-1,故选B .6. 【答案】A【解析】由题图知:线段AB 向右平移一个单位,再向上平移一个单位,即a =1,b =1,∴a +b =1+1=2.7. 【答案】C【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.8. 【答案】D【解析】由题意可得,甲队每天修路:16014020-=(米),故选项A 正确; 乙队第一天修路:352015-=(米),故选项B 正确;乙队技术改进后每天修路:2151602035--=(米),故选项C 正确;前7天,甲队修路:207140⨯=米,乙队修路:270140130-=米,故选项D 错误, 故选D .二、填空题9. 【答案】四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限.10. 【答案】2x <【解析】列一元一次不等式或是画图象均可得出答案,2y x =+上的点在直线32y x =-上相应点的上方,即232x x +>-11. 【答案】1(0)2, 【解析】∵当y=0时,2x –1=0,∴x=12,∴直线21y x =-与x 轴交点坐标为:1(0)2,, 故答案为:1(0)2,.12. 【答案】21x y =⎧⎨=⎩【解析】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩.故答案为:21x y =⎧⎨=⎩.13. 【答案】120【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎨⎧60k +b =360150k +b =540,解得⎩⎨⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎨⎧S =2t +240S =4t ,得⎩⎨⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14. 【答案】16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16.三、解答题15. 【答案】23【解析】在函数32y x =+中,令0x =,则2y =,因此图象交y 轴于点(0,2)令0y =,则320x +=,解得23x =-,因此图象交x 轴于点2(,0)3-∴函数32y x =+与两坐标轴围成的三角形面积1222233S ∆=⨯⨯=16. 【答案】(1)∵从地面向上11 km 以内,每升高1 km ,气温降低6 °C ,地面气温为m(°C),距地面的高度为x(km)处的气温为y(°C), ∴y 与x 之间的函数表达式为:y=m-6x(0≤x≤11). (2)将x=7,y=-26代入y=m-6x ,得-26=m-42,∴m=16,∴当时地面气温为16 °C . ∵x=12>11,∴y=16-6×11=-50(°C), 假如当时飞机距地面12 km 时,飞机外的气温为-50 °C .17. 【答案】解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得: ⎩⎨⎧k 1+b =03k 1+b =180, 解得⎩⎨⎧k 1=90b =-90,(3分)∴y B 关于x 的解析式为y B =90x -90.(4分)(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,(6分)当x =5时,y A =5×60=300(千克),当x =6时,y B =90×6-90=450(千克)(8分) 450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.(10分)18. 【答案】⑴8;⑵1小时或2小时;⑶合理的图像为(b )、(d )【解析】⑴若二分队在营地不休息,则0a =,速度为4千米/时,行至塌方处需(小时) 因为一分队到塌方处并打通道路需要(小时),故二分队在塌方处需停留0.5小时,所以二分队在营地不休息赶到A 镇需202.50.584++=(小时) ⑵一分队赶到A 镇共需30175+=(小时) ①若二分队在塌方处需停留,则后20千米需与一分队同行,故45a +=,即1a =,这与二分队在塌方处停留矛盾,舍去;②若二分队在塌方处不停留,则4(7)30a a +=()-,即2320a a +-=,解得1212a a ==,均符合题意.答:二分队应在营地休息1小时或2小时. ⑶合理的图像为(b )、(d ).102.54=10135+=图像(b)表明二分队在营地休息时间过长(23<),后于一分队赶到A镇;a≤图像(d)表明二分队在营地休息时间恰当(12<),先于一分队赶到A镇.a≤。

人教版数学八年级下册19.2.2 一次函数 课时练习

人教版数学八年级下册19.2.2 一次函数 课时练习

人教版数学八年级下册19.2.2《一次函数》课时练习(时间:30分钟)一、选择题1.若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.一次函数y=2x﹣3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数y=3x+1的图象一定经过点()A.(3,5) B.(﹣2,3) C.(2,7) D.(4,10)4.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4B.y=3x﹣1C.y=﹣3x+1D.y=﹣2x+45.关于函数y=-2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.图象与直线y=-2x+3平行D.y随x的增大而增大6.下列关于一次函数y=﹣2x+3的结论中,正确的是( )A.图象经过点(3,0)B.图象经过第二、三、四象限C.y随x增大而增大D.当x>时,y<07.在平面直角坐标系中,将直线l1:y=-3x-1平移后,得到直线l2:y=-3x+2,则下列平移方式正确的是()A.将l1向左平移1个单位B.将l1向右平移1个单位C.将l1向上平移2个单位D.将l1向上平移1个单位8.如图,在平面直角坐标系,直线y=﹣3x+3与坐标轴分别交于A、B两点,以线段AB为边,在第一象限内作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x﹣2上,则a的值为()A.1 B.2 C.﹣1 D.﹣1.5二、填空题9.如果函数y=(k﹣2)x|k﹣1|+3是一次函数,则k= .10.如图,直线与y轴的交点是(0,﹣3),当x<0时,y的取值范围是.11.已知关于x,y的一次函数y=(m﹣1)x﹣2的图象经过平面直角坐标系中的第一、三、四象限,那么m的取值范围是.12.直线y=3x+6与两坐标轴围成的三角形的面积是______.三、解答题13.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值(2)若函数的图象平行于直线y=3x-3,求m的值(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.14.如图,在直角坐标系中,直线y=kx+4与x轴正半轴交于一点A,与y轴交于点B,已知△OAB的面积为10,求这条直线的解析式.15.如图正比例函数y=2x的图像与一次函数 y=kx+b的图像交于点A(m,2),一次函数的图像经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求C点的坐标;(3)求△AOD的面积。

人教版八年级数学下册19.2.2一次函数同步测试(包含答案)

人教版八年级数学下册19.2.2一次函数同步测试(包含答案)

19.2.2 一次函数 班级: 姓名:一、单选题1.已知点A (1,y 1),B (-3,y 2)都在直线122y x =-+上,则( )A .y 1< y 2B .y 1= y 2C .y 1>y 2D .不能比较2.已知点(k ,b)为第二象限内的点,则一次函数y kx b =-+的图象大致是( ) A . B . C . D . 3.关于函数21y x =-+,下列结论正确的是( )A .图象必经过点()2,1-B .图象经过第一、二、三象限C .当12x >时,0y <D .y 随x 的增大而增大4.如图,将点P(-2,3)向右平移n 个单位后落在直线y=2x-1上的点P'处,则n 等于()A .4B .5C .6D .75.一次函数y=ax+b 与y=abx 在同一个平面直角坐标系中的图象不可能是( )A .B .C .D .6.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( ) A . B .C .D .7.将直线y =-x +a 的图象向下平移2个单位后经过点A (3,3),则a 的值为( ) A .-2 B .2 C .-4 D .88.正比例函数的图象如图所示,将这条直线向右平移一个单位长度,它所表示函数的解析是( )A .12y x =-+ B .1y x =-+C .22y x =-+D .122y x =-9.将函数y 2x =的图象向下平移3个单位,则得到的图象相应的函数表达式为( ) A .y 2x 3=+B .y 2x 3=-C .y 2x 6=+D .y 2x 6=-二、填空题10.如图,正比例函数y=2x 的图象与一次函数y=-3x+k 的图象相交于点P(1,m),则两条直线与x 轴围成的三角形的面积为_______.11.关于一次函数(0)y kx k k =+≠有如下说法:①当0k >时,y 随x 的增大而减小;②当0k >时,函数图象经过一、 二、三象限;③函数图象一定经过点(1, 0);④将直线(0)y kx k k =+≠向下移动2个单位长度后所得直线表达式为()2)0( y k x k k =-+≠.其中说法正确的序号是__________.12.弹簧的长度ycm 与所挂物体的质量x(kg)的关系是一次函数,图像如图所示,则弹簧不挂物体时的长度是_______.13.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______. 14.已知A 地在B 地的正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (km )与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为______km.15.若点P (-1,y 1)和点Q (-2,y 2)是一次函数y =13-x+b 的图象上的两点,则y 1,y 2的大小关系是___.三、解答题16.如图,在平面直角坐标系中,已知点()5,0A 和点()0,4B .(1)求直线AB 所对应的函数表达式;(2)设直线y x =与直线AB 相交于点C ,求AOC ∆的面积.17.如图,在平面直角坐标系xOy 中,过点(0,4)A 的直线1l 与直线2l :1y x =+相交于点(,2)B m . (1)求直线1l 的表达式;(2)过动点(,0)P n 且垂直于x 轴的直线与1l ,2l 的交点分别为M ,N ,当点M 位于点N 上方时,请直接写出n 的取值范围是 .一、单选题1.对于函数y =2x+1下列结论不正确是( )A .它的图象必过点(1,3)B .它的图象经过一、二、三象限C .当x >12时,y >0 D .y 值随x 值的增大而增大2.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 3.已知正比例函数y=kx(k≠0)的函数值y 随x 的增大而减小,则函数y=kx ﹣k 的图象大致是( )A .B .C .D . 4.已知点124,, 2()(),y y -都在直线21y x =-+上,则1y 与2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不能确定5.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( )A .B .C .D . 6.已知一次函数y=mx+n ﹣2的图象如图所示,则m 、n 的取值范围是( )A .m >0,n <2B .m >0,n >2C .m <0,n <2D .m <0,n >27.一次函数y kx b =+的图象经过第一、二、四象限,若点()2,A m ,()1,B n -在该一次函数的图象上,则m 、n 的大小关系是( )A .m n <B .m n =C .m n >D .无法判定8.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是( )A .打六折B .打七折C .打八折D .打九折9.一次函数y =kx -(2-b)的图像如图所示,则k 和b 的取值范围是( )A .k>0,b>2B .k>0,b<2C .k<0,b>2D .k<0,b<2二、填空题 10.已知:如图,在平面直角坐标系xOy 中,一次函数y =34x+3的图象与x 轴和y 轴交于A 、B 两点将△AOB 绕点O 顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.11.已知:一次函数y kx b =+的图像在直角坐标系中如图所示,则kb ______0(填“>”,“<”或“=”)12.把直线112y x =--向y 轴正方向平移4个单位,得到的直线与x 轴的交点坐标为__________. 13.如果直线y=-2x+k 与两坐标轴围成的三角形面积是8,则k 的值为______.14.关于x 的一次函数y=3kx+k-1的图象无论k 怎样变化,总经过一个定点,这个定点的坐标是 .15.一次函数11:24l y x =-+与221:12l y x =--的图象如图所示,1l 交x 轴于点A ,现将直线2l 平移使得其经过点A ,则2l 经过平移后的直线与y 轴的交点坐标为________.16.一次函数23y x =-的图像经过的象限是___________.17.如果()2213m y m x -=-+是一次函数,则m 的值是________________.18.将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题19.已知一次函数2y kx k =+-的图象不经过第二象限.(1)求k 的取值范围;(2)当1k =时,判断点()1,3是否在该函数图象上.20.如图,直线y=kx+b 与x 轴、y 轴分别交于点A ,B ,且OA ,OB 的长(OA >OB )是方程x 2-10x+24=0的两个根,P (m ,n )是第一象限内直线y=kx+b 上的一个动点(点P 不与点A ,B 重合).(1)求直线AB 的解析式.(2)C 是x 轴上一点,且OC=2,求△ACP 的面积S 与m 之间的函数关系式;(3)在x 轴上是否有在点Q ,使以A ,B ,Q 为顶点的三角形是等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.21.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B .(1)求一次函数的解析式;(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;(3)若该一次函数的图象与x 轴交于D 点,求△BOD 的面积.参考答案1-5.ADCAD6-9.BDBB10.53 11.②12.10cm13.1y x =+14.1.515.y 1<y 216.(1)4y x 45=-+;(2)AOC 50S 9=V . 17.(1)直线1l 的表达式为24y x =-+;(2)1n <.1-5.CADAA6-9.DACB10.443y x =-+ 11.> 12.(6,0)13.42±.14.(-13,-1). 15.(0,1)16.一、三、四17.-1 ;18.y=-3x+5 19.(1)02k <≤;(2)点()1,3不在该一次函数的图像上.20.(1)y=-23x+4;(2)S=-83m+16或S=-43m+8(0<m <6);(3)存在,130)或130)或(-6,0)或(53,0) 21.(1)y =-x +3;(2)不在,理由略;(3)3。

人教版八年级数学下册19.2.2 一次函数(第2课时)

人教版八年级数学下册19.2.2 一次函数(第2课时)
一次函数的 图象和性质
性质
与y轴的交点是(0,b),
与x轴的交点是(
b k
,0),
当k>0, b>0时,经过一、二、三象限;
当k>0 ,b<0时,经过一、三、四象限;
当k<0 ,b>0时,经过 一、二、四象限;
当k<0 ,b<0时,经过二、三、四象限.
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
人教版 数学 八年级 下册
19.2 一次函数 19.2.2 一次函数
第2课时
导入新知
我们最快捷、最正确地画出正比例函数的图象 时,通常在直角坐标系中选取哪两个点?
答:画正比例函数y=kx(k≠0)的图象,一般地, 过原点和点(1,k). 【思考】能用这种方法作出一次函数的图象吗?
学习目标
3. 能灵活运用一次函数的图象与性质解答有关 问题. 2.能从图象角度理解正比例函数与一次函数的 关系.
1且m
1. 2
(3)由题意得1-2m<0且m-1<0,解得
1 m 1. 2
巩固练习
已知一次函数y=(2m+2)x+(3-n),根据下列条件,请你求出 m,n的取值范围. (1)y随x的增大而增大; (2)直线与y轴交点在x轴下方; (3)图象经过第二、三、四象限.
巩固练习
解:(1)由y随x的增大而增大可知2m+2>0,所以当m>-1时,y随
探究新知
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观
察结果并与同伴交流.
这两个函数的图象形状都 是一条直线,并且倾斜程度相同 .函 数y=-6x的图象经过原点,函数 y=-6x+5的图象与y轴交于点(0,5), 即它可以看作由直线y=-6x向 上 平 移 5 个单位长度得到.

2016八年级数学下册 19.2.2 一次函数课时训练1(无答案)(新版)新人教版

2016八年级数学下册 19.2.2 一次函数课时训练1(无答案)(新版)新人教版

第十九章一次函数19.2.2一次函数(1)1、列函下数关系式中,哪些是一次函数,哪些又是正比例函数?(1)y= -x - 4 (2)256y x=+(3)8yx=-(4) y= - 8x2、若函数y=(m-1)x+m是关于x的一次函数,试求m的值.3、下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数4、若函数y=mx-(4m-4)的图象过原点,则m=_______,此时函数是______•函数.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=______,此时函数是______函数.5、下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数6、已知函数y=(2-m)x+2m-3.求当m为何值时; (1)此函数为正比例函数? (2)此函数为一次函数?7、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。

(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度?8、汽车油箱中原有油50L,如果行驶中每小时用油5L,求油箱中油量y(L)随行驶时间x (小时)变化的函数关系式,并写出自变量x 的取值范围。

y是x 的一次函数吗?9、某用煤单位有煤m吨,每天烧煤n吨,现已知烧煤3天后余煤102吨,烧煤8天后余煤72最吨,求m和n的值,并求该单位余煤量y吨与烧煤天数x之间的函数解析式;当烧煤12天后,还余煤多少吨?(2)预计多少天后会把煤烧完?10、已知函数y=(2-m)x+2m-3.求当m为何值时,(1)此函数为一次函数?(2)此函数为正比例函数?11、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。

(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度?12、一种移动通讯服务的收费标准为:每月基本服务费为30元,每月免费通话时间为120分,以后每分收费0.4元。

八年级数学下册第19章一次函数19-2一次函数19-2-2一次函数第3课时课时提升作业含解析新版新人教版 (2)

八年级数学下册第19章一次函数19-2一次函数19-2-2一次函数第3课时课时提升作业含解析新版新人教版 (2)

一次函数(第3课时)(30分钟50分)一、选择题(每小题4分,共12分)1.一次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是( )A.(0,-1)B.(1,0)C.(0,0)D.(0,1)【解析】选A.∵一次函数y=k(x-1)的图象经过点M(-1,-2),则有k(-1-1)=-2,解得k=1.所以函数解析式为y=x-1.令x=0得y=-1.故其图象与y轴的交点是(0,-1).2.两摞相同规格的饭碗整齐地叠放在桌面上,根据图中给出的数据信息,可以知道高度和碗的个数成一次函数关系;若桌面上有12个饭碗,整齐叠放成一摞,则它的高度为( )A.22.5 cmB.25.7 cmC.31.5 cmD.24.5 cm【解析】选A.由题意可设y=kx+b(k≠0),由图可列式解得k=1.5,b=4.5,所以该一次函数关系式为y=1.5x+4.5,当x=12时,y=1.5×12+4.5=22.5.3.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )A.y=2x+3B.y=x-3C.y=2x-3D.y=-x+3【解题指南】根据正比例函数图象确定B点坐标,再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【解析】选D.∵点B在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组解得则这个一次函数的解析式为y=-x+3.【变式训练】如图,直线y=kx+b与y轴交于点(0,3),与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是( )A.-1≤k<0B.1≤k≤3C.k≥1D.k≥3【解析】选C.把点(0,3),(a,0)代入y=kx+b,得b=3.则a=-,。

【数学八年级下册】人教版 19.2 一次函数 课时训练(含答案)

【数学八年级下册】人教版 19.2 一次函数 课时训练(含答案)

22. 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并 求: (1)当 x 2 时, y 的值; (2)x 为何值时, y 0 ? (3)当 2 x 1时, y 的值范围; (4)当 2 y 1时, x 的值范围.
人教版 八年级数学下册 19.2 一次函数 课时 训练-答案
一次函数 课时训练
一、选择题
1. 下列函数中,满足 y 的值随 x 的值增大而增大的是(
A. y=-2x
B. y=3x-1
C. y=1 x
) D. y=x2
2. 若函数 y=2x+(-3-m)是关于 x 的正比例函数,则 m 的值是 (
A.-3
B.1
C.-7
) D.3
3. 如图,A、B 的坐标分别为(2,0),(0,1),若将线段 AB 平移至 A1B1,则 a+b 的值为( ) A. 2 B. 3 C. 4 D. 5
4. 已知直线 y (3m 2)x 2 和 y 3x 6 交于 x 轴上同一点, m 的值为( )
A. 2
B. 2
C. 1
D. 0
5. 已知一次函数 y=kx+5 和 y=k′x+7,假设 k>0 且 k′<0,则这两个一次函数
图象的交点在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2
2
3),不等式 3 x+6 5 x-2 的解集是
2
2
A.x>-2 C.x<-2
B.x≥-2 D.x≤-2
二、填空题 9. 如图,已知直线 y=kx+b 过 A(-1,2),B(-2,0)两点,则 0≤kx+b≤-2x 的解集
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C B
A 第十九章 一次函数
19.2.2一次函数(2)
1、一次函数52-=x y 的图像不经过( )
A 、第一象限
B 、第二象限
C 、 第三想象限
D 、 第四象限
2、已知直线b kx y +=不经过第三象限,也不经过原点,则下列结论正确的是( )
A 、0,0>>b k
B 、0,0<>b k
C 、0,0><b k
D 、0,0<<b k
3、下列函数中,y 随x 的增大而增大的是( )
A 、x y 3-=
B 、12-=x y
C 、103+-=x y
D 、12--=x y
4、对于一次函数k x k y -+=)63(,函数值y 随x 的增大而减小,则k 的取值范围是( )
A 、0<k
B 、2-<k
C 、2->k
D 、02<<-k
5、一次函数13+=x y 的图像一定经过( )
A 、(3,5)
B 、(-2,3)
C 、(2,7)
D 、(4、10)
6、已知正比例函数)0(≠=k kx y 的函数值y 随x 的增大而增大,则一次函数k kx y -=的图像大致是( )
7、一次函数b kx y +=的图像如图所示,则k_______,
b_______,y 随x 的增大而_________
8、一次函数2--=x y 的图像经过___________象限,
y 随x 的增大而______ (第7题)
9、已知点(-1,a )、(2,b )在直线83+=x y 上,则a ,b 的大小关系是__________
10、直线32-=x y 与x 轴交点坐标为__________;与y 轴交点坐标_________;图像经过_________象限,y 随x 的增大而____________,图像与坐标轴所围成的三角形的面积是___________
11、已知一次函数)0(≠+=k b kx y 的图像经过点(0,1),且y 随x 的增大而增大,请你
写出一个符合上述条件的函数关系式_____________
12、已知一次函数图像(1)不经过第二象限,(2)经过点(2,-5),请写出一个同时满足(1)和(2)这两个条件的函数关系式:_____________
13.y=3x与y=3x-3的图象在同一坐标系中位置关系是()
A.相交 B.互相垂直 C.平行 D.无法确定
14.在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( )
A、交于同一个点
B、互相平行
C、有无数个不同的交点
D、交点的个数与k的具体取值有关
15.函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( )
A、交于同一个点
B、互相平行
C有无数个不同的交点 D、交点个数的与b的具体取值有关
16、在同一坐标系中画出下列函数图象,并指出它们有什么关系?
(1)y=x-1 y=x y=x+1
(2)y=-2x-1 y=-2x y=-2x+1。

相关文档
最新文档