光学基础知识

合集下载

光学工程知识点总结

光学工程知识点总结

光学工程知识点总结1. 光学基础知识光学是物理学中研究光及其相互作用的科学。

在光学领域,我们需要了解光的传播规律、光的波动性质、光的折射、反射、散射等基本知识。

光学的基础知识为光学工程师设计光学系统提供了理论基础。

2. 光学系统设计光学系统设计是光学工程的核心内容之一。

光学系统通常包括光源、透镜、反射镜、光栅等光学元件,以及对光进行探测和分析的部件。

光学系统设计需要考虑光学元件的性能参数、光路的布局、系统成像质量等因素,以实现特定的光学功能。

3. 光学材料光学材料是构成光学系统的重要组成部分。

不同的应用领域对光学材料的性能要求各不相同。

光学材料通常需要具有良好的透明性、高折射率、低散射率等特点,以适应不同的光学系统设计需求。

4. 光学器件制造技术光学器件制造技术是光学工程的重要组成部分。

光学器件通常需要具有高精度、高表面质量和良好的光学性能。

常见的光学器件制造技术包括光学表面精加工、光学薄膜涂覆、光学玻璃加工等。

5. 光学系统测试光学系统测试是保证光学系统性能的重要手段。

光学系统测试需要考虑光学成像、光学畸变、光学材料特性等问题,以验证系统设计和制造过程中的各项性能指标是否符合要求。

6. 光学工程应用光学工程在各个领域都有广泛的应用。

例如,光学通信系统是当今信息传输中最主要的传输方式,光学显微镜在生物科学中有重要的应用,激光技术在材料加工、医疗治疗等领域也有重要应用。

总的来说,光学工程是一门重要的交叉学科,它涉及了光学原理、材料科学、光学器件制造技术等多个领域。

光学工程的发展为现代科技领域的发展提供了重要支撑,也为人类社会的发展带来了诸多便利。

希望本文的介绍能够让读者更好地了解光学工程的相关知识,对此领域有更深入的认识。

光学体系知识点梳理总结

光学体系知识点梳理总结

光学体系知识点梳理总结一、光学基础知识1. 光的本质光是电磁波的一种,是一种由电场和磁场交替而成的波动现象。

光是由光源发出,经过介质传播,最终影响我们的视觉系统。

2. 光的特性(1)波动特性:光具有波动性,可以表现为干涉、衍射、偏振等现象。

(2)微粒特性:光也具有微粒性,可以用光子模型解释光电效应、康普顿效应等现象。

3. 光的传播(1)直线传播:在均匀介质中,光沿着直线传播,遵循光的直线传播定律。

(2)折射现象:当光线从一种介质进入另一种介质时,会发生折射现象,遵循折射定律。

(3)反射现象:当光线从介质表面反射时,遵循反射定律。

4. 光的颜色白光是由所有可见光波长组成的,当光通过色散介质时,不同波长的光会按不同程度发生偏折,从而产生色散现象。

5. 光学仪器(1)凸透镜:透镜是一种光学元件,可以将平行入射的光线聚焦或发散。

(2)凹透镜:凹透镜同样可以将平行入射的光线聚焦或发散,与凸透镜形成对称。

(3)棱镜:通过对光的折射和衍射,可以实现光的分光和复合。

二、光学成像1. 成像原理成像是光学系统中非常重要的一部分,成像原理是指当物体放在一定位置时,通过透镜、镜面等光学元件可以在另一位置产生与实物相似的像。

2. 透镜成像透镜成像是指通过透镜实现对物体的成像,分为凸透镜和凹透镜成像。

3. 成像公式成像公式是描述透镜成像的数学关系式,可以根据物距、像距、焦距等参数计算成像的位置和大小。

4. 像的性质像的性质包括实像与虚像、正像与负像、放大与缩小等,是成像过程中需要了解的重要内容。

5. 透镜组成像透镜组成像是指通过不同透镜的组合实现对物体的成像,常见的透镜组包括双凸透镜组、凹凸透镜组等。

6. 成像畸变(1)球差:由于透镜的非理想性,会出现球差现象,导致成像的模糊和色差。

(2)色差:不同波长的光经过透镜时折射角度不同,会导致色差现象,影响成像的清晰度。

三、光学仪器1. 望远镜望远镜是一种基于透镜或镜面的光学仪器,可以放大远处物体的像,包括折射望远镜和反射望远镜。

光学基础知识详细版

光学基础知识详细版

光学基础知识详细版一、光的本质光是一种电磁波,是自然界中的一种能量传递形式。

光的本质可以通过波动理论和粒子理论来解释。

波动理论认为光是一种波动现象,具有波长、频率、振幅等特性;粒子理论则认为光是由光子组成的,光子是光的能量载体。

二、光的传播光在真空中的传播速度是恒定的,约为299,792,458米/秒。

光在不同介质中的传播速度不同,这是由于介质的折射率不同所致。

当光从一种介质传播到另一种介质时,会发生折射现象,即光线方向发生改变。

三、光的反射和折射光的反射是指光线在遇到界面时,按照一定规律返回原介质的现象。

光的折射是指光线在通过两种不同介质的界面时,传播方向发生改变的现象。

光的反射和折射遵循斯涅尔定律,即入射角和折射角满足一定的关系。

四、光的干涉和衍射光的干涉是指两束或多束相干光波相遇时,由于光波的叠加,形成新的光强分布的现象。

光的衍射是指光波在遇到障碍物或通过狭缝时,发生弯曲并绕过障碍物传播的现象。

五、光的偏振光的偏振是指光波的振动方向具有一定的规律性。

自然光是由无数个振动方向不同的光波组成的,因此不具有偏振性。

当光波通过某些特殊材料或经过反射、折射等过程后,可以形成具有一定偏振性的光波。

六、光的吸收和发射光的吸收是指光波在传播过程中,能量被物质吸收的现象。

光的发射是指物质在吸收光能后,以光波的形式释放能量的现象。

光的吸收和发射遵循一定的规律,如光的吸收强度与光的频率有关,光的发射强度与物质的性质有关。

七、光的成像光的成像是指利用光学系统(如透镜、反射镜等)使物体发出的光波或反射的光波在另一位置形成实像或虚像的过程。

光的成像原理是光的折射和反射现象,通过光学系统可以实现对物体形状、大小、位置的观察和研究。

八、光的测量光的测量是光学研究中的重要内容,主要包括光强、光强分布、波长、频率、相位等参数的测量。

光的测量方法有直接测量和间接测量两种,直接测量是通过光学仪器直接测量光波参数,间接测量是通过测量光波与物质相互作用的结果来推算光波参数。

光学基础知识点总结

光学基础知识点总结

光学基础知识点总结一、光的基本特性光是电磁波的一种,具有波粒二象性,既具有波动性,也具有粒子性。

光的波长决定了它的颜色,波长越短,频率越高,颜色就越偏向紫色;波长越长,频率越低,颜色就越偏向红色。

媒质对光的传播起到了阻碍的作用,阻碍的程度由折射率决定。

在真空中,光速是最高的,为3.0×10^8m/s。

二、光的传播光在真空中的传播速度是最快的,当光通过不同介质时,光速会减慢,并且折射。

光的折射是由于光速在不同介质中的差异导致的,根据折射定律,入射角和折射角之比等于两种介质的折射率之比。

当光从光密介质射向光疏介质时,入射角大于折射角;反之,当光从光疏介质射向光密介质时,入射角小于折射角。

这就是为什么水池里的东西看上去都有些歪的原因。

三、光的反射和折射光的反射是指光线从一种介质透过到另一种介质时,遇到界面时发生的现象。

根据反射定律,光线的入射角等于反射角,反射定律表明入射角和反射角是相等的。

光的折射是指光在通过两种介质的分界面时,由于介质折射率的不同,在两种介质中的传播方向发生改变的现象。

四、光的干涉和衍射光的干涉是光波相互叠加,在波峰与波谷相遇时叠加会增强,而在波峰与波峰相遇时叠加会减弱。

光的干涉现象有两种:一种是菲涅尔干涉,一种是朗伯干涉。

光的衍射是指光波通过一道障碍物,由于波的直线传播受到限制,在障碍物边缘处波前发生变形,这种现象就是衍射。

光的干涉和衍射是光学中非常重要的现象,也是很多光学仪器(如干涉仪、衍射光栅等)的原理基础。

五、光学成像光学成像是指通过光学器件将物体的形象投射到屏幕或者成像器件上的过程。

根据成像光学器件的不同,光学成像可以分为透镜成像和反射镜成像。

在透镜成像中,成像的原理是由于透镜对光的折射性质,使得光线汇聚或发散从而产生物体的形象。

在反射镜成像中,成像的原理是由于反射镜对光的反射性质,使得光线经过反射后,同样能够形成物体的形象。

光学成像技术在医学、军事、天文学、摄影等领域都有着非常重要的应用。

光学基础知识

光学基础知识

光学加工基础知识§1 光学玻璃基本知识一. 基本分类和概念光学材料分类:光学玻璃、光学晶体、光学塑料三类。

玻璃的定义:不论化学成分和固化温度范围如何,一切由熔体过冷却所得的无定形体,由于粘度逐渐增加而具有固体的机械性质的,均称为玻璃。

光学玻璃分为冕牌K 和火石F 两大类,火石玻璃比冕牌玻璃具有较大的折射率nd 和较小的色散系数vd 。

二. 光学玻璃熔制过程将配合料经过高温加热,形成均匀的,高品质的,并符合成型要求的玻璃液的过程,称玻璃的熔制。

玻璃的熔制,是玻璃生产中很重要的环节.,玻璃的许多缺陷都是在熔制过程中造成的, 玻璃的产量、质量、生产成本、动力消耗、熔炉寿命等都与玻璃的熔制有密切关系。

混合料加热过程发生的变化有:物理过程配合料的加热,吸附水的蒸发,单组分的熔融,个别组分挥发.某些组分的多晶转变。

化学过程---- 固相反应,盐的分解,水化物分解,结晶水的排除,组分间的作用反应及硅酸盐的形成。

物理化学过程------ 低共熔物的组分和生成物间相互溶解,玻璃与炉气介质,耐火材料相互作用等。

上述这些现象的发生过程与温度和配合料的组成性质有关. 对于玻璃熔制的过程,由于在高温下的反应很复杂,尚待充分了解,但大致可分为以下几个阶段。

1. 加料过程硅酸盐的形成2. 熔化过程玻璃形成3. 澄清过程-----消除气泡4. 均化过程------消除条纹5. 降温过程——调节粘度6. 出料成型过程总之,玻璃熔制的每个阶段各有其特点,同时,它们又是彼此互相密切联系和相互影响的•在实际熔制中,常常是同时或交错进行的,这主要取决于熔制的工艺制度和玻璃窑炉结构特点。

三. 玻璃材料性能1 .折射率nd、色散系数vd根据折射率和色散系数与标准数值的允许差值,光学玻璃可以分为五类2. 光学均匀性光学均匀性指同一块玻璃中折射率的渐变。

玻璃直径或边长不大于150mm,用鉴别率比值法玻璃分类如表1-2。

1类或2类还应测星点。

光学知识基础

光学知识基础

光学知识基础一、光学基本概念光学是研究光的行为和性质的物理学科。

它探讨了光在真空、气体、液体和固体中的传播规律,以及光的产生、变化和相互作用。

光可以看作是一种电磁波,其波长范围覆盖了从伽马射线、X射线、紫外线和可见光到红外线、微波和无线电波的广泛频谱。

在光学中,有几个重要的基本概念需要理解。

首先是光的波动性,即光在传播过程中表现出振动的特性,具有相位和波长。

其次是光的粒子性,即光是由粒子或光子组成的,这些粒子具有能量和动量。

此外,光学还涉及到光的干涉、衍射、反射、折射等现象,以及光学仪器和系统的工作原理。

二、光学元件与仪器光学元件和仪器在科学实验、工业生产、通信、医疗等领域有广泛应用。

常见的光学元件包括透镜、反射镜、棱镜、滤光片、光栅等。

这些元件可以单独使用,也可以组合在一起形成复杂的系统,以实现特定的光学功能。

例如,透镜是由两个曲面组成的,可以会聚或发散光。

反射镜由涂有金属反射层的玻璃制成,可以反射光线。

棱镜可以将一束光分成不同颜色的光谱。

滤光片可以过滤特定波长的光,而光栅则由一系列狭缝或反射线组成,用于分光或成像。

常见的光学仪器包括显微镜、望远镜、照相机、投影仪等。

显微镜用于观察微小物体,望远镜用于观察远处物体,照相机用于记录图像,投影仪则用于展示图像或视频。

这些仪器利用了光的折射、反射、干涉和衍射等原理,以实现清晰、准确的成像。

三、光学应用光学在许多领域都有广泛的应用。

在科学研究方面,光学显微镜可用于观察生物样品,光谱仪可用于分析物质成分,激光雷达可用于地形测量和遥感监测等。

在工业生产方面,光学成像系统可用于产品质量检测,光学传感器可用于自动化生产线控制,激光加工可用于切割、打标和焊接等。

在通信领域,光纤通信利用光的传输速度快、抗干扰能力强等优点,已成为现代通信的主流方式。

在医疗领域,光学仪器可用于诊断和治疗,如内窥镜、激光手术刀等。

此外,光学还在照明、显示、传感等领域有广泛的应用。

四、光的干涉与衍射光的干涉是指两束或多束相干光波在空间某一点叠加时,产生明暗相间的干涉现象。

光学必备知识点总结图解

光学必备知识点总结图解

光学必备知识点总结图解光学是研究光的传播、反射、折射以及与物质相互作用的一门学科。

在现代科技中,光学应用广泛,包括光纤通信、激光技术、光学显微镜、望远镜、光学测量等方面。

因此,了解光学的基本知识对于我们理解现代科技、发展科学技术至关重要。

在本文中,将对光学的基本知识点进行总结,包括光的性质、光的传播、折射、反射、色散、光学仪器等方面的知识点,希望对读者有所帮助。

一、光的性质1. 光的波动性光具有波动性质,即光是以波的形式传播的。

光波的传播方式可以用波长、频率、波速来描述。

光的波长决定了光的颜色,不同波长的光对应不同的颜色。

波长和频率之间有着一定的关系,即速度等于波长乘以频率。

在真空中,光的波速是一个恒定值,即光速等于约299,792,458米/秒,记作c。

2. 光的粒子性光也具有粒子性质,即光是由一些微小的粒子组成的。

这些粒子被称为光子,是光的一个基本单位。

光的粒子性质可以用来解释一些光学现象,如光电效应、康普顿散射等。

3. 光的干涉和衍射干涉是指两束相干光叠加在一起时会产生明暗条纹的现象。

衍射是指光通过狭缝或物体边缘时会发生偏折的现象。

这两个现象是光的波动性质的重要体现。

二、光的传播1. 光的直线传播在均匀介质中,光沿着一条直线传播。

这是光学的一个基本原理,也是光学成像的基础。

2. 光的折射当光线从一种介质射入到另一种介质中时,光线会发生折射。

折射定律表明了入射角、折射角和介质折射率之间的关系。

这个定律对于理解光在介质中的传播有着重要的意义。

3. 光的反射当光线与界面垂直入射时,光线会发生反射。

反射定律规定了入射角和反射角之间的关系。

反射还可以产生镜面反射和漫反射两种形式。

三、光的折射1. 透镜透镜是一种光学器件,主要分为凸透镜和凹透镜两种。

透镜可以将平行光线汇聚成一个点,也可以将一点光源产生的光线汇聚成一个点。

透镜的焦距决定了透镜的成像性能。

2. 成像原理成像原理是指由透镜成像的规律。

通过透镜,可以将物体成像到焦平面上,形成实物像或虚物像。

光学基础知识

光学基础知识

光线反射定律: 1.入射光线反射光线于法线在同一平面 内。
2.入射光线与反射光线在法线的两侧。 3.入射角等于反射角。
自然光的照明特点
根据太阳光进入大气的角度不同,阳光 在一天的不同时刻折射出不同的颜色。 破晓冷色日出偏黄,正午光线最强反差 最大落日偏红。
日光照明
反光
光学基础知识
教师:韩阳
光的本性
光的二重性: 微粒说 光是有一定能量的粒子 波动说 光是特定波长范围内的电磁波 光是一种能量传播的形式
宇宙射线 X射线 紫外线 紫 蓝 青 400 430 475 绿 530
无线电 红外线 雷达 交流电 电视短波广播
黄 500 橙 630 红 700
光学基本定律
1.光线沿直线传播:光线在均匀介质中 沿直线传播 2.诸光束独立定律:光线独立传播,不 同光线相交时,对每束光的传播方向不 发生影响 3.光线的反射定律:光线在两种介质的 分界面上会改变传播色
单色 光的 颜色 是由 他的 振动 频率 (波 长) 确定 的
光度基本概念
光能:能够进入人眼感觉的辐射能 光通量:单位时间内光源发出或通过某 范围内 的光能的数量 发光强度:
摄影光学
光线的主要特性(强度/性质/光线的方 向/光线的色彩) 色温与光源(自然光/室内照明) 光线在造型上的作用(照明被摄体/决定 画面气氛/形成明暗构思)
用光与控光
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果我們換用白光來做雙縫干涉實驗﹐在屏上就會出現不同顏色的 彩色條紋﹐這是因為白光是由不同顏色的單色光復合而成的﹐而不同 色光的波長不同﹐產生的明暗條紋間距也不同﹐所以在屏上出現了彩 色條紋。
我們知道﹐波長與頻率的乘積等于波速﹐這個關系對于一切波都是適 用的﹐不同色光在真空中的傳播速度相同﹐而波長不同﹐因而它們的 頻率也不同﹐波長越長頻率越小﹐波長越短頻率越大。
2020/5/21
2
一﹑光的本性
光的微粒說和波動說各有其成功的一面但都不能完滿地解釋當時已知 的所有光現象﹐所以到十八世紀末﹐兩種學說一直是平行存在的﹐只 是由于牛頓在學朮界有很高的聲望﹐才使大多數學者傾向于微粒說。 但是﹐到了十九世紀﹐發現了光的衍射和干涉現象﹐這些現象都是波 動所特有的﹐無法用微粒說解釋。十九世紀七十至八十年代﹐麥克斯 韋創立了光的電磁理論﹐認為光在本質上是一種電磁波﹔赫茲又用實 驗証明了電磁波的存在﹐光的電磁理論得到了科學界的公認。于是光 的波動說取得了 “壓倒的勝利”﹐微粒說受到了人們的冷落﹐然而 其后不久﹐就發現了用波動說不能解釋的新的現象﹐--------光電效 應﹐証實了光的確具有粒子性。經歷了一段漫長而又曲折的過程之 后﹐在本世紀初﹐人們終于認識到光既具有波動姓﹐又具有粒子性。 這兩種表面上看來截然不同的性質﹐不過是光的本性的兩個不同的方 面罷了。 從光的干涉﹑衍射現象和光的電磁說証明光具有波動性﹔從光電效應 和光子說証實光具有粒子性。光具有波粒二象性
4. 光譜和光諳分析
我們知道﹐白光的色散可以形成不同顏色的單色光組成的光譜。其 實﹐各種光源發出的光都不是單色光﹐因此都能產生自己的光譜。光 譜可以用分光鏡進行觀察。
2020/5/21
6
一﹑光的本性
發射光譜和吸收光譜 由發光物體直接產生的光譜叫做發射光譜。如 果發光的是熾熱的固體或液體﹐產生的光譜是由連續分布的一切波長 的光組成的﹐這種光譜叫做連續光譜。但是﹐如果發光的是稀薄氣體 或者是加有揮發性鹽的火焰﹐光譜就有完全不同的特征﹐它們是由一 些不同顏色的不連續的亮線組成的。這種光譜叫做明線光譜 觀察氣體的光譜﹐可以使用光譜管。 各種元素都有一定的明線光譜﹐元素不同﹐明線光譜也不同﹐所以﹐ 明線光譜又叫原子光譜。每種元素的原子只能發出某些具有特定波長 的光譜線﹐這些譜線叫做那種元素的特征譜線。
微粒說很容易解釋光的直進現象﹐可以認為光的直進不過是慣性現象 的簡單結果﹔而波動說卻很難解釋這種現象﹐因為常見的水波﹑聲波 都要發生衍射﹐不會象光那樣在物體后面留下清晰的影子。但是﹐微 粒說在解釋几束光交叉相遇后會彼此毫無妨礙地繼續向前傳播時﹐遇 到了很大困難﹐因為光如果是由粒子組成的﹐相碰時就會象球體相撞 那樣改變傳播的方向﹔而波動說解釋這種現象卻比較容易。水面上几 列水波能夠自由地互相穿過﹐這是人們熟知的波的現象。
在上面講的實驗里﹐我們看到了光離開直線路徑繞到障礙物陰影里去 的現象﹐這種現象叫光的衍射﹐衍射時產生的明暗條紋或光環﹐叫衍 射圖樣。
2020/5/21
4
一﹑障礙物都能使光發生衍射﹐以 致影的輪廓模糊不清﹐出現明暗相間的條紋。
衍射現象的研究表明﹐光沿直線傳播只是一種近似的規律﹐只有在光 的波長比障礙物小得多的情況下﹐光才可以看作是直進的﹐在障礙物 的尺寸可能跟光的波長相比甚至比光的波長還要小的時候﹐衍射現象 就十分明顯了。
光學基礎知識
2020/5/21
1
一﹑光的本性
1. 光的學說的歷史發展
光的本質是什么﹖這是一個非常古老的問題﹐遠在兩千多年以前﹐古 希臘的學者們在探討視覺問題時就有人認為﹐人的視覺是由所見物體 射出的粒子進入眼睛引起的﹐這種看法可以說已經接觸到了光的本性 問題﹐只不過停留在簡單的猜想上﹐還沒有理論上和實驗上的依據﹐ 對光的本性的科學的研究﹐始于十七世紀下半葉﹐當時形成了兩種截 然不同的關于光的本性的學說﹐一種是以牛頓為代表的微粒說﹐認為 光是由高速運動的細小粒子組成的。另一種是以荷蘭學者惠更斯為代 表的波動說﹐認為光是由細小的波組成的。
2020/5/21
3
一﹑光的本性
2. 光的衍射
我們不能象觀察水波那樣直接看到光波﹐只能通過間接的証據來確認 光的波動性質。最好的証據就是光的衍射和干涉現象﹐這是一切波都 具有的特征。我們先來看一看光的衍射。
取一個不透光的屏﹐在它的中間裝上一個寬度可以調節的狹縫﹐用 平行的單色光照射﹐在縫后適當距離處放一個光屏﹐我們看到﹐當縫 比較寬時﹐光沿著直線方向通過縫﹐在光屏上產生一個跟縫的寬度相 當的亮線﹐但是﹐當縫調到很窄時﹐光通過縫后就明顯偏離了直線傳 播方向﹐照到了屏上相當寬的地方﹐并且出現了明暗相間的條紋﹐一 束單色光從光源S照射到有較大圓孔A的屏﹐在后面的屏上就得到一 個光亮的圓 B﹐圓的大小跟按光沿直線傳播計算出來的結果是一致 的﹐縮小圓孔﹐亮圓也跟著縮小﹐但是縮小到一定程度﹐在后一個屏 上就出現一些明暗相間的圓環﹐這些圓環達到的范圍遠遠超過了根據 光的直線傳播所應照明的面積。
衍射証明了光的波動理論的正確性
3. 光的干涉
雙縫干涉 光的干涉是光具有波動性的又一個証據。1801年﹐英國物 理學家托馬斯.楊﹐在實驗室里成功地觀察到了光的干涉現象 。
讓一束單色光(例如紅光)投射到一個有狹縫的屏上﹐這個狹縫就成 了一個“光源”。光從狹縫出來后﹐射到第二個屏的兩個狹縫上﹐這 兩個狹縫離得很近(例如0.1毫米)﹐而且與前一個狹縫的距離相 等﹐如果光是傳播某種振動的波﹐那末﹐任何時刻從前一個狹縫發出 的光波都會同時傳到這兩個狹縫﹐這兩個狹縫就成了兩個振動情況總 是相同的波源﹐它們發出的波在屏上疊加﹐就會出現干涉現象﹔在波 峰跟波峰疊加﹑波谷跟波谷疊加的地方﹐光就互相加強﹐在波峰跟波 谷疊加的地方﹐光就互相抵消或削弱﹐實驗果然得到了預期的效果﹐ 在光屏上產生了明暗相間的干涉條紋﹐這就証明了光的確是一種波。
2020/5/21
5
一﹑光的本性
波長和頻率 在雙縫干涉現象里﹐明條紋和暗條紋之間的距離﹐總是 相等的。在狹縫間的距離和狹縫與屏的距離都不變的條件下﹐用不同 顏色的光做實驗﹐條紋間的間隔是不同的。紅光的條紋間隔最大﹐紫 光的條紋間隔最小。定量的研究告訴我們﹐光波的波長越長﹐干涉條 紋之間的距離越大﹐條紋的間距跟光波的波長成正比。所以不同色光 的波長也不同﹔紅光的波長最長﹐紫光的波長最短。
相关文档
最新文档