菱形中考试题
菱形中考题(含答案)

菱形中考题一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4)B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)2.(2010•肇庆)菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:14.(2010•宜昌)如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.二.填空题(共15小题)5.(2011•铜仁地区)已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.6.(2011•綦江县)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.7.(2011•南京)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图7题图8题图9题图8.(2011•鞍山)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D 作DE∥AC交BC的延长线于点E,则△BDE的周长为_________.9.(2010•嘉兴)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E 在AB上且BE=BO,则∠BEO=_________度.10.(2009•江西)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=_________度.10题图12题13题图14题图11.(2009•朝阳)已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.12.(2009•安顺)如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________点.13.(2008•长沙)如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________cm.14.(2006•云南)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为_________.15.(2005•黄石)已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________ cm2.16.(2005•新疆)已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.17.(2004•贵阳)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.17题图18题图19题图18.(2003•温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= _________度.三.解答题(共7小题)20.(2011•南昌)如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.(2011•广安)如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.(2010•益阳)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.(2010•宁洱县)如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.(2006•大连)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________;(2)猜想:_________=_________;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题(共4小题)1.考点:菱形的性质;坐标与图形性质。
(初中)数学《菱形的性质与判定》中考专项复习训练典型试题梳理汇总

(初中)数学《菱形的性质与判定》中考专项复习训练典型试题梳理汇总菱形的性质与判定基础同步过关知识点一:菱形的性质定理1.如图,四边形ABCD的对角线互相平分,则添加下列条件之一,不能使它成为菱形的是()A.AB=ADB.AC=BDC.BD平分∠ABCD.AC∠BD2.如图,顺次连接四边形ABCD各边的中点得到四边形EFGH,要使四边形EFGH为菱形,应添加的条件是。
3.如图,下列对菱形ABCD表述正确的有。
∠AC=BD;∠∠OAB=∠OBA;∠AC∠BD;∠有4条对称轴;∠AD=BD;∠∠OAB=∠OAD。
4.如图,四边形ABCD是菱形,AC BD相交于点O,AC=8,BD=6,DH∠AB于点H,则DH的长为。
第1题图第2题图第3题图第4题图5.如图,在菱形ABCD中,AB=2,∠ABC=120°,则菱形ABCD的面积是。
6.如图,在菱形ABCD中,对角线AC与BD交于点O,OE∠AB,垂足为E,若∠ADC=128°,则∠AOE的度数为()A.62°B.52°C.68°D.64°7.如图,在菱形ABCD中,∠B=60°,AB=3,点E是BC边上的一个动点(点E与点C不重合),点F,G分别是AE,CE的中点,则线段FG的长度为()B.3第5第6题图第7题图知识点二:菱形的判定定理8.已知四边形ABCD中,AC∠BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BDB.AB=BCC.AC与BD互相平分D.∠ABC=90°9.如图,将∠ABC沿BC方向平移得到∠DCE,连接AD.下列条件中,能够判定四边形ACED为菱形的是()A .AB=BC B. AC=BC C.∠ABC=60° D.∠ACB=60°10.AC,BD相交于点O,点E,F,G,H分别是OA,OB,OC,OD的中点,若要使四边形EFGH成为菱形,(写出一种即可)11.折纸游戏一直很受大家的欢迎,小丽同学要用一张矩形纸片折出一个菱形,她用沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图)。
中考数学专题训练:矩形、菱形、正方形(附参考答案)

中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。
华师大新版八年级(下) 中考题同步试卷:19.2 菱形(04)

华师大新版八年级(下)中考题同步试卷:19.2 菱形(04)一、选择题(共5小题)1.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB 2.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3B.4C.5D.63.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.cm B.cm C.cm D.cm4.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°5.连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()A.B.C.D.二、填空题(共8小题)6.如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,可使它成为菱形.7.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于.8.如图,菱形ABCD的周长为12cm,BC的垂直平分线EF经过点A,则对角线BD的长是cm.9.菱形ABCD在平面直角坐标系中的位置如图所示,A(0,6),D(4,0),将菱形ABCD 先向左平移5个单位长度,再向下平移8个单位长度,然后在坐标平面内绕点O旋转90°,则边AB中点的对应点的坐标为.10.若菱形的两条对角线分别为2和3,则此菱形的面积是.11.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠F AC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE =60°…按此规律所作的第n个菱形的边长是.12.如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=,菱形ABCD的面积S=.13.如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则=.三、解答题(共17小题)14.已知,如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD为菱形.15.如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.16.如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF 平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?17.已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.18.如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD 是菱形.19.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF,BF,DF.(1)求证:△ABC≌△ABF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.20.如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD于点G.求证:四边形ACGF是菱形.21.如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.22.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.23.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.24.已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.25.已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.26.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论.27.如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)平移△AOB,使得点A移动到点D,画出平移后的三角形(不写画法,保留画图痕迹);(2)在第(1)题画好的图形中,除了菱形ABCD外,还有哪种特殊的平行四边形?请给予证明.28.如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.29.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.30.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.华师大新版八年级(下)中考题同步试卷:19.2 菱形(04)参考答案一、选择题(共5小题)1.B;2.B;3.B;4.B;5.C;二、填空题(共8小题)6.AB=BC或AC⊥BD等;7.4;8.3;9.(﹣5,7)或(5,﹣7);10.3;11.()n﹣1;12.1:2;16;13.;三、解答题(共17小题)14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.1;2;。
【精编版】中考数学专题训练——菱形的判定和性质

中考专题训练——菱形的判定和性质1.如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F 在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,BC=4,求BD和AE的长.2.如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF的长.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.5.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.6.在四边形ABCD中,AD∥BC,AC平分∠BAD,BD平分∠ABC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,过点D作DE⊥BD交BC延长线于点E,在不添加任何辅助线的情况下,请直接写出图中所有与△CDE面积相等的三角形(△CDE除外)7.已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C 作CF∥BA交PQ于点F,连接AF.(1)求证:四边形AECF是菱形;(2)若AD=3,AE=5,则求菱形AECF的面积.8.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=2,∠BCF=120°,求菱形BCFE的面积.9.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.10.如图,在△ABC中,AB=AC,E,D,F分别是边AB,BC,CA的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,AB=12,求四边形AEDF的面积.11.如图,在四边形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC分别交边AB,CD于点E,F,连接CE,AF.(1)求证:四边形AECF是菱形;(2)若EF=6,AE=5,求四边形AECF的面积.12.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.13.如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.(1)求证:四边形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.14.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.15.如图,△ABC中,∠ACB=90°,∠A=30°,CD为△ABC的中线,作CO⊥AB于O,点E在CO延长线上,DE=AD,连接BE、DE.(1)求证:四边形BCDE为菱形;(2)把△ABC分割成三个全等的三角形,需要两条分割线段,若AC=6,求两条分割线段长度的和.16.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE 与AC、AE分别交于点O、点E,联结EC.(1)求证:AD=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2.(其中S表示四边形ADCE 的面积)17.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过D作DE∥BC交AB 于点E,DF∥AB交BC于点F,连接EF.(1)求证:四边形BFDE是菱形;(2)若AB=8,AD=4,求BF的长.18.如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?19.已知:如图,四边形ABCD是平行四边形,分别以AB、AD为腰作等腰三角形△ABF 和等腰三角形△ADE,且顶角∠BAF=∠DAE,连结BD、EF相交于点G,BD与AF相交于点H.(1)求证:BD=EF;(2)若∠GHF=∠BFG,求证:四边形ABCD是菱形;(3)在(2)的条件下,当∠BAF=∠DAE=90°时,连结BE,若BF=4,求△BEF的面积.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.参考答案:1.如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F 在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,BC=4,求BD和AE的长.【分析】(1)根据对角线互相平分且垂直即可证明四边形AECF是菱形;(2)根据等腰三角形的性质和勾股定理可得BD=8,设DE=x,则DF=x,所以AF2=AD2+DF2=16+x2,BF=BD+DF=8+x,然后利用勾股定理即可解决问题.【解答】(1)证明:∵BA=BC,BD平分∠ABC,∴BD⊥AC,AD=CD,∵DE=DF,∴四边形AECF是菱形;(2)解:AD⊥BD,AD=4,BA=BC=4,∴BD===8,设DE=x,则DF=x,∴AF2=AD2+DF2=16+x2,∵BF=BD+DF=8+x,∴AB2+AF2=BF2,∴(4)2+16+x2=(8+x)2,∴x=2,∴DE=DF=2,∴AE===2.∴BD和AE的长分别为8和2.2.如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF的长.【分析】(1)先根据垂直平分线的性质得:DE=CE,DF=FC,证明△CGE≌△CGF (ASA),根据对角线互相平分的四边形是平行四边形得:四边形DFCE是平行四边形,再由一组邻边相等的平行四边是菱形可得结论;(2)作辅助线,构建直角三角形,根据直角三角形30°的性质可得BH=1,由勾股定理得:DH=,根据△DHF是等腰直角三角形,可得DH=FH=,从而得结论.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,DG=CG∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CG,∴△CGE≌△CGF(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)首先根据题意画出图形,由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC=90°,D是BC的中点,可得AD=BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF是菱形;(2)首先连接DF,易得四边形ABDF是平行四边形,即可求得DF的长,然后由菱形的面积等于其对角线积的一半,求得答案.【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)首先根据题意画出图形,由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC=90°,D是BC的中点,可得AD =BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF是菱形;(2)首先连接DF,易得四边形ABDF是平行四边形,即可求得DF的长,然后由菱形的面积等于其对角线积的一半,求得答案.【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.5.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形,∴DE=BC=6.∴.6.在四边形ABCD中,AD∥BC,AC平分∠BAD,BD平分∠ABC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,过点D作DE⊥BD交BC延长线于点E,在不添加任何辅助线的情况下,请直接写出图中所有与△CDE面积相等的三角形(△CDE除外)【分析】(1)根据角平分线的定义可得∠ABD=∠CBD,据两直线平行,内错角相等可得∠ADB=∠CBD,然后求出∠ABD=∠ADB=∠CBD,再根据等角对等边可得AB=AD,再根据等腰三角形三线合一可得BO=DO,然后利用“角边角”证明△AOD和△COB全等,根据全等三角形对应边相等可得AD=BC,再根据对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,然后根据邻边相等的平行四边形是菱形证明即可;(2)根据等底等高的三角形的面积相等即可得到结论.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB=∠CBD,∴AB=AD,设AC、BD相交于点O,又∵AC平分∠BAD,∴BO=DO,AC⊥BD,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵DE⊥BD,AC⊥BD,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形,∴BC=AD=CE,∴图中所有与△CDE面积相等的三角形有△BCD,△ABD,△ACD,△ABC.7.已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C 作CF∥BA交PQ于点F,连接AF.(1)求证:四边形AECF是菱形;(2)若AD=3,AE=5,则求菱形AECF的面积.【分析】(1)首先利用AAS证明△CDF≌△AED,进而得到AE=CF,于是得到四边形AECF是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得到结论;(2)首先利用勾股定理求出DE的长,再利用对角线乘积的一半求出菱形的面积.【解答】证明:(1)∵CF∥AB,∴∠DCF=∠DAE,∵PQ垂直平分AC,∴CD=AD,在△CDF和△AED中∵,∴△CDF≌△AED,∴AE=CF,∴四边形AECF是平行四边形,∵PQ垂平分AC,∴AE=CE,∴四边形AECF是菱形;(2)∵四边形AECF是菱形,∴△ADE是直角三角形,∵AD=3,AE=5,∴DE=4,∴AC=2AD=6,EF=2DE=8,∴菱形AECF的面积为AC•EF=24.8.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=2,∠BCF=120°,求菱形BCFE的面积.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)只要证明△ECF,△ECB都是等边三角形,可得S菱形BCFE=2•S△ECF;【解答】解:(1)∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∵EF=BEBE=2DE,∴EF=BC=BE,EF∥BC,∴四边形BCFE是平行四边形,∵BE=BC,∴四边形BCFE是菱形.(2)∵EF∥BC,∴∠F+∠BCF=180°,∵∠BCF=120°,∴∠F=60°,∵FE=FC=CB=EF,∴△ECF,△ECB都是等边三角形,∴S菱形BCFE=2•S△ECF=2××22=2.9.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.【分析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)连接BD交AC于O,利用勾股定理求出对角线的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.10.如图,在△ABC中,AB=AC,E,D,F分别是边AB,BC,CA的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,AB=12,求四边形AEDF的面积.【分析】(1)首先根据三角形中位线定理可得DE∥AC,DF∥AB,ED=AC,DF=AB,进而可判定四边形AEDF是平行四边形,然后证明ED=DF即可;(2)连接AD、EF,利用直角三角形的性质和菱形面积公式解答即可.【解答】(1)证明:∵E,D,F分别是边AB,BC,AC的中点,∴DE∥AC,DF∥AB,ED=AC,DF=AB,∴四边形AEDF是平行四边形,∵AB=AC,∴ED=DF,∴四边形AEDF是菱形;(2)连接AD、EF,在△ABC中,AB=AC,∴BD=CD,AD⊥BC,在Rt△ABD中,∠B=30°,AB=12,∴AD=6,EF=BC=BD=,菱形AEDF的面积=.11.如图,在四边形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC分别交边AB,CD于点E,F,连接CE,AF.(1)求证:四边形AECF是菱形;(2)若EF=6,AE=5,求四边形AECF的面积.【分析】(1)运用“对角线互相垂直平分的四边形是菱形”判定,已知EF⊥AC,AO=OC,只需要证明OE=OF即可,用全等三角形得出;(2)菱形的面积可以用对角线积的一半来表示,由已知条件,解直角三角形AOE可求AC、EF的长度.【解答】解:(1)证明:∵AB∥DC,∴∠1=∠2.在△CFO和△AEO中,,∴△CFO≌△AEO(ASA).∴OF=OE,又∵OA=OC,∴四边形AECF是平行四边形.∵EF⊥AC,∴四边形AECF是菱形;(2)解:∵四边形AECF是菱形,EF=6,∴OE=EF=4.在Rt△AEO中,∵tan∠OAE==,∴OA=5,∴AC=2AO=8,∴S菱形AECF=EF•AC=×6×8=24.12.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得AC=6.∵四边形DBCE是平行四边形,∴DE=BC=6.∴S菱形ADCE===18.13.如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.(1)求证:四边形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.【分析】(1)利用平行四边形的性质和角平分线的定义可求得CF=CD=DE,可证得结论;(2)过P作PG⊥BC于G,在Rt△PGC中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EDF=∠DFC,∵DF平分∠ADC,∴∠EDF=∠CDF,∴∠DFC=∠CDF,∴CD=CF,同理可得CD=DE,∴CF=DE,且CF∥DE,∴四边形CDEF为菱形;(2)解:如图,过P作PG⊥BC于G,∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,∴CF=EF=CD=AB=2,∠ECF=∠BCD=∠A=60°,∴△CEF为等边三角形,∴CE=CF=2,∴PC=CE=1,∴CG=PC=,PG=PC=,∴BG=BC﹣CG=3﹣=,在Rt△BPG中,由勾股定理可得BP===,即BP的值为.14.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC =AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.15.如图,△ABC中,∠ACB=90°,∠A=30°,CD为△ABC的中线,作CO⊥AB于O,点E在CO延长线上,DE=AD,连接BE、DE.(1)求证:四边形BCDE为菱形;(2)把△ABC分割成三个全等的三角形,需要两条分割线段,若AC=6,求两条分割线段长度的和.【分析】(1)容易证三角形BCD为等边三角形,又DE=AD=BD,再证三角形DBE为等边三角形四边相等的四边形BCDE为菱形.(2)画出图形,证出BM+MN=AM+MC=AC=6即可.【解答】(1)证明:∵∠ACB=90°,∠A=30°,CD为△ABC的中线,∴BC=AB,CD=AB=AD,∴∠ACD=∠A=30°,∴∠BDC=30°+30°=60°,∴△BCD是等边三角形,∵CO⊥AB,∴OD=OB,∴DE=BE,∵DE=AD,∴CD=BC=DE=BE,∴四边形BCDE为菱形;(2)解:作∠ABC的平分线交AC于N,再作MN⊥AB于N,如图所示:则MN=MC=BM,∠ABM=∠A=30°,∴AM=BM,∵AC=6,∴BM+MN=AM+MC=AC=6;即两条分割线段长度的和为6.16.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE 与AC、AE分别交于点O、点E,联结EC.(1)求证:AD=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2.(其中S表示四边形ADCE 的面积)【分析】(1)由AE∥BC,DE∥AB,可证得四边形ABDE为平行四边形,又由AD是边BC上的中线,可得AE=CD,即可证得四边形ADCE是平行四边形,继而证得结论;(2)由BC=2AD,易得四边形ADCE是菱形,继而求得S四边形ADCE=m2.【解答】证明:(1)∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,∴AD=CE;(2)∵BC=2AD,BC=2CD,∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形,∵DE=AB=m,AC=2AO=2m,∴S四边形ADCE=AC•DE=m2.17.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过D作DE∥BC交AB 于点E,DF∥AB交BC于点F,连接EF.(1)求证:四边形BFDE是菱形;(2)若AB=8,AD=4,求BF的长.【分析】(1)易证四边形BFDE是平行四边形,再结合已知条件证明邻边EB=ED即可得到平行四边形BFDE是菱形;(2)设BF=x,所以可得DE=BE=x,AE=8﹣x,在Rt△ADE中,由勾股定理可得AE2=DE2+AD2,求出x的值即可.【解答】(1)证明:∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形.∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥BC,∴∠CBD=∠EDB.∴∠ABD=∠EDB.∴EB=ED.∴平行四边形BFDE是菱形;(2)解:∵ED∥BF,∠C=90°,∴∠ADE=90°.设BF=x,∴DE=BE=x.∴AE=8﹣x.在Rt△ADE中,AE2=DE2+AD2∴(8﹣x)2=x2+42解得x=3,∴BF=3.18.如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?【分析】(1)先证出四边形AEPQ为平行四边形,关键是找一组邻边相等,由AD平分∠BAC和PE∥AQ可证∠EAP=∠EP A,得出AE=EP,即可得出结论;(2)S菱形AEPQ=EP•h,S平行四边形EFBQ=EF•h,若菱形AEPQ的面积为四边形EFBQ面积的一半,则EP=EF,因此P为EF中点时,S菱形AEPQ=S四边形EFBQ.【解答】(1)证明:∵EF∥AB,PQ∥AC,∴四边形AEPQ为平行四边形,∴∠BAD=∠EP A,∵AB=AC,AD平分∠CAB,∴∠CAD=∠BAD,∴∠CAD=∠EP A,∴EA=EP,∴四边形AEPQ为菱形.(2)解:P为EF中点,即AP=AD时,S菱形AEPQ=S四边形EFBQ∵四边形AEPQ为菱形,∴AD⊥EQ,∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴EQ∥BC,又∵EF∥AB,∴四边形EFBQ为平行四边形.作EN⊥AB于N,如图所示:则S菱形AEPQ=EP•EN=EF•EN=S四边形EFBQ.19.已知:如图,四边形ABCD是平行四边形,分别以AB、AD为腰作等腰三角形△ABF 和等腰三角形△ADE,且顶角∠BAF=∠DAE,连结BD、EF相交于点G,BD与AF相交于点H.(1)求证:BD=EF;(2)若∠GHF=∠BFG,求证:四边形ABCD是菱形;(3)在(2)的条件下,当∠BAF=∠DAE=90°时,连结BE,若BF=4,求△BEF的面积.【分析】(1)证明∠BAD=∠F AE,根据全等三角形的判定推出△BAD≌△F AE,即可得出答案;(2)求出∠ABD=∠GBF,证明AB=AD,即可证出四边形ABCD是菱形;(3)延长EA交BC于M,得EM⊥AD,求出EM=AE+AM=2+2,再根据面积公式即可求出.【解答】(1)证明:∵∠BAF=∠DAE,∴∠BAF+∠F AD=∠DAE+∠F AD,即∠BAD=∠F AE,∵AB=AF,AD=AE,∴△BAD≌△F AE(SAS),∴BD=EF.(2)∵∠GHF=∠BFG,∴∠GFH=∠GBF,由(1)可知∠GFH=∠ABD,∴∠ABD=∠GBF,∵AD∥BC,∴∠ADB=∠GBF,∴∠ABD=∠ADB,∴AB=AD,∴四边形ABCD是菱形;(3)延长EA交BC于M,∵∠DAE=90°.∴EM⊥AD,∵四边形ABCD是菱形,∴AD∥BC,∴EM⊥BF,∵AB=AF,BF=4,∴BM=FM=2,∵∠BAF=90°,∴,∴,∴,∴EM=AE+AM=2+2,∴==4.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.【分析】(1)先判断出△ABC≌△ADC得到∠BAF=∠DAC,再判断出△ABF≌△ADF 得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【解答】证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAF=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当BE⊥CD时,∠EFD=∠BCD,理由:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.。
2020中考数学菱形专题练习(含答案)

C .D .2020 中考数学 菱形专题练习(含答案)、单选题(共有 10 道小题)4. 如图,两个连续在一起的菱形的边长都是1cm ,一只电子甲虫从点 A 开始按 ABCDAEFG ⋯AB ⋯的顺序沿菱形的边循环爬行,当电子甲虫爬行 2014cm 时停下,则它停的位置是( )A. 点 FB. 点 E 5. 下列命题是假命题的是( ) A .四个角相等的四边形是矩形 C .对角线垂直的四边形是菱形C.点 AD.点 CB .对角线相等的平行四边形是矩形 D .对角线垂直的平行四边形是菱形6. 在矩形 ABCD 中,AD =3AB ,点 G 、H 分别在 AD 、BC 上,连 BG 、DH ,且 BG∥ DH,当 AG( ) AD 时,四边形 BHDG 为菱形.1. 如图,四边形 ABCD 是菱形,AC 8,DB 6, DHAB 于H ,则 DH 等于(A .24 512B .12C .5D .42. 菱形具有而一般平行四边形不具有的性质是( )A. 对边平行B. 对角线互相平分C. 对边相等D. 对角线互相垂直3. 如图,菱形 ABCD 中,∠B =60°,AB 4 ,则以 AC 为边长的正方形 ACEF 的周长为( ) C .16D .174B .310. 以下四个命题正确的是( )A. 任意三点可以确定一个圆B. 菱形对角线相等C. 直角三角形斜边上的中线等于斜边的一半D. 平行四边形的四条边相等二、填空题(共有 8 道小题)11.如图,在菱形 ABCD 中对角线分别长 12和 16,E ,F ,分别是 AB ,AD 的中点, H 是对角线 BD上任意一点,则 HE+HF 的最小值是 。
7. 如图,下列哪个条件能使 □ABCD 成为菱形的()① AC ⊥BD ②AB ∥ CD ③AB=BC ④AB=CDA. ①③B. ②③C. ③④8. 如图,四边形 ABCD 的四边相等,且面积为 形 ABCD 的周长为 (D )D.①②③120cm 2,对角线 AC =24cm ,则四边A.52 cmB.40 cm 9. 如图,菱形 ABCD 中, AB=4, △AEF 的面积为(C.39 cmD.26 cm∠ B=60°, AE ⊥ BC ,AF ⊥ CD ,垂足分别为A. 4 3B. 3 3C. 2 3D. 3DACBE ,F ,连接 EF ,则DC12.如图,若菱形ABCD的顶点A,B的坐标分别为(3 ,0),(-2,0),点D在y轴13. 如图,两个完全相同的三角尺ABC和DEF在直线l 上滑动,要使四边形CBFE为菱形,还需添加的一个条件是。
北师大九年级1.1菱形的判定2中考真题

1.1菱形的判定中考真题一、选择题1. (2011•西宁)用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A、一组临边相等的四边形是菱形B、四边相等的四边形是菱形C、对角线互相垂直的平行四边形是菱形D、每条对角线平分一组对角的平行四边形是菱形3.(2011湖南益阳)如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于错误!未找到引用源。
AB的一半长为半径画弧,两弧相交于C.D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形4. (2011襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形5.(2011清远)若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CDB.AD=BCC.AB=BC D. AC=B D二、解答题1.如图,ABCD的两条对角线AC、BD相交于点O,AB= 5 ,AC=8,DB=6求证:四边形ABCD是菱形.2. (2011江苏镇江常州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.3. (2011新疆乌鲁木齐)如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.4. (2011•贵港)如图所示,在梯形ABCD中,AD∥BC ,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.求证:四边形ABED是菱形;5. (2011•西宁)如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.求证:四边形AODE是菱形;6. (2011浙江衢州)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE 与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90度时,求证:四边形ADCE是菱形.7. (2011•安顺)如图,在△ABC中,∠ACB=90°,BC 的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.。
中考数学真题分类汇编及解析(二十八)菱形

(2022•武威中考)如图1,在菱形ABCD 中,∠A =60°,动点P 从点A 出发,沿折线AD →DC →CB 方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,△APB 的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A .√3B .2√3C .3√3D .4√3【解析】选B .在菱形ABCD 中,∠A =60°,所以△ABD 为等边三角形,设AB =a ,由图2可知,△ABD 的面积为3√3,所以S △ABD =√34a 2=3√3,解得:a =2√3. (2022•自贡中考)如图,菱形ABCD 对角线交点与坐标原点O 重合,点A (﹣2,5),则点C 的坐标是( )A .(5,﹣2)B .(2,﹣5)C .(2,5)D .(﹣2,﹣5)【解析】选B.因为四边形ABCD 是菱形,所以OA =OC ,即点A 与点C 关于原点对称,因为点A (﹣2,5),所以点C 的坐标是(2,﹣5).(2022•株洲中考)如图所示,在菱形ABCD 中,对角线AC 与BD 相交于点O ,过点C 作CE ∥BD 交AB 的延长线于点E ,下列结论不一定正确的是( )A .OB =12CE B .△ACE 是直角三角形C .BC =12AE D .BE =CE 【解析】选D .因为四边形ABCD 是菱形,所以AO =CO =12,AC ⊥BD ,因为CE ∥BD ,所以△AOB ∽△ACE ,所以∠AOB =∠ACE =90°,AOAC =OBCE =ABAE =12,(2022•河南中考)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若OE =3,则菱形ABCD 的周长为( )A .6B .12C .24D .48【解析】选C .因为四边形ABCD 为菱形,所以AC ⊥BD ,AB =BC =CD =DA ,所以△COD 为直角三角形.因为OE =3,点E 为线段CD 的中点,所以CD =2OE =6.所以C 菱形ABCD =4CD =4×6=24.(2022•赤峰中考)如图,菱形ABCD ,点A 、B 、C 、D 均在坐标轴上.∠ABC =120°,点A (﹣3,0),点E是CD 的中点,点P 是OC 上的一动点,则PD +PE 的最小值是( )A .3B .5C .2√2D .32√3【解析】选A .根据题意得,E 点关于x 轴的对称点是BC 的中点E ',连接DE '交AC 与点P ,此时PD +PE 有最小值为DE ',因为四边形ABCD 是菱形,∠ABC =120°,点A (﹣3,0),所以OA =OC =3,∠DBC =60°,所以△BCD 是等边三角形,所以DE '=OC =3,即PD +PE 的最小值是3.(2022•海南中考)如图,菱形ABCD 中,点E 是边CD 的中点,EF 垂直AB 交AB 的延长线于点F ,若BF :CE =1:2,EF =√7,则菱形ABCD 的边长是( )A .3B .4C .5D .45√7【解析】选B .过点D 作DH ⊥AB 于点H ,如图,因为四边形ABCD是菱形,所以AD=AB=CD,AB∥CD.因为EF⊥AB,DH⊥AB,所以DH∥EF,所以四边形DHFE为平行四边形,所以HF=DE,DH=EF=√7.因为点E是边CD的中点,所以DE=12CD,所以HF=12CD=12AB.因为BF:CE=1:2,所以设BF=x,则CE=2x,所以CD=4x,DE=HF=2x,AD=AB=4x,所以AF=AB+BF=5x.所以AH=AF﹣HF=3x.在Rt△ADH中,因为DH2+AH2=AD2,所以(√7)2+(3x)2=(4x)2.解得:x=±1(负数不合题意,舍去),所以x=1.所以AB=4x=4.即菱形ABCD的边长是4.A .52 B .5 C .10 D .20 【解析】选C .由作图过程可得:PQ 为BD 的垂直平分线,所以BM =MD ,BN =ND .设PQ 与BD 交于点O ,如图,则BO =DO .因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠MDO =∠NBO ,∠DMO =∠BNO ,在△MDO 和△NBO 中,{∠MDO =∠NBO∠DMO =∠BNO OD =OB,所以△MDO ≌△NBO (AAS ),所以DM =BN ,所以四边形BNDM 为平行四边形,因为BM =MD ,所以四边形MBND 为菱形,所以四边形MBND 的周长=4BM .设MB =x ,则MD =BM =x ,所以AM =AD ﹣DM =4﹣x ,在Rt △ABM 中,因为AB 2+AM 2=BM 2,所以22+(4﹣x )2=x 2,解得:x =52,所以四边形MBND 的周长=4BM =10.(2022•武威中考)如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =2√5cm ,AC =4cm ,则BD 的长为8 cm .【解析】因为四边形ABCD 是菱形,AC =4cm ,所以AC ⊥BD ,BO =DO ,AO =CO =2cm ,因为AB =2√5cm ,所以BO =√AB 2−AO 2=4cm ,所以DO =BO =4cm ,所以BD =8cm.答案:8.(2022•温州中考)如图,在菱形ABCD 中,AB =1,∠BAD =60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF ,使点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,点M ,N 在对角线AC 上.若AE =3BE ,则MN 的长为 √32 .【解析】连接DB 交AC 于点O ,作MI ⊥AB 于点I ,作FJ ⊥AB 交AB 的延长线于点J ,如图所示,因为四边形ABCD 是菱形,∠BAD =60°,AB =1,所以AB =BC =CD =DA =1,∠BAC =30°,AC ⊥BD ,因为△ABD 是等边三角形,所以OD =12,所以AO =√AD 2−DO 2=√12−(12)2=√32, 所以AC =2AO =√3,因为AE =3BE ,所以AE =34,BE =14,因为菱形AENH 和菱形CGMF 大小相同,所以BE =BF =14,∠FBJ =60°,所以FJ =BF •sin60°=14×√32=√38, 所以MI =FJ =√38,所以AM =MI sin30°=√3812=√34, 同理可得,CN =√34, 所以MN =AC ﹣AM ﹣CN =√3−√34−√34=√32. 答案:√32.DQ ﹣P 'Q 的最大值为 16√23.【解析】如图,连接BD 交AC 于点O ,过点D 作DK ⊥BC 于点B ,延长DE 交AB 于点R ,连接EP ′交AB 于点J ,作EJ 关于AC 的对称线段EJ ′,则DP ′的对应点P ″在线段EJ ′上.当点P 是定点时,DQ ﹣QP ′=AD ﹣QP ″,当D ,P ″,Q 共线时,QD ﹣QP ′的值最大,最大值是线段DP ″的长,当点P 与B 重合时,点P ″与J ′重合,此时DQ ﹣QP ′的值最大,最大值是线段DJ ′的长,也就是线段BJ 的长.因为四边形ABCD 是菱形,所以AC ⊥BD ,AO =OC ,因为AE =14.EC =18,所以AC =32,AO =OC =16,所以OE =AO ﹣AE =16﹣14=2,因为DE ⊥CD ,所以∠DOE =∠EDC =90°,因为∠DEO =∠DEC ,所以△EDO ∽△ECD ,所以DE 2=EO •EC =36,所以DE =EB =EJ =6,所以CD =√EC 2−DE 2=√182−62=12√2,所以OD =√DE 2−OE 2=√62−22=4√2,所以BD =8√2,因为S △DCB =12×OC ×BD =12BC •DK , 所以DK =12×16×8√212√212×16×8√26√2=323, 因为∠BER =∠DCK ,所以sin ∠BER =sin ∠DCK =DK CD =32312√2=4√29, 所以RB =BE ×4√29=8√23,3(2022•达州中考)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为52.【解析】因为四边形ABCD是菱形,所以AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,因为AC=24,BD=10,所以AO=12AC=12,BO=12BD=5,在Rt△AOB中,AB=√AO2+BO2=√122+52=13,所以菱形的周长为13×4=52.答案:52(2022•娄底中考)菱形ABCD的边长为2,∠ABC=45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为√2.【解析】连接AQ,作AH⊥BC于H,因为四边形ABCD是菱形,所以AB=CB,∠ABQ=∠CBQ,因为BQ=BQ,所以△ABQ≌△CBQ(SAS),(2022•天津中考)如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于√194.【解析】如图,过点F作FH∥CD,交DE于H,过点C作CM⊥AB,交AB的延长线于M,连接FB,因为四边形ABCD是菱形,所以AB=CD=BC=2,AB∥CD,所以FH∥AB,所以∠FHG=∠AEG,因为F是CE的中点,FH∥CD,所以H是DE的中点,所以FH是△CDE的中位线,所以FH=12CD=1,因为E是AB的中点,所以AE=BE=1,所以AE=FH,因为∠AGE=∠FGH,所以△AEG≌△FHG(AAS),所以AG=FG,因为AD∥BC,4(2022•陕西中考)如图,在菱形ABCD 中,AB =4,BD =7.若M 、N 分别是边AD 、BC 上的动点,且AM =BN ,作ME ⊥BD ,NF ⊥BD ,垂足分别为E 、F ,则ME +NF 的值为 √152.【解析】连接AC 交BD 于O ,因为四边形ABCD 为菱形,所以BD ⊥AC ,OB =OD =72,OA =OC ,由勾股定理得:OA =√AB 2−OB 2=√42−(72)2=√152,因为ME ⊥BD ,AO ⊥BD ,所以ME ∥AO ,所以△DEM ∽△DOA ,所以MEOA =DMAD ,即ME√152=4−AM 4,解得:ME =4√15−√15AM 8, 同理可得:NF =√15AM 8,所以ME +NF =√152,答案:√152.(2022•台州中考)如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为 3√3 ;当点M 的位置变化时,DF 长的最大值为 6﹣3√3 .【解析】如图1中,因为四边形ABCD 是菱形,所以AD =AB =BC =CD ,∠A =∠C =60°,所以△ADB ,△BDC 都是等边三角形,当点M 与B 重合时,EF 是等边△ADB 的高,EF =AD •sin60°=6×√32=3√3.如图2中,连接AM 交EF 于点O ,过点O 作OK ⊥AD 于点K ,交BC 于点T ,过点A 作AG ⊥CB 交CB 的延长线于点G ,取AD 的中点R ,连接OR .因为AD ∥CG ,OK ⊥AD ,所以OK ⊥CG ,所以∠G =∠AKT =∠GTK =90°,所以四边形AGTK 是矩形,所以AG =TK =AB •sin60°=3√3,因为OA =OM ,∥AOK =∠MOT ,∠AKO =∠MTO =90°,(2022•黔东南州中考)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是20.【解析】因为DE∥AC,CE∥BD,所以四边形OCED是平行四边形,所以OC=DE,OD=CE,因为矩形ABCD的对角线AC,BD相交于点O,所以OC=12AC=5,OD=12BD,BD=AC,所以OC=OD=5,所以OC=OD=CE=DE,所以平行四边形OCED是菱形,所以C菱形OCED=4OC=4×5=20.答案:20.(2022•哈尔滨中考)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD 的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为2√5.【解析】因为四边形ABCD是菱形,所以AC⊥BD,AO=CO=4,BO=DO,所以AE=√AO2+EO2=√9+16=5,所以BE=AE=5,所以BO=8,所以BC=√BO2+CO2=√64+16=4√5,因为点F为CD的中点,BO=DO,所以OF=12BC=2√5.答案:2√5.【解析】添加的条件是AB =CD ,理由如下:因为AB ∥CD ,AB =CD ,所以四边形ABCD 是平行四边形,又因为AC ⊥BD ,所以平行四边形ABCD 是菱形.答案:AB =CD (答案不唯一).(2022•龙东中考)如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,∠BAD =60°,AD =3,AH 是∠BAC的平分线,CE ⊥AH 于点E ,点P 是直线AB 上的一个动点,则OP +PE 的最小值是 32√6 .【解析】连接OE ,过点O 作OF ⊥AB ,垂足为F ,并延长到点O ′,使O ′F =OF ,连接O ′E 交直线AB 于点P ,连接OP ,所以AP 是OO ′的垂直平分线,所以OP =O ′P ,所以OP +PE =O ′P +PE =O ′E ,此时,OP +PE 的值最小,因为四边形ABCD 是菱形,所以AD =AB =3,∠BAC =12∠BAD ,OA =OC =12AC ,OD =OB =12BD ,∠AOD =90°,因为∠BAD =60°,所以△ADB 是等边三角形,所以BD =AD =3,所以OD =12BD =32,所以AO =√AD 2−DO 2=√32−(32)2=32√3,所以AC =2OA =3√3,因为CE ⊥AH ,所以∠AEC =90°,所以OE =OA =12AC =32√3,所以∠OAE =∠OEA ,因为AE 平分∠CAB ,所以∠OAE =∠EAB ,所以∠OEA =∠EAB ,所以OE ∥AB ,所以∠EOF =∠AFO =90°, 在Rt △AOF 中,∠OAB =12DAB =30°,所以OF =12OA =34√3,所以OO ′=2OF =32√3,在Rt △EOO ′中,O ′E =√EO 2+OO ′2=√(32√3)2+(32√3)2=32√6, 所以OE +PE =32√6,所以OP +PE 的最小值为32√6. 答案:32√6.(2022·安徽中考)已知四边形ABCD 中,BC =CD ,连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .【解析】(1)证明:设CE 与BD 交于点O ,因为CB =CD ,CE ⊥BD ,所以DO =BO ,因为DE ∥BC ,所以∠DEO =∠BCO ,因为∠DOE =∠BOC ,所以△DOE ≌△BOC (AAS ),所以DE =BC ,所以四边形BCDE 是平行四边形,因为CD =CB ,所以平行四边形BCDE 是菱形;(2)(i )解:因为DE 垂直平分AC ,所以AE =EC 且DE ⊥AC ,所以∠AED =∠CED ,又因为CD =CB 且CE ⊥BD ,所以CE 垂直平分DB ,所以DE =BE ,所以∠DEC =∠BEC ,所以∠AED =∠CED =∠BEC ,又因为∠AED +∠CED +∠BEC =180°,所以∠CED =13×180°=60°;(ii )证明:由(i )得AE =EC ,又因为∠AEC =∠AED +∠DEC =120°,所以∠ACE =30°,同理可得,在等腰△DEB 中,∠EBD =30°,所以∠ACE =∠ABF =30°, 在△ACE 与△ABF 中,{∠ACE =∠ABF∠CAE =∠BAF AE =AF,所以△ABF ≌△ACE (AAS ),所以AC =AB ,又因为AE =AF ,所以AB ﹣AE =AC ﹣AF ,即BE =CF .(2022•连云港中考)如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE =AD ,且BE ⊥DC .(1)求证:四边形DBCE 为菱形;(2)若△DBC 是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM +PN 的最小值.【解析】(1)证明:因为四边形ABCD 是平行四边形,所以AD ∥BC ,AD =BC ,因为DE =AD ,所以DE =BC ,因为E 在AD 的延长线上,所以DE ∥BC ,所以四边形DBCE是平行四边形,因为BE⊥DC,所以四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,所以PM+PN=PM+PN',所以当P、M、N'共线时,PM+PN'=MN'=PM+PN,因为DE∥BC,所以MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,=√3,所以PM+PN的最小值为√3.所以DH=DB•sin∠DBC=2×√32(2022•滨州中考)如图,菱形ABCD的边长为10,∠ABC=60°,对角线AC、BD相交于点O,点E在对角线BD 上,连接AE,作∠AEF=120°且边EF与直线DC相交于点F.(1)求菱形ABCD的面积;(2)求证AE=EF.【解析】(1)作AG⊥BC交BC于点G,如图所示,因为四边形ABCD是菱形,边长为10,∠ABC=60°,=5√3,所以BC=10,AG=AB•sin60°=10×√32所以菱形ABCD的面积是:BC•AG=10×5√3=50√3,即菱形ABCD的面积是50√3;(2)证明:连接EC,因为四边形ABCD是菱形,∠ABC=60°,所以EO垂直平分AC,∠BCD=120°,所以EA=EC,∠DCA=60°,所以∠EAC=∠ECA,∠ACF=120°,因为∠AEF=120°,所以∠EAC+∠EFC=360°﹣∠AEF﹣∠ACF=360°﹣120°﹣120°=120°,因为∠ECA+∠ECF=120°,所以∠EFC=∠ECF,所以EC=EF,所以AE=EF.(2022•舟山中考)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:因为AC⊥BD,OB=OD,所以AC垂直平分BD.所以AB=AD,CB=CD,所以四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【解析】赞成小洁的说法,补充条件:OA=OC,证明如下:因为OA=OC,OB=OD,所以四边形ABCD是平行四边形,又因为AC⊥BD,所以平行四边形ABCD是菱形.(2022•凉山州中考)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40.求AC的长.【解析】(1)证明:因为AF∥BC,所以∠AFC=∠FCD,∠F AE=∠CDE,因为点E是AD的中点,所以AE=DE,所以△F AE≌△CDE(AAS),所以AF=CD,因为点D是BC的中点,所以BD=CD,所以AF=BD,所以四边形AFBD是平行四边形,(2022•南充中考)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.【证明】(1)因为四边形ABCD是菱形,所以DA=DC,∠DAE=∠DCF,AB=CB,因为BE=BF,所以AE=CF,在△ADE和△CDF中,{DA=DC∠DAE=∠DCF AE=CF,所以△ADE≌△CDF(SAS);(2)由(1)知△ADE≌△CDF,所以∠ADM=∠CDN,DE=DF,因为四边形ABCD是菱形,所以∠DAM=∠DCN,所以∠DMA=∠DNC,所以∠DMN=∠DNM,所以DM=DN,所以DE﹣DM=DF﹣DN,所以ME=NF.(2022•广元中考)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.【解析】(1)证明:因为E为AB中点,所以AB=2AE=2BE,因为AB=2CD,所以CD=AE,又因为AE∥CD,所以四边形AECD是平行四边形,因为AC平分∠DAB,所以∠DAC=∠EAC,因为AB∥CD,所以∠DCA=∠CAB,所以∠DCA=∠DAC,所以AD=CD,所以平行四边形AECD是菱形;(2)因为四边形AECD是菱形,∠D=120°,所以AD=CD=CE=AE=2,∠D=120°=∠AEC,所以AE=CE=BE,∠CEB=60°,所以∠CAE=30°=∠ACE,△CEB是等边三角形,所以BE=BC=EC=2,∠B=60°,所以∠ACB=90°,所以AC=√3BC=2√3,所以S△ABC=12×AC×BC=12×2×2√3=2√3.【解析】(1)①证明:因为CE⊥AB,CF⊥AD,所以∠BEC=∠DFC=90°,因为四边形ABCD是菱形,所以∠B=∠D,BC=CD,所以△BEC≌△DFC(AAS),所以CE=CF;②连接AC,如图1,因为E是边AB的中点,CE⊥AB,所以BC=AC,因为四边形ABCD是菱形,所以BC=AC,所以△ABC是等边三角形,∠EAC=60°,在Rt△ACE中,AE=2,所以CE=AE•tan60°=2×√3=2√3;(2)方法一:如图2,延长FE交CB的延长线于M,因为四边形ABCD是菱形,所以AD∥BC,AB=BC,所以∠AFE=∠M,∠A=∠EBM,因为E是边AB的中点,所以AE=BE,所以△AEF≌△BEM(AAS),所以ME=EF,MB=AF,因为AE=3,EF=2AF=4,所以ME=4,BM2,BE=3,所以BC=AB=2AE=6,所以MC=8,所以MBME =24=12,MEMC=48=12,所以MBME=MEMC,因为∠M为公共角,所以△MEB∽△MCE,所以BEEC =MBME=24,因为BE=3,所以CE=6;方法二:如图3,延长FE 交CB 的延长线于M ,过点E 作EN ⊥BC 于点N ,因为四边形ABCD 是菱形,所以AD ∥BC ,AB =BC ,所以∠AFE =∠M ,∠A =∠EBM ,因为E 是边AB 的中点,所以AE =BE ,所以△AEF ≌△BEM (AAS ),所以ME =EF ,MB =AF ,因为AE =3,EF =2AF =4,所以ME =4,BM 2,BE =3,所以BC =AB =2AE =6,所以MC =8,在Rt △MEN 和Rt △BEN 中,ME 2﹣MN 2=EN 2,BE 2﹣BN 2=EN 2,所以ME 2﹣MN 2=BE 2﹣BN 2,所以42﹣(2+BN )2=32﹣BN 2,解得:BN =34,所以CN =6−34=214, 所以EN 2=BE 2﹣BN 2=32﹣(34)2=13516,在Rt △ENC 中,CE 2=EN 2+CN 2=13516+44116=57616=36,所以CE =6.(2022•娄底中考)如图,以BC 为边分别作菱形BCDE 和菱形BCFG (点C ,D ,F 共线),动点A 在以BC 为直径且处于菱形BCFG 内的圆弧上,连接EF 交BC 于点O .设∠G =θ.(1)求证:无论θ为何值,EF 与BC 相互平分;并请直接写出使EF ⊥BC 成立的θ值.(2)当θ=90°时,试给出tan ∠ABC 的值,使得EF 垂直平分AC ,请说明理由.【解析】(1)因为四边形BCFG ,四边形BCDE 都是菱形,所以CF ∥BG ,CD ∥BE ,CB =CF =CD =BG =BE ,因为D ,C ,F 共线,所以G ,B ,E 共线,所以DF ∥EG ,DF =GE ,所以四边形DEGF 是平行四边形,所以EF 与BC 互相平分.当EF ⊥FG 时,因为GF =BG =BE ,所以EG =2GF ,所以∠GEF =30°,所以θ=90°﹣30°=60°;(2)当tan ∠ABC =2时,EF 垂直平分线段AC .理由:如图(2)中,设AC 交EF 于点J .因为四边形BCFG 是菱形,所以∠G =∠FCO =90°,因为EF 与BC 互相平分,所以OC =OB ,所以CF =BC ,所以FC =2OC ,所以tan ∠FOC =tan ∠ABC ,所以∠ABC =∠FOC ,所以OJ ∥AB ,因为OC =OB ,所以CJ =AJ ,因为BC 是直径,所以∠BAC =∠OJC =90°,所以EF 垂直平分线段AC.(2022•岳阳中考)如图,点E ,F 分别在▱ABCD 的边AB ,BC 上,AE =CF ,连接DE ,DF .请从以下三个条件:①∠1=∠2;②DE =DF ;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD 为菱形. (1)你添加的条件是 ① (填序号);(2)添加了条件后,请证明▱ABCD 为菱形.【解析】(1)添加的条件是∠1=∠2,答案:①;(2)证明:因为四边形ABCD 是平行四边形,所以∠A =∠C ,在△ADE 和△CDF 中,{∠1=∠2∠A =∠C AE =CF,所以△ADE ≌△CDF (AAS ),所以AD =CD ,所以▱ABCD 为菱形.【解析】(1)M 与B 重合时,如图1,因为PQ ⊥AB ,所以∠PQA =90°,所以PA =12AB =2,所以t =2;(2)①当0≤t ≤2时,因为AM =2t ,所以BM =4﹣2t ,因为△APQ ≌△BMF ,所以AP =BM ,所以t =4﹣2t ,所以t =43;②当2<t ≤4时,因为AM =2t ,所以BM =2t ﹣4,因为△APQ ≌△BMF ,所以AP =BM ,所以t =2t ﹣4,所以t =4;综上所述,t 的值为4或43; (3)①0≤t ≤2时,如图2,在Rt △APQ 中,PQ =√32t ,所以MQ =32t ,所以S =12PQ ⋅MQ =12×√32t ×32t =3√38t 2; ②当2<t ≤4时,如图3,因为BF =t ﹣2,MF =√3(t ﹣2),所以S △BFM =12BF •MF =√32(t −2)2,所以S =S △PQM ﹣S △BFM =−√38t 2+2√3t −2√3;所以S ={3√38t 2(0≤t ≤2)−√38t 2+2√3t −2√3(2<t ≤4); (4)连接AE ,如图4,因为△PQE 为等边三角形,所以PE =√32t ,在Rt △APE 中,tan ∠PAE =PE PA =√32t t =√32, 所以∠PAE 为定值,所以点E 的运动轨迹为直线,因为AP =t ,所以AE =√AP 2+PE 2=√t 2+(√32t)2=√72t ,当t =2时,AE =√7,(2022•荆州中考)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【解析】(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.(2022•长沙中考)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=32,AO=2,求BD的长及四边形ABCD的周长.【解析】(1)因为四边形ABCD是平行四边形,AB=AD,所以▱ABCD是菱形,所以AC⊥BD;(2)因为点E,F分别为AD,AO的中点,所以EF是△AOD的中位线,所以OD=2EF=3,由(1)可知,四边形ABCD是菱形,所以AB=BC=CD=AD,AC⊥BD,BD=2OD=6,在Rt△AOD中,由勾股定理得:AD=√AO2+OD2=√22+32=√13,所以C菱形ABCD=4AD=4√13.(2)若AE=BE=2,求BF的长.【解析】(1)因为四边形ABCD是正方形,四边形HEFG是菱形,所以AD=CD,ED=GD,∠ADB=∠CDB,∠EHB=∠GHB,所以∠ADB﹣∠EHB=∠CDB﹣∠GHB,即∠ADE=∠CDG,在△ADE和△CDG中,{AD=CD∠ADE=∠CDG ED=GD,所以△ADE≌△CDG(SAS);(2)过E作EQ⊥DF于Q,则∠EQB=90°,因为四边形ABCD是正方形,所以∠A=90°,AD=AB=AE+EF=2+2=4,∠EBQ=∠CBD=45°,所以∠QEB=45°=∠EBQ,所以EQ=BQ,因为BE=2,所以2EQ2=22,所以EQ=BQ=√2(负数舍去),在Rt△DAE中,由勾股定理得:DE=√AD2+AE2=√42+22=2√5,因为四边形EFGH是菱形,所以EF=DE=2√5,所以QF=√EF2−EQ2=√(2√5)2−(√2)2=3√2,所以BF=QF﹣QB=3√2−√2=2√2.【解析】(1)作PE⊥AC于点E,在Rt△APE中,cos30°=AE AP,所以AE=AP•cos30°=√3x,因为∠APQ=120°,所以∠AQP=180°﹣120°﹣30°=30°,所以AP=PQ,所以点E为AQ中点,所以AQ=2√3x(cm),答案:2√3x.(2)如图,因为∠APQ=120°,所以∠MNB=∠PQB=60°,因为∠B=60°,所以△MNB为等边三角形,所以AP=PQ=PN=MN=NB,即AP+PN+NB=3AP=AB,所以3×2x=6,解得x=1.(3)当0≤x≤1时,作QF⊥AB于点F,因为∠A =30°,AQ =2√3x ,所以QF =12AQ =√3x ,因为PN =PQ =AP =2x ,所以y =PN •QF =2x •√3x =2√3x 2.当1<t ≤32时,QM ,NM 交BC 于点H ,K ,因为AB =6cm ,∠A =30°,所以AC =√32AB =3√3cm ,所以CQ =AC ﹣AQ =3√3−2√3x ,所以QH =2√3CQ =2√3(3√3−2√3x )=6﹣4x , 所以HM =QM ﹣QH =2x ﹣(6﹣4x )=6x ﹣6, 因为△HKM 为等边三角形,所以S △HKM =√34HM 2=9√3x 2﹣18√3x +9√3, 所以y =2√3x 2﹣(9√3x 2﹣18√3x +9√3)=﹣7√3x 2+18√3x ﹣9√3. 当32<x ≤3时,重叠图形△PQM 为等边三角形,PQ =PB =AB ﹣AP =6﹣2x ,所以y =√34PB 2=√34(6﹣2x )2=√3x 2﹣6√3x +9√3.综上所述,y ={ 2√3x 2(0≤x ≤1)−7√3x 2+18√3x −9√3(1<x ≤32)√3x 2−6√3x +9√3(32<x ≤3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形1、(绵阳市2013年)如图,四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm ,DH⊥AB 于点H ,且DH 与AC 交于G ,则GH =( )A .B .C .D .2、(2013•曲靖)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( )、(2013凉山州)如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .174、(2012•泸州)如图,菱形ABCD 的两条对角线相交于O ,若AC=6,BD=4,则菱形ABCD 的周长是( ). 4D . 2 5、(2013菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为( )A .15°或30° B .30°或45° C .45°或60° D .30°或60°6、(2013•玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形. 乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )H G O D CBAA . 甲正确,乙错误B . 乙正确,甲错误C . 甲、乙均正确D . 甲、乙均错误7、(2013年潍坊市)如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)8、(2013•攀枝花)如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA=,BE=4,则tan ∠DBE 的值是 .9、(2013年临沂)如图,菱形ABCD 中,AB =4,o60B ∠=,,AE BC AF CD ⊥⊥,垂足分别为E,F,连接EF,则的△AEF 的面积是 .10、(2013•泰州)对角线互相 的平行四边形是菱形.11、(2013年南京)如图,将菱形纸片ABCD 折迭,使点A 恰好落在菱形的对称中心O 处,折痕为EF 。
若菱形ABCD 的边长为2 cm ,∠A=120︒,则EF=cm 。
12、(2013•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是 .13、(2013•牡丹江)如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是 .14、(2013•宁夏)如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C ,则k 的值为 .15、(2013•攀枝花)如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F 为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD,其中正确结论的为(请将所有正确的序号都填上).16、(2013•内江)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=.17、(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.18、(2013•衢州)如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是20;四边形A2013B2013C2013D2013的周长是.19、(2013四川宜宾)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD 的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG 的周长为.20、(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.21、(2013•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.22、(2013年广州市)四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.23、(2013•常州)如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD 平分∠ECA.求证:四边形ABCD是菱形.24、(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.25、(2013•宜昌)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的性状,并说明理由;(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.26、(2013•雅安)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.27、(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.28、(2013安顺)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.29、(2013•娄底)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE 按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BCFE D C B A交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)求证:AM=AN ;(2)当旋转角α=30°时,四边形ABPF 是什么样的特殊四边形?并说明理由.30、(2013•株洲)已知四边形ABCD 是边长为2的菱形,∠BAD=60°,对角线AC 与BD 交于点O ,过点O 的直线EF 交AD 于点E ,交BC 于点F .(1)求证:△AOE ≌△COF ;(2)若∠EOD=30°,求CE 的长.31、(2013•苏州)如图,点P 是菱形ABCD 对角线AC 上的一点,连接DP 并延长DP 交边AB 于点E ,连接BP 并延长交边AD 于点F ,交CD 的延长线于点G .(1)求证:△APB ≌△APD ;(2)已知DF :FA=1:2,设线段DP 的长为x ,线段PF 的长为y .①求y 与x 的函数关系式;②当x=6时,求线段FG 的长.33、(2013泰安)如图,在四边形ABCD 中,AB=AD ,CB=CD ,E 是CD 上一点,BE 交AC 于F ,连接DF .(1)证明:∠BAC=∠DAC ,∠AFD=∠CFE .(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,∠EFD=∠BCD ,并说明理由.34、(2013•遂宁)如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是E 、F ,并且DE=DF .求证:(1)△ADE ≌△CDF ;(2)四边形ABCD 是菱形.37、(2013年临沂)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F,连接CF.(1)求证:AF=DC ;(2)若AB ⊥AC,试判断四边形ADCF 的形状,并证明你的结论.32、(2013聊城)如图,AB 是⊙O 的直径,AF 是⊙O 切线,CD 是垂直于AB 的弦,垂足为E ,过点C 作DA 的平行线与AF 相交于点F ,CD=,BE=2.求证:(1)四边形FADC 是菱形;(2)FC 是⊙O 的切线.35、(2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).。