2021年高考数学第二章第12讲:导数与函数的极值、最值

合集下载

【2021新高考数学】利用导数求函数的单调性、极值 、最值

【2021新高考数学】利用导数求函数的单调性、极值 、最值
当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接
【举一反三】
1.函数 y=4x2+1的单调增区间为________. x
1,+∞ 【答案】 2
【解析】

y=4x2+1,得 x
y′=8x-x12(x≠0),令
y′>0,即
8x-x12>0,解得
x>1, 2
∴函数
y=4x2+1的单调增区间为
2
.
2
2
当 x (, 2 ) 时,函数为增函数;当 x ( 2 , ) 时,函数也为增函数.
2
2
令 f (x) 6x2 3 0 ,解得 2 x 2 .当 x ( 2 , 2 ) 时,函数为减函数.
2
2
22
故函数 f (x) 2x3 3x 的单调递增区间为 (, 2 ) 和 ( 2 , ) ,单调递减区间为 ( 2 , 2 ) .
当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接
【举一反三】 1.函数 y=4x2+1的单调增区间为________.
x 2.函数 f(x)=x·ex-ex+1 的单调增区间是________. 3.已知函数 f(x)=xln x,则 f(x)的单调减区间是________. 4.已知定义在区间(-π,π)上的函数 f(x)=xsin x+cos x,则 f(x)的单调增区间是_______.
2x 2 (1)求 a 的值; (2)求函数 f(x)的极值.
第十四讲 利用导数求函数的单调性、极值 、最值
【套路秘籍】
一.函数的单调性 在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这个区间内单调递增;如果 f′(x)<0,那么函数 y=f(x) 在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数 y=f(x)的极值的方法 解方程 f′(x)=0,当 f′(x0)=0 时:

《导数与函数的极值、最值》 知识清单

《导数与函数的极值、最值》 知识清单

《导数与函数的极值、最值》知识清单一、导数的概念导数是微积分中的重要概念,它描述了函数在某一点处的变化率。

对于函数 y = f(x),其在点 x = x₀处的导数定义为:f'(x₀) = limₕ→₀ f(x₀+ h) f(x₀) / h导数的几何意义是函数曲线在该点处的切线斜率。

如果导数存在,则函数在该点处可导。

二、函数的极值1、极值的定义函数在某区间内的极大值和极小值统称为极值。

极大值是指在该区间内比其附近的函数值都大的函数值;极小值则是指在该区间内比其附近的函数值都小的函数值。

2、极值点的判别方法(1)导数为零的点:若函数 f(x) 在点 x₀处可导,且 f'(x₀) = 0,则 x₀可能是极值点。

(2)导数不存在的点:函数在某些点处导数不存在,但也可能是极值点。

3、第一导数判别法设函数 f(x) 在点 x₀的某个邻域内可导,且 f'(x₀) = 0。

(1)如果当 x < x₀时,f'(x) > 0;当 x > x₀时,f'(x) < 0,则 f(x) 在 x₀处取得极大值。

(2)如果当 x < x₀时,f'(x) < 0;当 x > x₀时,f'(x) > 0,则 f(x) 在 x₀处取得极小值。

4、第二导数判别法设函数 f(x) 在点 x₀处具有二阶导数,且 f'(x₀) = 0,f''(x₀) ≠ 0。

(1)若 f''(x₀) < 0,则函数 f(x) 在 x₀处取得极大值。

(2)若 f''(x₀) > 0,则函数 f(x) 在 x₀处取得极小值。

三、函数的最值1、最值的定义函数在某个区间内的最大值和最小值分别称为函数在该区间内的最值。

2、求最值的步骤(1)求函数在给定区间内的导数。

(2)找出导数为零的点和导数不存在的点。

(3)计算这些点以及区间端点处的函数值。

(4)比较这些函数值,最大的即为最大值,最小的即为最小值。

山东2021新高考数学一轮复习第二章函数导数及其应用2112导数与函数的极值最值课件

山东2021新高考数学一轮复习第二章函数导数及其应用2112导数与函数的极值最值课件

点,则 f(x)的极小值为( A )
A.-1
B.-2e-3
C.5e-3
D.1
(2)已知函数 f(x)=x-1+eax(a∈R,e 为自然对数的底数),求
函数 f(x)的极值.
【答案】 (2)见解析
【解析】 (1)f′(x)=(2x+a)ex-1+(x2+ax-1)ex-1=[x2+(a +2)x+a-1]ex-1.
(ⅱ)当 a≥3 时,由(1)知,f(x)在[0,1]单调递减,所以 f(x)在 区间[0,1]的最大值为 f(0)=b,最小值为 f(1)=2-a+b.此时 a,b 满足题设条件当且仅当 2-a+b=-1,b=1,即 a=4,b=1.
(ⅲ)当 0<a<3 时,由(1)知,f(x)在[0,1]的最小值为 f(a3)=-2a73 +b,最大值为 b 或 2-a+b.
【解析】 由题图可知,当 x<-2 时,f′(x)>0;当-2<x<1 时,f′(x)<0;当 1<x<2 时,f′(x)<0;当 x>2 时,f′(x)>0.由此 可以得到函数 f(x)在 x=-2 处取得极大值,在 x=2 处取得极小 值.
命题方向 2 已知函数求极值
【例 2】 (1)若 x=-2 是函数 f(x)=(x2+ax-1)ex-1 的极值
大值为 1?若存在,求出 a,b 的所有值;若不存在,说明理由.
【答案】 (2)见解析
【解析】 (1)f′(x)=1-ex x, 当 x∈[0,1)时,f′(x)>0,f(x)是增函数; 当 x∈(1,4]时,f′(x)<0,f(x)是减函数. 又 f(0)=0,f(4)=e44>0,所以 f(0)=0 最小. (2)①f′(x)=6x2-2ax=2x(3x-a). 令 f′(x)=0,得 x=0 或 x=a3. 若 a>0,则当 x∈(-∞,0)∪(a3,+∞)时,

2021高考北师版(文科)数学一轮复习讲义:第2章 第12节 导数与函数的极值、最值

2021高考北师版(文科)数学一轮复习讲义:第2章 第12节 导数与函数的极值、最值

第十二节导数与函数的极值、最值[考纲] 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).1.导数与函数的极值(1)函数的极大值与导数的关系x (a,x0)极大值点x0(x0,b)f ′(x)+0-y=f (x)增加极大值减少图示(2)函数的极小值与导数的关系x (a,x0)极小值点x0(x0,b)f ′(x)-0+y=f (x)减少极小值增加图示(1)求函数y=f (x)在(a,b)内的极值.(2)将函数y=f (x)的各极值与f (a),f (b)比拟,最大的为最大值,最小的为最小值.1.(思考辨析)判断以下结论的正误.(正确的打“√〞,错误的打“×〞)(1)函数的极大值一定比极小值大.()(2)对可导函数f (x),f ′(x0)=0是x0为极值点的充要条件.()(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()(4)假设实际问题中函数定义域是开区间,那么不存在最优解.()[答案](1)×(2)×(3)√(4)×2.(教材改编)函数f (x)的定义域为开区间(a,b),导函数f ′(x)在(a,b)内的图像如图2-12-1所示,那么函数f (x)在开区间(a,b)内极小值点的个数为()【导学号:66482113】图2-12-1A.1B.2C.3D.4A[导函数f ′(x)的图像与x轴的交点中,左侧图像在x轴下方,右侧图像在x轴上方的只有一个,所以f (x)在区间(a,b)内有一个极小值点.] 3.某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,那么使该生产厂家获取最大年利润的年产量为()A.13万件B.11万件C.9万件D.7万件C[y′=-x2+81,令y′=0得x=9或x=-9(舍去).当x∈(0,9)时,y′>0,当x∈(9,+∞)时,y′<0,那么当x=9时,y有最大值.即使该生产厂家获取最大年利润的年产量为9万件.]4.(2021·四川高考)a为函数f (x)=x3-12x的极小值点,那么a=() A.-4 B.-2C.4 D.2D [由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,∴当x <-2或x >2时,f ′(x )>0;当-2<x <2时,f ′(x )<0,∴f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f (x )在x =2处取得极小值,∴a =2.]5.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________. 8 [y ′=6x 2-4x ,令y ′=0, 得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827,f (2)=8,∴最大值为8.]利用导数研究函数的极值问题☞角度1 根据函数图像判断极值设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图像如图2-12-2所示,那么以下结论中一定成立的是( )图2-12-2A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)D [由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(xf (x )在x =-2处取得极大值,在x=2处取得极小值.]☞角度2 求函数的极值求函数f (x )=x -a ln x (a ∈R )的极值.[解] 由f ′(x )=1-a x =x -ax ,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;5分(2)当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,9分 从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 12分☞角度3 极值求参数(1)函数f (x )=x (ln x -ax )有两个极值点,那么实数a 的取值范围是( )【导学号:66482114】A .(-∞,0)B .⎝ ⎛⎭⎪⎫0,12C .(0,1)D .(0,+∞)(2)(2021·广东肇庆三模)函数f (x )=x 3+ax 2+3x -9,假设x =-3是函数f (x )的一个极值点,那么实数a =________.(1)B (2)5 [(1)∵f (x )=x (ln x -ax ), ∴f ′(x )=ln x -2ax +1,故f ′(x )在(0,+∞)上有两个不同的零点, 令f ′(x )=0,那么2a =ln x +1x ,设g (x )=ln x +1x ,那么g ′(x )=-ln xx 2,∴g (x )在(0,1)上递增,在(1,+∞)上递减,又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0, 而g (x )max =g (1)=1,∴只需0<2a<1⇒0<a<1 2.(2)f ′(x)=3x2+2ax+3,由题意知x=-3为方程3x2+2ax+3=0的根,∴3×(-3)2+2a×(-3)+3=0,解得a=5.][规律方法]利用导数研究函数极值的一般流程利用导数解决函数的最值问题(2021·郑州模拟)函数f (x)=(x-k)e x.(1)求f (x)的单调区间;(2)求f (x)在区间[0,1]上的最小值.[解](1)由f (x)=(x-k)e x,得f ′(x)=(x-k+1)e x,令f ′(x)=0,得x=k-1. 2分f (x)与f ′(x)的变化情况如下:x (-∞,k-1)k-1(k-1,+∞)f ′(x)-0+f (x)递减-e k-1递增分(2)当k-1≤0,即k≤1时,函数f (x)在[0,1]上递增,所以f (x)在区间[0,1]上的最小值为f (0)=-k,7分当0<k-1<1,即1<k<2时,由(1)知f (x)在[0,k-1)上递减,在(k-1,1]上递增,所以f (x)在区间[0,1]上的最小值为f (k-1)=-e k-1.当k-1≥1,即k≥2时,函数f (x)在[0,1]上递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 10分 综上可知,当k ≤1时,f (x )min =-k ; 当1<k <2时,f (x )min =-e k -1; 当k ≥2时,f (x )min =(1-k )e. 12分[规律方法] 求函数f (x )在[a ,b ]上的最大值、最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比拟,其中最大的为最大值,最小的为最小值.[变式训练1] (2021·石家庄质检(二))假设a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,假设t =ab ,那么t 的最大值为( )【导学号:66482115】A .2B .3C .6D .9D [f ′(x )=12x 2-2ax -2b ,那么f ′(1)=12-2a -2b =0,a +b =6,又a >0,b >0,那么t =ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号,应选D.]利用导数研究生活中的优化问题某商场销售某种商品的经历说明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)假设该商品的本钱为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[解] (1)因为x =5时,y =11,所以a2+10=11,a =2. 5分 (2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6. 7分从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6), 于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 12分[规律方法] 利用导数解决生活中优化问题的一般步骤(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比拟函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.[变式训练2] 某品牌电动汽车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,那么速度应定为________.【导学号:66482116】40 [由y ′=x 2-39x -40=0, 得x =-1或x =40, 由于0<x <40时,y ′<0; x >40时,y ′>0.所以当x =40时,y 有最小值.][思想与方法]1.可导函数y=f (x)在点x0处取得极值的充要条件是f ′(x0)=0,且在x0左侧与右侧f ′(x)的符号不同.2.求闭区间上可导函数的最值时,对函数的极值是极大值还是极小值可不作判断,直接与端点的函数值比拟即可.3.如果目标函数在定义区间内只有一个极值点,那么根据实际意义该极值点就是最值点.4.假设函数f (x)在定义域A上存在最大值与最小值,那么:(1)对任意x∈A,f (x)>0⇔f (x)min>0;(2)存在x∈A,f (x)>0⇔f (x)max>0.[易错与防范]1.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能.2.导数为零的点不一定是极值点.对含参数的求极值问题,应注意分类讨论.3.假设函数y=f (x)在区间(a,b)内有极值,那么y=f (x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.4.利用导数解决实际生活中的优化问题,要注意问题的实际意义.。

2021年高考数学一轮复习 第二章 第12讲 导数与函数极值、最值资料(艺术班)

2021年高考数学一轮复习 第二章 第12讲 导数与函数极值、最值资料(艺术班)

2021年高考数学一轮复习第二章第12讲导数与函数极值、最值资料(艺术班)一、必记3个知识点1.函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x =b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.二、必明2个易误区1.求函数极值时,误把导数为0的点作为极值点;极值点的导数也不一定为0.2.易混极值与最值:注意函数最值是个“整体”概念,而极值是个“局部”概念.三、必会2个方法解决含参数问题及不等式问题中的两个转化(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.第二课时 导数与函数极值、最值[典例] (xx·福建高考节选)已知函数f (x )=x -1+e x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.[解] (1)由f (x )=x -1+a e x ,得f ′(x )=1-ae x .又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-ae=0,解得a =e. (2)f ′(x )=1-ae x ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x=a ,即x =ln a .x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.解:由f ′(x )=1-x =x,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;(2)当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. [类题通法]求函数f (x )极值的步骤(1)确定函数的定义域; (2)求导数f ′(x );(3)解方程f ′(x )=0,求出函数定义域内的所有根;(4)列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值. [针对训练]设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图像关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.解:(1)因为f (x )=2x 3+ax 2+bx +1,故f ′(x )=6x 2+2ax +b ,从而f ′(x )=6⎝ ⎛⎭⎪⎫x +a 62+b -a 26,即y =f ′(x )关于直线x =-a 6对称.从而由题设条件知-a 6=-12,即a =3.又由于f ′(1)=0,即6+2a +b =0,得b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1,所以f ′(x )=6x 2+6x -12=6(x -1)(x +2),令f ′(x )=0, 即6(x -1)(x +2)=0,解得x =-2或x =1,当x ∈(-∞,-2)时,f ′(x )>0,即f (x )在(-∞,-2)上单调递增;当x ∈(-2,1)时,f ′(x )<0,即f (x )在(-2,1)上单调递减; 当x ∈(1,+∞)时,f ′(x )>0,即f (x )在(1,+∞)上单调递增.从而函数f (x )在x =-2处取得极大值f (-2)=21,在x =1处取得极小值f (1)=-6.[典例] (1)求f (x )的单调区间; (2)求f (x )在区间[0,1]上的最小值.[解] (1)f ′(x )=(x -k +1)e x.令f ′(x )=0,得x =k -1.f (x )与f ′(x )的情况如下:所以,f (x )(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-ek -1;当k -1≥1时,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.综上,在区间[0,1]上k ≤1时,f (x )最小值为f (0)=-k .1<k <2时,f (x )最小值为f (k -1)=-ek -1.k ≥2时,f (x )最小值为f (1)=(1-k )e.[类题通法]求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. [针对训练]设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切,(1)求实数a ,b 的值; (2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值.解:(1)f ′(x )=a x -2bx ,∵函数f (x )在x =1处与直线y =-12相切,∴⎩⎪⎨⎪⎧f ′1=a -2b =0,f 1=-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.(2)f (x )=ln x -12x 2,f ′(x )=1x -x =1-x 2x ,∵当1e ≤x ≤e 时,令f ′(x )>0得1e≤x <1;令f ′(x )<0,得1<x ≤e,∴f (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在[1,e]上单调递减,∴f (x )max =f (1)=-12.考点三函数极值和最值的综合问题[典例] 3(1)求a ,b 的值; (2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值.[解] (1)因为f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b .由于f (x )在点x =2处取得极值c -16, 故有⎩⎪⎨⎪⎧f ′2=0,f2=c -16,即⎩⎪⎨⎪⎧12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧12a +b =0,4a +b =-8,解得⎩⎪⎨⎪⎧a =1,b =-12.(2)由(1)知f (x )=x 3-12x +c ;f ′(x )=3x 2-12=3(x -2)(x +2).令f ′(x )=0,得x 1=-2,x 2=2. 当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数;当x ∈(-2,2)时,f ′(x )<0,故f (x )在(-2,2)上为减函数;当x ∈(2,+∞)时,f ′(x )>0, 故f (x )在(2,+∞)上为增函数.由此可知f (x )在x =-2处取得极大值f (-2)=16+c ,f (x )在x =2处取得极小值f (2)=c -16.由题设条件知16+c =28,解得c =12.此时f (-3)=9+c =21,f (3)=-9+c =3,f (2)=-16+c =-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.[类题通法]求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图像,然后借助图像观察得到函数的最值. [针对训练]已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值; (2)求y =f (x )在[-3,1]上的最大值和最小值.解:(1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝ ⎛⎭⎪⎫23=0,可得4a +3b +4=0,②由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4.所以1+a +b +c =4.所以c =5. (2)由(1),可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解之,得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:所以y =f (x )在[-3,1]上的最大值为13,最小值为27.课后作业1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是( )A .-173B .-103C .-4D .-643解析:选A f ′(x )=x 2+2x -3,令f ′(x )=0得x =1(x =-3舍去),又f (0)=-4,f (1)=-173,f (2)=-103, 故f (x )在[0,2]上的最小值是f (1)=-173. 2.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( ) A .11或18 B .11 C .18 D .17或18解析:选C ∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,即⎩⎪⎨⎪⎧1+a +b +a 2=10,3+2a +b =0,解得⎩⎪⎨⎪⎧a =-3,b =3,或⎩⎪⎨⎪⎧a =4,b =-11.而当⎩⎪⎨⎪⎧a =-3,b =3时,函数在x =1处无极值,故舍去.∴f (x )=x 3+4x 2-11x +16,∴f (2)=18.故选C.3.(xx·郑州二模)函数f (x )的定义域为开区间(a ,b ),其导函数f ′(x )在(a ,b )内的图像如图所示,则函数f (x )在开区间(a ,b )内的极大值点有( )A .1个B .2个C .3个D .4个解析:选B 依题意,记函数y =f ′(x )的图像与x 轴的交点的横坐标自左向右依次为x 1,x 2,x 3,x 4,当a <x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x 2<x <x 4时,f ′(x )≥0;当x 4<x <b 时,f ′(x )<0.因此,函数f (x )分别在x =x 1、x =x 4处取得极大值,选B.4.设f (x )=ln x ,g (x )=f (x )+f ′(x ),求g (x )的单调区间和最小值.解:由题设知f (x )=ln x ,g (x )=ln x +1x ,x >0,所以g ′(x )=x -1x2,令g ′(x )=0得x =1,当x∈(0,1)时,g′(x)<0,故(0,1)是g(x)的单调递减区间;当x∈(1,+∞)时,g′(x)>0,故(1,+∞)是g(x)的单调递增区间,因此,x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,所以g(x)的最小值为g(1)=1.5.(xx·江苏高考)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值; (2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.解:(1)由题设知f′(x)=3x2+2ax+b,且f′(-1)=3-2a+b=0,f′(1)=3+2a+b=0,解得a=0,b=-3.(2)由(1)知f(x)=x3-3x.因为f(x)+2=(x-1)2(x+2),所以g′(x)=0的根为x1=x2=1,x3=-2,于是函数g(x)的极值点只可能是1或-2.当x<-2时,g′(x)<0;当-2<x<1时,g′(x)>0,故-2是g(x)的极值点.当-2<x<1或x>1时,g′(x)>0,故1不是g(x)的极值点.所以g(x)的极值点为-2.6.(xx·威海模拟)当函数y=x·2x取极小值时,x=( )A.1ln 2B.-1ln 2C.-ln 2 D.ln 2解析:选B y′=2x+x·2x ln 2=0,∴x=-1ln 2.7.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图像不可能为y=f(x)图像的是( )解析:选D 因为[f(x)e x]′=f′(x)e x+f(x)(e x)′=[f(x)+f′(x)]e x,且x=-1为函数f(x)e x的一个极值点,所以f(-1)+f′(-1)=0;选项D中,f(-1)>0,f′(-1)>0,不满足f′(-1)+f(-1)=0.8.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是( ) A.-13 B.-15 C.10 D.15解析:选A 求导得f′(x)=-3x2+2ax,由函数f(x)在x=2处取得极值知f′(2)=0,即-3×4+2a×2=0,∴a=3.由此可得f(x)=-x3+3x2-4,f′(x)=-3x2+6x,易知f(x)在[-1,0)上单调递减,在(0,1]上单调递增,∴当m∈[-1,1]时,f(m)min=f(0)=-4.又f′(x)=-3x2+6x的图像开口向下,且对称轴为x=1,∴当n∈[-1,1]时,f′(n)min=f′(-1)=-9.故f(m)+f′(n)的最小值为-13.故选A.9.(xx·荆州质检)设函数f(x)在R上可导,其导函数是f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图像可能是( )解析:选C f (x )在x =-2处取得极小值,即x <-2,f ′(x )<0;x >-2,f ′(x )>0,那么y =xf ′(x )过点(0,0)及(-2,0).当x <-2时,x <0,f ′(x )<0,则y >0;当-2<x <0时,x <0,f ′(x )>0,y <0;当x >0时,f ′(x )>0,y >0,故C 正确.10.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是________. 解析:f ′(x )=3x 2+2mx +m +6=0有两个不等实根,即Δ=4m 2-12×(m +6)>0.所以m >6或m <-3. 答案:(-∞,-3)∪(6,+∞)11.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图像在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.解析:∵y ′=3x 2+6ax +3b ,⎩⎪⎨⎪⎧3×22+6a ×2+3b =03×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.∴y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2.∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.答案:4 12.(xx·江苏高考节选)设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数. 若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围.解:令f ′(x )=1x -a =1-ax x<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x-a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,a 的取值范围为(e ,+∞).13.已知函数f (x )=x 2-1与函数g (x )=a ln x (a ≠0).(1)若f (x ),g (x )的图像在点(1,0)处有公共的切线,求实数a 的值; (2)设F (x )=f (x )-2g (x ),求函数F (x )的极值.解:(1)因为f (1)=0,g (1)=0,所以点(1,0)同时在函数f (x ),g (x )的图像上,因为f (x )=x 2-1,g (x )=a ln x ,所以f ′(x )=2x ,g ′(x )=a x ,由已知,得f ′(1)=g ′(1),所以2=a1,即a =2.(2)因为F (x )=f (x )-2g (x )=x 2-1-2a ln x (x >0),所以F ′(x )=2x -2a x=2x 2-ax, 当a <0时,因为x >0,且x 2-a >0,所以F ′(x )>0对x >0恒成立,所以F (x )在(0,+∞)上单调递增,F (x )无极值;当a >0时,令F ′(x )=0,解得x 1=a ,x 2=-a (舍去),所以当x >0时,F ′(x ),F (x )的变化情况如下表:x (0,a ) a(a ,+∞)F ′(x )-+F (x )递减 极小值 递增所以当x =a 时,F (x )取得极小值,且F (a )=(a )2-1-2a ln a =a -1-a ln a . 综上,当a <0时,函数F (x )在(0,+∞)上无极值; 当a >0时,函数F (x )在x =a 处取得极小值a -1-a ln a .14.(xx·晋中名校联考)已知函数f (x )=ax 2-e x(a ∈R ,e 为自然对数的底数),f ′(x )是f (x )的导函数. (1)解关于x 的不等式:f (x )>f ′(x );(2)若f (x )有两个极值点x 1,x 2,求实数a 的取值范围.解:(1)f ′(x )=2ax -e x,f (x )-f ′(x )=ax (x -2)>0.当a =0时,无解; 当a >0时,解集为{x |x <0或x >2};当a <0时,解集为{x |0<x <2}.(2)设g (x )=f ′(x )=2ax -e x ,则x 1,x 2是方程g (x )=0的两个根.g ′(x )=2a -e x, 当a ≤0时,g ′(x )<0恒成立,g (x )单调递减,方程g (x )=0不可能有两个根;当a >0时,由g ′(x )=0,得x =ln 2a ,当x ∈(-∞,ln 2a )时,g ′(x )>0,g (x )单调递增, 当x ∈(ln 2a ,+∞)时,g ′(x )<0,g (x )单调递减.∴当g (x )max >0时,方程g (x )=0才有两个根, ∴g (x )max =g (ln 2a )=2a ln 2a -2a >0,得a >e2.15.(xx·广东六校联考)已知f (x )=3x 2-x +m ,(x ∈R ),g (x )=ln x . (1)若函数f (x )与g (x )的图像在x =x 0处的切线平行,求x 0的值; (2)求当曲线y =f (x )与y =g (x )有公共切线时,实数m 的取值范围;(3)在(2)的条件下,求函数F (x )=f (x )-g (x )在区间⎣⎢⎡⎦⎥⎤13,1上的最值(用m 表示). 解:(1)∵f ′(x )=6x -1,g ′(x )=1x (x >0),由题意知6x 0-1=1x 0(x 0>0),即6x 20-x 0-1=0,解得x 0=12或x 0=-13,又∵x 0>0,∴x 0=12.(2)若曲线y =f (x )与y =g (x )相切且在交点处有公共切线,由(1)得切点横坐标为12,∴f ⎝ ⎛⎭⎪⎫12=g ⎝ ⎛⎭⎪⎫12,∴34-12+m =ln 12,即m =-14-ln 2,数形结合可知,m >-14-ln 2时,f (x )与g (x )有公共切线,故m 的取值范围是⎝ ⎛⎭⎪⎫-14-ln 2,+∞.(3)F (x )=f (x )-g (x )=3x 2-x +m -ln x ,故F ′(x )=6x -1-1x =6x 2-x -1x=3x +12x -1x,当x 变化时,F ′(x )与F (x )在区间⎣⎢⎡⎦⎥⎤13,1的变化情况如下表:又∵F ⎝ ⎛⎭⎪⎫13=m +ln 3,F (1)=2+m >F ⎝ ⎛⎭⎪⎫3,∴当x ∈⎣⎢⎡⎦⎥⎤3,1时,F (x )min =F ⎝ ⎛⎭⎪⎫2=m +4+ln 2⎝ ⎛⎭⎪⎫m >-14-ln 2,F (x )max =F (1)=m +2⎝⎛⎭⎪⎫m >-14-ln 2.P33541 8305 茅37198 914E 酎39346 99B2 馲O21655 5497 咗B|V]32648 7F88 羈精品文档 32371 7E73 繳实用文档。

2021版新高考数学一轮复习讲义:第二章第十二讲第二课时导数与函数的极值、最值(含解析)

2021版新高考数学一轮复习讲义:第二章第十二讲第二课时导数与函数的极值、最值(含解析)

第二课时导数与函数的极值、最值ZHI SHI SHU LI SHUANG JI ZI CE知识梳理双基自测知识点一函数的极值1. 函数的极值(1)设函数f(x)在点X0附近有定义,如果对X0附近的所有的点,都有f(x)< f(x o),那么f(x o) 是函数f(x)的一个极大值,记作f(x)极大值=f(x o);如果对x o附近的所有的点,都有f(x)> f(x o),那么f(x o)是函数f(x)的一个极小值,记作f(x)极小值=f(x o).极大值与极小值统称为极值.⑵当函数f(x)在x o处连续时,判别f(x o)是极大(小)值的方法:如果x<x o有f' (x)>o , x>x o有f' (x)<o,那么f(x o)是极大值.如果x<x o有f' (x)<o , x>x o有f' (x)>o,那么f(x o)是极小值.2. 求可导函数f(x)极值的步骤(1) 求导数f'(X);(2) 求方程f' (x)= o的根;⑶检验f' (x)在方程f' (x)= o的根左右的值的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y= f(x)在这个根处取得极大值J 口果在根的左侧附近为负,右侧附近为正,那么函数y= f(x)在这个根处取得极小值.知识点二函数的最值1. 函数的最值的概念设函数y= f(x)在[a, bl上连续,在(a, b)内可导,函数f(x)在[a, b]上一切函数值中的最大(最小)值,叫做函数y= f(x)的最大(最小)值.2. 求函数最值的步骤设函数y= f(x)在[a, b]上连续,在(a, b)内可导,求f(x)在[a, b]上的最值,可分两步进行:(1) 求f(x)在(a, b)内的极值;(2) 将f(x)的各极值与f(a), f(b)比较,其中最大的一个是最大值,最小的一个是最小值. _______重兰至昱1 . f' (x o)= o与x o是f(x)极值点的关系函数f(x)可导,则f' (x o)= o是x o为f(x)的极值点的必要不充分条件. 例如,f(x) = X3,f'(o) =o,但x = o不是极值点.2•极大值(或极小值)可能不止一个,可能没有,极大值不一定大于极小值. 3 .极值与最值的关系极值只能在定义域内取得(不包括端点),最值却可以在端点处取得;有极值的不一定有最 值,有最值的也未必有极值;极值有可能成为最值,非常数可导函数最值只要不在端点处取, 则必定在极值处取.4 .定义在开区间(a , b )内的函数不一定存在最大(小)值.题组一走出误区1 .(多选题)下列结论正确的是(ABCD ) A .函数的极大值不一定比极小值大 B .导数等于0的点不一定是函数的极值点C .若x o 是函数y = f (x )的极值点,则一定有 f ' (x o )= 0D .函数的最大值不一定是极大值,函数的最小值也不一定是极小值[解析]对于A ,如图,在x i 处的极大值比在X 2处的极小值小.II/\ ―丿7 Jb2 .侈选题)(选修2-2P 32AT4改编)若函数f (x )的导函数f ' (x )的图象如图所示,则下面正确的是(CD )对于 对于 C ,对于由极点定义知显然正确.如图知正确. 故选 B 、C 、D . 题组走进教材如 y = x 3A . x=1是最小值点B. x= 0是极小值点C. x= 2是极小值点D .函数f(x)在(1,2)上单调递减[解析]由导数图象可知,x= 0, x= 2为两极值点,x = 0为极大值点,x= 2为极小值点, f (x)在(1,2)上小于0,因此f(x)单调递减,选C、D.3. (选修2-2P32AT5改编)函数f(x) = (x2—1)2+ 2的极值点是(C )A . x = 1 B. x=— 1C. x= 1 或—1 或0D. x= 0[解析]Tf(x) = x4—2x2+ 3,由f' (x)= 4x3—4x= 4x(x+ 1)(x—1)= 0,得x= 0 或x= 1 或x =—1.又当x< —1 时,f' (x)<0,当一1<x<0 时,f' (x)> 0,当0<x<1 时,f' (x)<0,当x>1 时,f' (x)>0 ,A x= 0,1,—1 都是f(x)的极值点.4. (选修2—2P32AT6改编)函数f(x) = In x—x在区间(0, e]上的最大值为(B )A . 1 —e B. —1C. —e D . 01 1 —x[解析]因为f' (x) = ^— 1 ==,当x€ (0,1)时,f' (x)>0;当x€ (1, e]时,f' (x)<0 , 所以当x= 1时,f(x)取得最大值ln 1 —1 = —1•故选B .题组三考题再现5 . (2017课标n, 11)若x=—2是函数f(x)= (x2+ ax—1)e x—1的极值点,贝V f(x)的极小值为(A )A . —1 B. —2e—3C. 5e 3D. 1[解析]由题意可得f ‘(x)= e x—1[x2+ (a + 2)x+ a —1]. '/x=—2 是函数f(x) = (x2+ ax —1)e x —1的极值点,••• f' (—2) = 0,「.a =—1, Af(x)= (x2—x—1)e x—1, f' (x) = e x—1(x2+ x—2) = e x^ 1(x —1)(x+ 2) ,「.x€ (—s,—2), (1 ,+s)时,f' (x)>0, f(x)单调递增;x€ (—2,1)时,f' (x)<0 ,f(x)单调递减.• f(x)极小值=f(1) = —1•故选A .3^36. (2018 课标I,16,5分)已知函数f(x) = 2sin x+ sin 2x,则f(x)的最小值是^ •[解析]由f(x)= 2sin x+ sin 2x, 得f' (x)= 2cos x+ 2cos 2x= 4cos2x+ 2cos x—2,令f' (x)=0,得 cos x = 2或 cos x =— 1,可得当 cos x € (— 1,㊁)时,f ' (x)<0 , f(x)为减函数;当 cos x 1 i"3€(2, 1)时,f ' (x)>0 , f(x)为增函数,所以当cos x =㊁时,f(x)取最小值,此时sin x =又因为 f(x) = 2sin x + 2sin xcos x = 2sin x(1 + cos x), 1 + cos x > 0 恒成立,二 f(x)取最小值时,sin x =■3'313J—三,A f(x)m in = 2 X ( — 2甘(1 + 2)=- 2 .KAO DIAN TU PO HU DONG TAN JIU 考点突破互动探究角度1根据函数图象判断极值岭 例1设函数f(x)在R 上可导,其导函数为 f ' (x),且函数y = (1 — x)f ' (x)的图象如当x>2时,f ' (x)>0.由此可以得到函数f(x)在x =— 2处取得极大值,在x = 2处取得极小值.故角度2求函数的极值 峰 例2求下列函数的极值.考点一用导数求解函数极值问题多维探究图所示,则下列结论中一定成立的是 A .函数 B .函数 f(x)有极大值 f(x)有极大值 f(2)和极小值f(1) f( — 2)和极小值f(1) C .函数f(x)有极大值 f(2)和极小值f( — 2)D .函数 f(x)有极大值 f( — 2)和极小值f(2)[解由题图可知, 当 x<— 2 时,f ' (x)>0 ;当一2<x<1 时,f ' (x)<0 ;当 1<x<2 时,f ' (x)<0 ;1(1) f(x)= 2(x — 5)2+ 6ln x ; (2) f(x)= x — aln x(a € R).[分析]求导,研究函数的单调性从而确定极值.[解析]⑴函数f(x)的定义域为(0,+ R ),令 f 'i 29由上表可知当x = 2时,极大值f(2) = + 6ln 2,当x = 3时,极小值f(3) = 2+ 6ln 3.(2)f ' (x) = 1 — a = x 7a, x>0.若a w 0,则f ' (x)>0恒成立,f(x)不存在极值. 若a>0,则x ,f ' (x),f(x)的变化情况如下表:所以f(x)的极小值f(a) = a — aln a .无极大值.综上可知a w 0时,无极值;a>0时,极小值f(a)= a — aln a.名师点拨?可导函数求极值的步骤(1) 确定函数的定义域. (2) 求方程f ' (x)= 0的根.⑶用方程f ' (x)= 0的根和不可导点的x 的值顺次将函数的定义域分成若干个小开区间,并形成表格.f ' 6(x) = x — 5+ x =x —2 x —3x。

导数及其应用利用导数研究函数的极值最值课件

导数及其应用利用导数研究函数的极值最值课件

导数及其应用 利用导数研究函数的极值最值 课件 理 ppt xx年xx月xx日contents •导数及其应用•利用导数研究函数的极值最值•课件制作技巧•案例分析•导数的进一步学习与拓展目录01导数及其应用1导数的定义23导数是函数在某一点的变化率,它描述了函数在某一点的斜率。

导数的定义导数的几何意义是函数在某一点的切线斜率。

导数的几何意义导数的物理意义是速度的变化率,即物体运动的速度在某一时刻的变化率。

导数的物理意义导数的计算根据导数的定义,通过求极限来计算导数。

定义法公式法表格法图像法利用导数的运算法则和公式来计算导数。

利用导数表来计算导数。

利用函数图像来估计导数。

最优问题导数可以帮助我们找到最优解,例如在经济学、工程学等领域中,利用导数可以找到最优的成本、价格、利润等。

导数在实际问题中的应用运动问题导数可以描述物体的运动状态,例如速度、加速度等,利用导数可以解决运动问题,例如计算轨迹、碰撞时间等。

物理问题导数可以描述物理现象的变化规律,例如温度、压力、电流等,利用导数可以解决物理问题,例如计算热传导、弹性力学等。

02利用导数研究函数的极值最值极值的定义:设函数$f(x)$在点$x_{0}$的附近有定义。

若在$x_{0}$的左侧$f(x)$单调递增。

在$x_{0}$的右侧$f(x)$单调递减定义法:判断导数由正变负的点,这些点为可能极值点,再检验这些点两侧的导数值,确定是否为极值点。

表格法:通过列表计算函数在各点的导数值,并判断其正负,从而得到极值点。

极值的判定方法极值的概念及判定方法最值的定义及求法最值的定义:函数在某区间内取得最大(小)值的点称为最值点。

对于连续函数,还可以利用介值定理求解最值。

最值的求法利用定义法或表格法求极值点,然后比较极值与端点函数值的大小关系,从而得到最值。

1导数在极值最值问题中的综合应用23导数在极值最值问题中的应用非常广泛,例如在经济、物理、工程等领域都有应用。

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲导数与函数的极值、最值
[学生用书P50]
1.函数的极值
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;
而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,
f(a)叫做函数y=f(x)的极小值.
函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;
而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
极大值点、极小值点统称为极值点,极大值、极小值统称为极值.
2.函数的最值
(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.
1.辨明两个易误点
(1)求函数极值时,误把导数为0的点作为极值点;
(2)易混极值与最值,注意函数最值是个“整体”概念,而极值是个“局部”概念.
2.明确两个条件
一是f′(x)>0在(a,b)上成立,是f(x)在(a,b)上单调递增的充分不必要条件.
二是对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.
1.教材习题改编函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()。

相关文档
最新文档