第2章.电子光学基础.ppt-文档资料
合集下载
《光学》PPT课件

6
•沈括(1031~1095年)所著《梦溪笔谈》中,论述了凹面镜、 凸面镜成像的规律,指出测定凹面镜焦距的原理、虹的成因。 培根(1214~1294年)提出用透镜校正视力和用透镜组成望 远镜的可能性。 阿玛蒂(1299年)发明了眼镜。 波特(1535~1561年)研究了成像暗箱。
沈括(1031~1095年) 培根(1214~1294年)
1、光的发射、传播和接收等规律 2、光和其他物质的相互作用。包括光的吸收、散射和色散。 光的机械作用和光的热、电、化学和生理作用(效应)等。 3、光的本性问题
4、光在生产和社会生活中的应用
三、研究方法
实验 ——假设 ——理论 ——实验
3
§0-2 光学发展简史
一、萌芽时期 世界光学的(知识)最早记录,一般书上说是古希腊欧
5
• 克莱门德(公元50年)和托勒玫(公元90~168年)研 究了光的折射现象,最先测定了光通过两种介质分界面 时的入射角和折射角。
• 罗马的塞涅卡(公元前3~公元65年)指出充满水的玻璃 泡具有放大性能。
• 阿拉伯的马斯拉来、埃及的阿尔哈金(公元965~1038 年)认为光线来自被观察的物体,而光是以球面波的形 式从光源发出的,反射线与入射线共面且入射面垂直于 界面。
几里德关于“人为什么能看见物体”的回答,但应归中国的 墨翟。从时间上看,墨翟(公元前468~376年),欧几里德 (公元前330~275年),差一百多年。
墨翟(公元前468~376年)
4
• 从内容上看,墨经中有八条关于光学方面的(钱临照, 物理通极,一卷三期,1951)第一条,叙述了影的定 义与生成;第二条说明光与影的关系;第三条,畅言 光的直线传播,并用针孔成像来说明;第四条,说明 光有反射性能;第五条,论光和光源的关系而定影的 大小;第六、七、八条,分别叙述了平面镜、凹球面 镜和凸球面镜中物和像的关系。欧几里德在《光学》 中,研究了平面镜成像问题,指出反射角等于入射角 的反射定律,但也同时反映了对光的错误认识——从 人眼向被看见的物体伸展着某种触须似的东西。
•沈括(1031~1095年)所著《梦溪笔谈》中,论述了凹面镜、 凸面镜成像的规律,指出测定凹面镜焦距的原理、虹的成因。 培根(1214~1294年)提出用透镜校正视力和用透镜组成望 远镜的可能性。 阿玛蒂(1299年)发明了眼镜。 波特(1535~1561年)研究了成像暗箱。
沈括(1031~1095年) 培根(1214~1294年)
1、光的发射、传播和接收等规律 2、光和其他物质的相互作用。包括光的吸收、散射和色散。 光的机械作用和光的热、电、化学和生理作用(效应)等。 3、光的本性问题
4、光在生产和社会生活中的应用
三、研究方法
实验 ——假设 ——理论 ——实验
3
§0-2 光学发展简史
一、萌芽时期 世界光学的(知识)最早记录,一般书上说是古希腊欧
5
• 克莱门德(公元50年)和托勒玫(公元90~168年)研 究了光的折射现象,最先测定了光通过两种介质分界面 时的入射角和折射角。
• 罗马的塞涅卡(公元前3~公元65年)指出充满水的玻璃 泡具有放大性能。
• 阿拉伯的马斯拉来、埃及的阿尔哈金(公元965~1038 年)认为光线来自被观察的物体,而光是以球面波的形 式从光源发出的,反射线与入射线共面且入射面垂直于 界面。
几里德关于“人为什么能看见物体”的回答,但应归中国的 墨翟。从时间上看,墨翟(公元前468~376年),欧几里德 (公元前330~275年),差一百多年。
墨翟(公元前468~376年)
4
• 从内容上看,墨经中有八条关于光学方面的(钱临照, 物理通极,一卷三期,1951)第一条,叙述了影的定 义与生成;第二条说明光与影的关系;第三条,畅言 光的直线传播,并用针孔成像来说明;第四条,说明 光有反射性能;第五条,论光和光源的关系而定影的 大小;第六、七、八条,分别叙述了平面镜、凹球面 镜和凸球面镜中物和像的关系。欧几里德在《光学》 中,研究了平面镜成像问题,指出反射角等于入射角 的反射定律,但也同时反映了对光的错误认识——从 人眼向被看见的物体伸展着某种触须似的东西。
光化学-2-激发态的产生及其物理性质

1A(π,π*
)、1A(n,π* )或3A(π,π* )、3A(n,π* )
S1(π,π* )、S1(n,π* )或T1(π,π* )、T1(n,π* )
雅布隆斯基图
VR S2 IC F VR S1 IC S0 F ISC P ISC ISC P P F IC T1 VR T2
IC: internal conversion(内转换) ISC:intersystem crossing(系间串越) VR: vibrational relaxation(震动弛豫) F: fluorescence(荧光) P: phosphorescence(磷光)
δ1s* 1S δ1s 1S
原子轨道
分子轨道
原子轨道
O2分子的电子排布
δ2p* π2py* π2py δ2p π2pz* π2pz
δ2p* π2py* π2py δ2p π2pz* π2pz
δ2s*
δ2s*
δ2s
δ2s
δ1s* δ1s
δ1s* δ1s
(a)基态
(b)第一激发态
甲醛分子的电子排布式
旋旋耦合
分子内其它磁自旋运动产生的磁矩对电子自旋相位的影响称为旋旋耦合。 类似与旋轨耦合,但作用要小得多。
内部重原子效应对自旋翻转跃迁的影响
外部重原子效应对自旋翻转跃迁的影响
电子跃迁与吸收光谱
分子轨道同一电子能级中有
几个振动能级。 Franck-Conden原理指出, 振动能级间跃迁强度最高的 谱线是与相同核间距对应有
第2章 激发态的产生及其物理特性
2.1 激发态的产生 2.2 激发态 2.3 激发态的失活
2.1 激发态的产生
构造原理
)、1A(n,π* )或3A(π,π* )、3A(n,π* )
S1(π,π* )、S1(n,π* )或T1(π,π* )、T1(n,π* )
雅布隆斯基图
VR S2 IC F VR S1 IC S0 F ISC P ISC ISC P P F IC T1 VR T2
IC: internal conversion(内转换) ISC:intersystem crossing(系间串越) VR: vibrational relaxation(震动弛豫) F: fluorescence(荧光) P: phosphorescence(磷光)
δ1s* 1S δ1s 1S
原子轨道
分子轨道
原子轨道
O2分子的电子排布
δ2p* π2py* π2py δ2p π2pz* π2pz
δ2p* π2py* π2py δ2p π2pz* π2pz
δ2s*
δ2s*
δ2s
δ2s
δ1s* δ1s
δ1s* δ1s
(a)基态
(b)第一激发态
甲醛分子的电子排布式
旋旋耦合
分子内其它磁自旋运动产生的磁矩对电子自旋相位的影响称为旋旋耦合。 类似与旋轨耦合,但作用要小得多。
内部重原子效应对自旋翻转跃迁的影响
外部重原子效应对自旋翻转跃迁的影响
电子跃迁与吸收光谱
分子轨道同一电子能级中有
几个振动能级。 Franck-Conden原理指出, 振动能级间跃迁强度最高的 谱线是与相同核间距对应有
第2章 激发态的产生及其物理特性
2.1 激发态的产生 2.2 激发态 2.3 激发态的失活
2.1 激发态的产生
构造原理
光学测试技术-第2章-光学准直与自准直技术1

(-z-)--z处的光斑半径(光强下降到光斑中心光强的
1/ e处2 的光斑半径; ----激光波长; --n--传播空间的折
射率,在大气中传输时取为1。
第一节 激光束的准直与自准直技术
其中
2
(
z)
02
1
z 02n
2
(1)束腰处的波阵面为平面,此时 R(0) (取束腰位于
坐标原点),则有:
q0
与望远镜视放大率有关,此外还和高斯光束结构参数
( 10,)z1 有关。增大 (z束1 腰远离望远镜 )L,1 压缩比
也增大,光束准直性将更好些。
第一节 激光束的准直与自准直技术
总结:望远镜两透镜的距离为 D f1,f2其 中
f2 f1
如果有一高斯分布的激光光束,其发散角为 ,从左方
入射到倒置的望远系统,出射后的发散角 f1
第一节 激光束的准直与自准直技术
由于激光具有极好的方向性,一个经过准直的连续输出的 激光束,可以认为是一条粗细几乎不变的直线。因此可以用 激光束作为空间基准线,这样的激光准直仪能够测量直线度、 平面度、平行度、垂直度,也可以做三维空间的基准测量。
激光准直仪和平行光管、经纬仪等一般的准直仪相比, 具有工作距离长,测量精度高和便于自动控制、操作方便等 优点,可以广泛地用于隧道开凿、管道铺设、高层建筑建造、 造桥、修路、开矿以及大型设备的安装、定位等。
(例如中心斑直径 70m , 保持约1m范围内光强分布基本不变)
这一特点,在测量上可有许多用途。
图示为用于测量物 体表面轮廓的一个
扫描反射镜
CCD相机
例子。准直激光束
通过轴锥镜成为近
似的零阶贝塞尔光 束,经扫描反射镜。 光束在被测表面扫 一条细亮线。
光电子技术概论

§1、问题的提出及概述
•什么是“光电子学”; •什么是“光电子技术”; •什么是“光电子技术基础”;
光电子技术
光通信
无线光通信
量子通信
宽带、高速、长距离(干线,点对点)
城域网
无线接入网
光传感
光纤传感
医疗诊断
生物信息
环境监测
安全监测
其它:光盘、存储、条形码、加工、武器……
波分复用光通信系统
Wavelength Division Multiplexing (WDM)Erbium Doped Fiber Amplifier (EDFA)
➢ 将电子学使用的电磁波频率提高到光频,产生电子 学所不可能产生的许多新功能。
➢
以前由电子方法实现的任务现在用光学方法来
完成 ——光电子学,研究光子与束缚电子的
相互作用,是光子学的第一个阶段。
➢ 激光器的发明(1960年)是20世纪的重大成就之一是 继原子能、半导体、计算机后的又一重大发明
➢ 计算机延伸了人的大脑 而激光延伸了人的五官 是探索大自然奥秘的超级“探针”
光电子技术
ELECTRONIC TECNOLOGY
本书主要内容
绪论 第1章 光电系统中的常用光源 第2章 光辐射的调制 第3章 光辐射探测器 第4章 光电成像器件 第5章 光存储器 第6章 平板显示器件
绪论
➢ §1、问题的提出及概述 ➢ §2、光电子学与光电子技术简介 ➢ §3、 光电子信息产业的重要性 ➢ §4 、光电子技术的应用 ➢ §5 、本课程的主要内容 ➢ §6 、本课程学习方法、要求
信号
λ1
发射机
光放大器
λ1
功放
预放
λn 复用器
光通信:光波频率~ 1016Hz, 允许高频调制,
《光学》全套课件 PPT

τ
cosΔ
dt =0
τ0
I = I1 +I2
叠加后光强等与两光束单独照射时的光强之和,
无干涉现象
2、相干叠加 满足相干条件的两束光叠加后
I =I1 +I2 +2 I1I2 cosΔ 位相差恒定,有干涉现象
若 I1 I2
I =2I1(1+cosΔ
)
=4I 1cos2
Δ 2
Δ =±2kπ I =4I1
r2
§1-7 薄膜干涉
利用薄膜上、下两个表面对入射光的反射和 折射,可在反射方向(或透射方向)获得相干光束。
一、薄膜干涉 扩展光源照射下的薄膜干涉
在一均匀透明介质n1中
放入上下表面平行,厚度
为e 的均匀介质 n2(>n1),
用扩展光源照射薄膜,其
反射和透射光如图所示
a
n1
i
a1 D
B
n2
A
n1 C
2、E和H相互垂直,并且都与传播方向垂直,E、H、u三者满 足右螺旋关系,E、H各在自己的振动面内振动,具有偏振性.
3、在空间任一点处
εE = μH
4、电磁波的传播速度决定于介质的介电常量和磁导率,
为
u= 1 εμ
在真空中u= c =
1 ≈3×108[m ε0μ0
s 1]
5、电磁波的能量
S
=E
×H ,
只对光有些初步认识,得出一些零碎结论,没有形
成系统理论。
二、几何光学时期
•这一时期建立了反射定律和折射定律,奠定了几何光学基础。
•李普塞(1587~1619)在1608年发明了第一架望远镜。
•延森(1588~1632)和冯特纳(1580~1656)最早制作了复 合显微镜。 •1610年,伽利略用自己制造的望远镜观察星体,发现了木星 的卫星。 • 斯涅耳和迪卡尔提出了折射定律
光电子学完整PPT课件

第一章 电磁波与光波(理论基础) 第二章 激光与半导体光源 第三章 光波的传输 第四章 光波的调制 第五章 光波的探测与解调
.
未来是光通信的世界。
第一章 光波与电磁波
➢麦克斯韦方程组的积分形式 ➢高斯定理 斯托克斯定律 ➢麦克斯韦方程组的微分形式 ➢边界条件 ➢电磁波的性质 ➢电磁波谱
.
麦克斯韦方程组及其物理意义
E和H幅度成比例、复角相等
0E0 0H0
E H
电磁波的传播速度
v 1 k 00
C
1
00
3108.m/ s
介质中 真空中
为什么说光波是电磁波?
1) 根据麦氏方程推导, 电磁波在真空中的速度为
c 1 3.107 140 8ms
00
当时通过实验测得的真空中的光速也为 3108 m s
2) 根据麦氏方程: 电磁波在介质中的速度为
玻尔频率条件: h En Em 或 En Em
h
式中h为普郎克常数:
h 6 .6 2 1 3 0 J 4s
.
激光的基本原理、特性和应用 ——玻尔假说
原子能级
原子从高能级向低能 级跃迁时,相当于光 的发射过程;而从低 能级向高能级跃迁时, 相当于光的吸收过程; 两个相反的过程都满 足玻尔条件。
(对于非铁磁质)
v c
根据光学中折射率的定义,则
.
v c
nc vc vn
为什么说光波是电磁波?
如果光波是电磁波,比较上面两式:
v c 和v c
n
n
麦克斯韦 关系式
➢而当时测得的无极分子物质,按上式计算的折射率与测量的折射率 能很好的符合。 ➢当时测得的为有极分子物质,上式中的ε用光波频率时的值,则上式 就成立了。平时ε在低频电场下测量。 ➢所以麦克斯韦判定,光波是电磁波。
.
未来是光通信的世界。
第一章 光波与电磁波
➢麦克斯韦方程组的积分形式 ➢高斯定理 斯托克斯定律 ➢麦克斯韦方程组的微分形式 ➢边界条件 ➢电磁波的性质 ➢电磁波谱
.
麦克斯韦方程组及其物理意义
E和H幅度成比例、复角相等
0E0 0H0
E H
电磁波的传播速度
v 1 k 00
C
1
00
3108.m/ s
介质中 真空中
为什么说光波是电磁波?
1) 根据麦氏方程推导, 电磁波在真空中的速度为
c 1 3.107 140 8ms
00
当时通过实验测得的真空中的光速也为 3108 m s
2) 根据麦氏方程: 电磁波在介质中的速度为
玻尔频率条件: h En Em 或 En Em
h
式中h为普郎克常数:
h 6 .6 2 1 3 0 J 4s
.
激光的基本原理、特性和应用 ——玻尔假说
原子能级
原子从高能级向低能 级跃迁时,相当于光 的发射过程;而从低 能级向高能级跃迁时, 相当于光的吸收过程; 两个相反的过程都满 足玻尔条件。
(对于非铁磁质)
v c
根据光学中折射率的定义,则
.
v c
nc vc vn
为什么说光波是电磁波?
如果光波是电磁波,比较上面两式:
v c 和v c
n
n
麦克斯韦 关系式
➢而当时测得的无极分子物质,按上式计算的折射率与测量的折射率 能很好的符合。 ➢当时测得的为有极分子物质,上式中的ε用光波频率时的值,则上式 就成立了。平时ε在低频电场下测量。 ➢所以麦克斯韦判定,光波是电磁波。
光学基本知识讲座PPT课件

.
10
物像基本概念
4.同心光束与光程 ★ 一个发光点或实物点总是发出同心光束,
它与球面波相对应 ★ 一个像点如果由对应的同心光束汇聚而成,这样
的像点称为完善像点
★ 要成为完善像点,必须使入射波面与出射波面之 间光程是相等的:Σ n× d=const
n 介质折射率 d 光线所经过的实际长度
.
11
四.材料与色散
3.波像差:以波像差作为像质的评判依据,激光头物镜的设
计中常以此为评价标准;
4.光学传递函数:把物的亮度分布函数展开为傅里叶级数或
傅里叶积分,光学系统的特性就表现为它对各种频率正弦波的传
递和反应能力,于是出现了较全面评价光学系统的新的评价手段-
光学传递函数。在照相物镜设计中已得到普遍采用。
.
36
光学基本知识
两列波相遇时,必须满
足下述条件才能发生干涉:
1.频率相同;
2.振动方向相同;
3.具有恒定的相位差。
右图称为牛顿环,是光干涉 的典型例子。
.
39
二.光的衍射
波在传播过程中,
当遇到障碍物就会偏 离直线传播的现象, 犹如声音可以绕过大 墙,无线电波能够跨 越高山。光在一定条 件下也偏离直线,这 就是光的衍射。
24
像差知识介绍
像差:由光线传播定律决定,从光路实 际计算表明,
任意组合的光学系统只能对近轴物点以细光束
成像。随着视场和孔径的增大,成像光束的同
心性将遭到破坏,产生各种成像缺陷。这种成
像缺陷就是像差。
像差分类:
对单色光:球差、彗差、象散、场曲、畸变
对多色光:位置色差、倍率色差
.
25
1.球差
第二章光的衍射(菲涅耳圆孔衍射)PPT课件

光学 §2.2 菲涅耳半波带 菲涅耳衍射 三、菲涅耳圆孔衍射
.
1
光学 §2.2 菲涅耳半波带 菲涅耳衍射
将一束光(例激光)投射在一个圆孔上,并在距孔1m -2m处放置一接收屏,可观察衍射图样。
根据前面的讨论,对圆孔后光强起作用的半波带数 量有k个。
Ak 12a1ak
Ak 12a1ak
O
R
Bk
Rh
k rk
置,我们可以看到,光 屏的中心点会有时明时
O
暗地变化。
l R
sB k
k
Rh
B
h
0
rk
r0
P
.
6
k Rh2 ( 1 1 )
r0 R
R
2 h
Rh
Rh Rh
Rh
.
7
• P点的合振幅的大小取决于露出的波带数, 而波 带数又取决于圆孔的位置和半径.改变圆孔的 位置和半径,给定P点的光强也将发生变化.
• 如果对于P点露出的波带数为整数,为奇数相对 应的那些点,合振幅较大;偶数相对应的那些 点,合振幅较小.
• 如果带数不是整数,那么合振幅介乎上述最大 值和最小值之间.
• 结论:当置于P处的屏沿着圆孔的对称轴线移动 时,将看合振幅到屏上的光强不断地变化.
.
8
四、菲涅耳圆屏衍射
当点光源发出的光通过圆屏(盘)衍射时,由于圆屏不 透明,被圆屏挡住部分的波面(也即有k个半波带发 出的次波不起作用)对轴线上p点的光强将没有贡献。
• 光传播 次波叠加 衍射
• 无论光是直线传播还是具有明显的衍射现 象,都遵循惠更斯----菲涅尔原理。
.
15
例题:一块波带片的孔径内有20个半波带,其中第1、 3、5、…、19等10个奇数带露出。第2、4、6、…、20 等10个偶数带遮蔽,试分析轴上场点的光强是自由传 播时光强的多少倍?
.
1
光学 §2.2 菲涅耳半波带 菲涅耳衍射
将一束光(例激光)投射在一个圆孔上,并在距孔1m -2m处放置一接收屏,可观察衍射图样。
根据前面的讨论,对圆孔后光强起作用的半波带数 量有k个。
Ak 12a1ak
Ak 12a1ak
O
R
Bk
Rh
k rk
置,我们可以看到,光 屏的中心点会有时明时
O
暗地变化。
l R
sB k
k
Rh
B
h
0
rk
r0
P
.
6
k Rh2 ( 1 1 )
r0 R
R
2 h
Rh
Rh Rh
Rh
.
7
• P点的合振幅的大小取决于露出的波带数, 而波 带数又取决于圆孔的位置和半径.改变圆孔的 位置和半径,给定P点的光强也将发生变化.
• 如果对于P点露出的波带数为整数,为奇数相对 应的那些点,合振幅较大;偶数相对应的那些 点,合振幅较小.
• 如果带数不是整数,那么合振幅介乎上述最大 值和最小值之间.
• 结论:当置于P处的屏沿着圆孔的对称轴线移动 时,将看合振幅到屏上的光强不断地变化.
.
8
四、菲涅耳圆屏衍射
当点光源发出的光通过圆屏(盘)衍射时,由于圆屏不 透明,被圆屏挡住部分的波面(也即有k个半波带发 出的次波不起作用)对轴线上p点的光强将没有贡献。
• 光传播 次波叠加 衍射
• 无论光是直线传播还是具有明显的衍射现 象,都遵循惠更斯----菲涅尔原理。
.
15
例题:一块波带片的孔径内有20个半波带,其中第1、 3、5、…、19等10个奇数带露出。第2、4、6、…、20 等10个偶数带遮蔽,试分析轴上场点的光强是自由传 播时光强的多少倍?