练习——一元一次不等式复习(易错题详解)范文
七年级数学试卷一元一次不等式易错压轴解答题练习题(及答案)50

七年级数学试卷一元一次不等式易错压轴解答题练习题(及答案)50一、一元一次不等式易错压轴解答题1.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元. (1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?2.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.3.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)4.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m nx张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= ________,n= ________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q 最小,此时按三种裁法各裁标准板材多少张?5.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
七年级数学下册一元一次不等式(组)易错例题解析

七年级数学下册一元一次不等式(组)易错例题解析一元一次不等式是初中新学习的内容,不像学习的二元一次方程组,还有点基础,一元一次不等式(组)可以说是全新的开始。
在学习一元一次不等式(组)时,这七类易错点,你还再犯错吗?类型一:忽视第一个0(系数不等于0)一元一次不等式需要满足的条件:(1)只含有一个未知数;(2)未知数的最高次数等于1;(3)为不等式,即含有不等号;(4)未知数的系数不能等于0.本题中,需要再满足两个条件:|m|=1且m+1≠0,解得:m=1.这是从不等式的基本定义出发,与一元一次方程类似,一定要注意一次项前面的系数不等于0.类型二:忽视第二个0(因式不等于0)不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变。
但是在做题目时,还要注意不等式左右两边乘以(或除以)的式子能不能等于0.本题中,一个数的平方为非负数,即c^2≥0,那么左右两边同乘以的数可以等于0,因此填写的应该为“≥”。
那么第2小问与第1小问有什么区别呢?区别就在于第2小问左右两边同时除以c^2,由题意可知,既然这个不等式能够成立,那么应该默认c≠0,即此时左右两边同时除以的为正数,那么不等号方向不改变,即a>b。
类型三:去括号时符号问题去括号时,括号前如果是负号,要记得变号,这与一元一次方程中去括号一样,一定要特别注意。
比如本题,2x-3x-1>2,即-x>3,解得x<-3.类型四:去括号时系数问题去括号时,除了要注意符号问题,还需要注意系数问题,括号外面的系数要与括号里面的每一项都相乘,不能漏乘。
如果既有系数问题,又有符号问题,为了避免出错,我们可以先处理系数问题,再处理符号问题。
解:2x-(6x+2)>2,即2x-6x-2>2,化简得:-4x>4,解得:x<-1.类型五:移项时符号问题移项时也要注意符号问题,移项不会影响不等号的方向,只会改变所移项的符号,因此要注意只有在系数化为1时,才能决定改不改变不等号的方向,在移项时不能随意改变不等号方向。
最新七年级数学试卷一元一次不等式易错压轴解答题精选含答案

最新七年级数学试卷一元一次不等式易错压轴解答题精选含答案一、一元一次不等式易错压轴解答题1.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.2.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.3.我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株.(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株.(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用为22080元.4.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)6.光华机械厂为英洁公司生产 A、B 两种产品,该机械厂由甲车间生产 A 种产品,乙车间生产 B 种产品,两车间同时生产.甲车间每天生产的 A 种产品比乙车间每天生产的 B 种产品多 2 件,甲车间 3 天生产的 A 种产品与乙车间 4 天生产的 B 种产品数量相同.(1)求甲车间每天生产多少件 A 种产品?乙车间每天生产多少件 B 种产品?(2)光华机械厂生产的A 种产品的出厂价为每件200 元,B 种产品的出厂价为每件180 元.现英洁公司需一次性购买A、B 两种产品共80 件且按出厂价购买A、B 两种产品的费用不超过 15080 元.问英洁公司购进 B 种产品至少多少件?7.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.8.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?9.如图,正方形ABCD的边长是2厘米,E为CD的中点.Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒(1)当x=时,S△AQE=________平方厘米;当x= 时,S△AQE=________平方厘米(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围。
【中考数学】一元一次不等式易错压轴解答题训练经典题目(及答案)

【中考数学】一元一次不等式易错压轴解答题训练经典题目(及答案)一、一元一次不等式易错压轴解答题1.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.2.某服装店用2400元购进一批运动服,很快售完;老板又用3750元购进第二批运动服,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批运动服每件进价是多少元?(2)服装店按标价的8折进行销售,要使得两次的销售总利润不少于1850元,每件运动服标价至少为多少元?(利润=售价-进价).3.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.4.光华机械厂为英洁公司生产 A、B 两种产品,该机械厂由甲车间生产 A 种产品,乙车间生产 B 种产品,两车间同时生产.甲车间每天生产的 A 种产品比乙车间每天生产的 B 种产品多 2 件,甲车间 3 天生产的 A 种产品与乙车间 4 天生产的 B 种产品数量相同.(1)求甲车间每天生产多少件 A 种产品?乙车间每天生产多少件 B 种产品?(2)光华机械厂生产的A 种产品的出厂价为每件200 元,B 种产品的出厂价为每件180 元.现英洁公司需一次性购买A、B 两种产品共80 件且按出厂价购买A、B 两种产品的费用不超过 15080 元.问英洁公司购进 B 种产品至少多少件?5.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m nx张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= ________,n= ________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q 最小,此时按三种裁法各裁标准板材多少张?6.某机器人公司为扩大经营,决定购进 6 台机器用于生产某种小机器人.现有甲、乙两种机器供选择,其中每台机器的价格和日生产量如下表所示.经过预算,本次购买机器的费用不能超过 34 万元.甲种机器乙种机器价格/(万元/台)57每台机器的日生产量/个60100(2)若该公司购进的6台机器的日生产量不能少于380个,那么为了节约资金,应选择哪种购买方案?7.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.8.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:9.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.10.如图,正方形ABCD的边长是2厘米,E为CD的中点.Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q 运动时间为x秒(1)当x=时,S△AQE=________平方厘米;当x= 时,S△AQE=________平方厘米(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围。
甘肃中考数学 一元一次不等式易错压轴解答题专题练习(附答案)

甘肃中考数学一元一次不等式易错压轴解答题专题练习(附答案)一、一元一次不等式易错压轴解答题1.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元. (1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?2.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?3.我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株.(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株.(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用为22080元.4.先阅读理解下面的例题,再按要求解答:例题:解不等式(x+5)(x-5)>0解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得x>5,解不等式组②得x<-5,所以不等式的解集为x>5或x<-5。
(1)求不等式x²-2x-3<0的解集。
(2)求不等式的解集。
5.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500部分500以上~15001500以上~2500部分2500以上部分价格补贴零售价的95%零售价的85%零售价的75%零售价的70%(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:6.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?7.为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.(1)求A,B两种型号的污水处理设备的单价各是多少?(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.8.为了让孩子们了解更多的海洋文化知识,市海洋局购买了一批有关海洋文化知识的科普书籍和绘本故事书籍捐赠给市里的几所中小学校.经了解,以两类书的平均单价计算,30本科普书籍和50本绘本故事书籍共需2100元;20本科普书籍比10本绘本故事书籍多100元.(1)求平均每本科普书籍和绘本故事书籍各是多少元.(2)计划每所学校捐赠书籍数目和总费用相同.其中每所学校的科普书籍大于115本,科普书籍比绘本故事书籍多30本,总费用不超过5000元,请求出所有符合条件的购书方案. 9.今年入夏以来,由于持续暴雨,某县遭受严重洪涝灾害,群众顿失家园。
七年级数学试卷一元一次不等式易错压轴解答题专题练习(及答案)50

七年级数学试卷一元一次不等式易错压轴解答题专题练习(及答案)50一、一元一次不等式易错压轴解答题1.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?2.自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元. (1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?3.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.4.我市某中学计划购进若千个排球和足球如果购买20个排球和15个足球,一共需要花费2050元;如果购买10个排球和20个足球,--共需要花费1900元(1)求每个排球和每个足球的价格分别是多少元?(2)如果学校要购买排球和足球共50个,并且预算总费用不超过3210元,那么该学校至多能购买多少个足球?5.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,….(1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.6.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
七年级数学试卷一元一次不等式易错压轴解答题试题(含答案)100

七年级数学试卷一元一次不等式易错压轴解答题试题(含答案)100一、一元一次不等式易错压轴解答题1.自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元. (1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?2.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.3.某服装店用2400元购进一批运动服,很快售完;老板又用3750元购进第二批运动服,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批运动服每件进价是多少元?(2)服装店按标价的8折进行销售,要使得两次的销售总利润不少于1850元,每件运动服标价至少为多少元?(利润=售价-进价).4.我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株.(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株.(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用为22080元.5.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m nx张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= ________,n= ________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q 最小,此时按三种裁法各裁标准板材多少张?6.先阅读理解下面的例题,再按要求解答:例题:解不等式(x+5)(x-5)>0解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得x>5,解不等式组②得x<-5,所以不等式的解集为x>5或x<-5。
方程与不等式之一元一次方程易错题汇编附答案解析

方程与不等式之一元一次方程易错题汇编附答案解析一、选择题1.某商店把一件商品按标价的九折出售,仍可获利20%,若该商品的进价为每件21元,则该商品的标价为( ) A .27元 B .27.8元C .28元D .28.4元【答案】C 【解析】 【分析】设该商品的标价是x 元,根据按标价的九折出售,仍可获利20%列方程求解即可. 【详解】解:设该商品的标价是x 元, 由题意得:0.9x -21=21×20%, 解得:x =28,即该商品的标价为28元, 故选:C . 【点睛】本题考查一元一次方程的应用,要注意寻找等量关系,列出方程.2.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++= B .6090(30)480x x ++= C .160()904802x x ++= D .16090()4802x x ++=【答案】D 【解析】 【分析】 【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D . 【点睛】本题考查由实际问题抽象出一元一次方程.3.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( ) A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭【答案】A 【解析】 【分析】由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可. 【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A. 【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.4.方程2﹣24736x x --=-去分母得( ) A .2﹣2(2x ﹣4)=﹣(x ﹣7) B .12﹣2(2x ﹣4)=﹣x ﹣7 C .12﹣2(2x ﹣4)=﹣(x ﹣7) D .以上答案均不对【答案】C 【解析】 【分析】两边同时乘以6即可得解. 【详解】解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--.故选C. 【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.5.8×200=x+40 解得:x=120答:商品进价为120元. 故选:B . 【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.6.甲、乙两人环湖竞走,环湖一周为 400 米,乙的速度是80 米/分,甲的速度是乙的 114倍,且竞走开始时甲在乙前 100 米处,多少分钟后两人第一次相遇?设经过 x 分钟两人第一次相遇,所列方程为( ) A .80 x+ 100=54 ⨯ 80 x B .80 x + 300=54⨯ 80 x C .80 x - 100=54⨯ 80 x D .80 x - 300=54⨯ 80 x 【答案】B 【解析】 【分析】根据相遇时乙的路程+300=甲的路程列出方程即可. 【详解】 解:甲的速度为:54⨯ 80米/分,相遇时甲比乙多行了400-100=300米,根据题意可得: 80 x + 300=54⨯ 80 x , 故选:B 【点睛】本题考查了一元一次方程的应用,能找出题中的等量关系是解题的关键.7.下列关于a 、b 的等式,有一个是错误的,其它都是正确的,则错误的是( ) A .3b a = B .0b a -=C .2290b a -=D .26b m a m +=+【答案】B 【解析】 【分析】观察四个等式可发现都含有一个相同的等式b-3a=0,由此即可判断出错误的选项. 【详解】由题意知,选项A 可以化为b-3a=0;选项C 可以化为(b-3a )(b+3a)=0,可以得到b-3a=0;选项D 可以化为2b-6a=0,即b-3a=0,由此可以判断选项A 、C 、D 都是正确的,选项B 中的等式是错误的, 故选:B. 【点睛】此题考查等式的性质,根据等式的性质正确化简是解题的关键.8.等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.9.下列方程中,是一元一次方程的是( )A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=1 x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x2﹣4x=3,未知数x的最高次数为2,故A不是一元一次方程;x=0,符合一元一次方程的定义,故B是一元一次方程;x+2y=1,方程含有两个未知数,故C不是一元一次方程;x﹣1=1x,分母上含有未知数,故D不是一元一次方程.故选择B.【点睛】本题考查了一元一次方程的定义.10.若一个数的平方根为2a+3和a-15,则这个数是()A.-18 B.64 C.121 D.以上结论都不是【答案】C【解析】【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程,从而可求得a的值,进而求得这个数.【详解】解:根据题意得:2a+3+(a-15)=0,解得a=4,则这个数是(2a+3)2=121.故选:C.【点睛】本题主要考查了平方根的性质,正数的两个平方根互为相反数,据此把题目转化为解方程的问题,这是考试中经常出现的问题.11.甲、乙两人都从A出发经B地去C地,乙比甲晚出发1分钟,两人同时到达B地,甲在B地停留1分钟,乙在B地停留2分钟,他们行走的路程y(米)与甲行走的时间x (分钟)之间的函数关系如图所示,则下列说法中正确的个数有()①甲到B地前的速度为100/minm②乙从B地出发后的速度为600/minm③A、C两地间的路程为1000m④甲乙在行驶途中再次相遇时距离C地300mA.1个B.2个C.3个D.4个【答案】C【解析】【分析】①②③直接利用图中信息即可解决问题,求出到B地后的函数关系式,利用方程组求交点坐标即可判定④的正确性.【详解】解:由图象可知:甲到B地前的速度为400÷4=100米/分钟,故①正确,乙从B地出发后的速度为600÷2=300米/分钟,故②错误,由图象可知,A、C两地间的路程为1000米,故③正确,设甲到B地后的函数关系为y=kx+b,则有5400 91000k bk b+=⎧⎨+=⎩,解得150350kb=⎧⎨=-⎩,∴y=150x-350,设乙到B地后的函数关系为y=mx+n,则有6400 81000m nm n+=⎧⎨+=⎩,解得3001400mn=⎧⎨=-⎩,∴y=300x-1400,由1503503001400 y xy x=-⎧⎨=-⎩解得7700xy=⎧⎨=⎩,∴甲乙再次相遇时距离A地700米,∵1000-700=300,∴甲乙再次相遇时距离C地300米,故④正确,故选:C.【点睛】本题考查一次函数的应用、路程=速度×时间的关系等知识,解题的关键是读懂图象信息,学会构建一次函数,利用方程组求交点坐标解决实际问题,属于中考常考题型.12.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暑假练习——一元一次不等式复习
本周重点、难点:
对于一元一次不等式的归纳复习,易错点整理。
本周重点、难点解析:
一、一元一次不等式的解法易错点归纳
1.去括号时,错用乘法分配律
【例1】解不等式
3x+2(2-4x)<19.
错解:去括号,得
3x+4-4x<19,解得x>-15.
诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项.
正解: 去括号,得
3x+4-8x<19,
-5x<15,所以x>-3.
2.去括号时,忽视括号前的负号
【例2】解不等式
5x-3(2x-1)>-6.
错解:去括号,得
5x-6x-3>-6,解得x<3.
诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.
正解:去括号,得
5x-6x+3>-6,
所以-x>-9,所以x<9.
3.移项时,不改变符号
【例3】解不等式
4x-5<2x-9.
错解:移项,得
4x+2x<-9-5,
即6x<-14,所以
诊断:一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.
正解:移项,得
4x-2x<-9+5,
解得2x<-4,所以x<-2.
4.去分母时,忽视分数线的括号作用
【例4】解不等式
错解:去分母,得
,解得:
诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.
正解:去分母,得
6x-(2x-5)>14,
去括号,得
5.不等式两边同除以负数,不改变方向
【例5】解不等式
3x-6<1+7x.
错解:移项,得
3x-7x<1+6,
即-4x<7,所以
诊断:将不等式-4x<7的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.
正解:移项,得
3x-7x<1+6,
即-4x<7,所以所以x>
6.去分母时,漏乘不含分母的项
【例6】解不等式
错解:去分母,得x-2(x-1)>3x+1,
去括号,解得
诊断: 去分母时,要用最简公分母去乘不等式两边的每一项.而错解只乘了含有分母的项,漏乘了不含有分母的项.
正解:去分母,得6x-2(x-1)>3x+6,
去括号,得6x-2x+2>3x+6,解得x>4.
7.忽视对有关概念的理解
【例7】求不等式的非负整数解.
错解:整理,得3x≤16,
所以故其非负整数的解是1,2,3,4
正解:非负整数的解是0,1,2,3,4,5
8.在数轴上表示解集时出现错误
【例8】解不等式:3(1-x)≥2(x+9),并把它的解集在数轴上表示出来.
错解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图1所示.
诊断:本题求得的解集并没错,问题出在将解集在数轴上表示出来时出现了错误,即有两处错误:一是方向表示错误,不应该向右,而应该向左;二是不应用空心圆圈表示,而应用实心圆圈表示.
正解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图2所示.
注:上述三例告诉我们解一元一次不等式时一定要认真分析题目的结构特征,灵活运用解一元一次不等式的步骤,正确理解有关概念,才能及时避开陷阱,准确、快速的求解.
9.不等式组解集忽视等号
【例9】若不等式组的解集为x>2,则a的取值范围是().
A. a<2
B. a≤2
C. a>2
D. a≥2
错解:原不等式组可化简为得a<2,故选A.
诊断:当a=2时,原不等式组变为解集也为x>2.
正解:应为a≤2 ,
故选B.
10.忽视了字母的范围
【例10】解关于x的不等式m(x-2)>x-2.
错解:化简,得(m-1)x>2(m-1),所以x>2.
诊断:错解在默认为m-1>0,实际上m-1还可能小于或等于0.
正解:化简,得(m-1)x>2(m-1),
①当m-1>0时,x>2;
②当m-1<0时,x<2;
③当m-1=0时,无解.
【例11】解不等式(a-1)x>3.
错解:系数化为1,得.
诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论.
正解:①当a-1>0时,;
②当a=1时,0×x>3,不等式无解;
③当a-1<0时,.
11.套用解方程组的方法解不等式组
【例12】不等式组的解集为___________.
错解:两个不等式相加,得 x-1<0,所以x<1.
诊断:这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解.
正解:解不等式组,得
在同一条数轴上表示出它们的解集,如图,
以不等式组的解集为:.
【例13】解不等式组
错解:因为5x-3>4x+2,且4x+2>3x-2,
所以 5x-3>3x-2.
移项,得5x-3x>-2+3.
解得.
诊断:上面的解法套用了解方程组的方法,是否正确,我们可以在的条件下,任取一个x的值,看是否正确.如取x=1,将它代入5x-3>4x+2,得2>6(不成立).可知
不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集.
正解:由5x-3>4x+2,得x>5.
由4x+2>3x-2,得x>-4.
综合x>5和x>-4,得原不等式组的解集为x>5.
二、不等式的应用问题
1.市政公司为绿化一段沿江风光带,计划购买甲、乙两种树苗共500株,甲种树苗每株50元,乙种树苗每株80元.有关统计表明:甲、乙两种树苗的成活率分别为90%和95%.
(1)若购买树苗共用了28000元,求甲、乙两种树苗各多少株?
(2)若购买树苗的钱不超过34000元,应如何选购树苗?
(3)若希望这批树苗的成活率不低于92%,且购买树苗的费用最低,应如何选购树苗?
【分析】:由题意可知,第一题存在等量关系,考虑用方程来解决;后两个问题存在不等关系,可用不等式来解决.
【详解】(1)设购甲种树苗x株,则乙种树苗为(500-x)株.依题意得
50+80(500—)=28000 解之得:=400 ∴500-=500-400=100
即:购买甲种树苗400株,乙种树苗100株.
(2)由题意得: 50+80(500-)34000.解之得200
即:购买甲种树苗不小于200株.
(3)由题意可得90%x+95%(500—x)≥92%·500 ∴300
设购买两种树苗的费用之和为y元,则=50+80(500-)=40000-30
所以=40000-30,其中的值随的增大而减小,
所以=300时有最小值,=40000-30300=31000.【考点】本题考察了方程与不等式知识在实际问题中的应用.
2.下表给出甲、乙、丙三种食物的维生素的含量及成本:
维生素
维生素
某食物营养研究所将三种食物混合成110千克的混合物,使之至少需含48400单位的维生素及52 800单位的维生素.求三种食物所需量与成本的关系式.
【详解】
设需甲、乙两种食物分别为千克,则丙需千克,设共需成本元,应有
【考点】本题考察了列不等式组的能力,解题关键应抓住体现不等关系的关键词语.如“至少”等.
3. 小明和小亮共下了10盘围棋,小明胜一盘计1分,小亮胜一盘计3分.当他俩下完第9盘后,小明的得分高于小亮;等下完第10盘后,小亮的得分高于小明.他们各胜过几盘?(已知比赛中没有出现平局)
【分析】此题是一道反映不等关系的应用题,抓住“当他俩下完第9盘后,小明的得分高于小亮;等下完第10盘后,小亮的得分高于小明”这样的关键语句表示不等关系;另外应当明确在比赛中,小明赢的盘数恰好等于小亮输的盘数.
【详解】设下完10盘棋后,小亮胜了盘,根据题意得,,
解得,则不等式组的正整数解为,
所以小亮胜3盘,小明胜7盘.。