概率与统计高考数学(文)精彩试题分项版解析汇报20180328

合集下载

2018届高考数学考试大纲解读专题11概率与统计文

2018届高考数学考试大纲解读专题11概率与统计文

专题11 概率与统计(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(十七)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.1.独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.2.回归分析了解回归分析的基本思想、方法及其简单应用.对于统计的考查:1.从考查题型来看,选择题、填空题与解答题并重,并各有侧重,选择题、填空题中以考查抽样方法和用样本估计总体为主,兼顾两个变量的线性相关;解答题中则重点考查求回归直线方程及独立性检验. 2.从考查内容来看,主要考查抽样方法的选择,利用频率分布直方图、茎叶图等图表分析众数、中位数、平均数等数字特征,两个变量之间的线性相关等.3.从考查热点来看,用样本估计总体是高考命题的热点,频率分布直方图、茎叶图、众数、中位数、平均数等是考查的重点,要能够对数据进行分析,然后对总体作简单、准确的评价.对于概率的考查:1.从考查题型来看,涉及本专题的题目若在选择题、填空题中出现,则主要考查古典概型和几何概型概率的计算;若在解答题中出现,则主要考查古典概型概率的计算.2.从考查内容来看,主要考查在古典概型或几何概型下求随机事件的概率,通过互斥事件、对立事件考查等可能性事件的概率取值问题,体现了概率问题的实际应用状况.3.从考查热点来看,概率求值是高考命题的热点,以古典概型或几何概型为主线,考查随机事件的概率.解答题中常与统计知识相结合考查概率的求解,需注意知识的灵活运用.考向一三种抽样方法样题1 《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“今有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出 钱(所得结果四舍五入,保留整数). 【答案】17【解析】本题主要考查分层抽样法.设丙应出x 钱,由题意可得100560350180180x=++,求解可得100180171090x ⨯=≈钱.考向二 样本的数字特征样题2 (2017新课标全国Ⅰ文科)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值 D .x 1,x 2,…,x n 的中位数【答案】B考向三 频率分布直方图的应用样题3 (2017新课标全国Ⅱ文科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ), 其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附:(22()()()()()n ad bc K a b c d a c b d -=++++.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1. (2)频率分布直方图中均值等于组中值与对应概率乘积的和. (3)均值大小代表水平高低,方差大小代表稳定性.考向四 线性回归方程及其应用样题4 为了解某公司员工的年收入和年支出的关系,随机调查了5名员工,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆ0.65b =入为15万元时支出为 A .9.05万元 B .9.25万元 C .9.75万元 D .10.25万元【答案】B考向五 概率的求解样题5 (2017新课标全国Ⅰ文科)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8C .12D .π 4【答案】B样题6 如图,茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污染,则甲的平均成绩超过乙的平均成绩的概率为A .12 B .35 C .45D .710【答案】C【解析】由茎叶图可知,甲的平均成绩8889909192905++++=,乙的平均成绩为即352+450,x <得到98x <,又因为90x ≥,且x 是整数,故基本事件为从90到99,共10个, 而满足条件的为90到97,共8个,C . 考向六 独立性检验样题7 某校为了让高一学生更有效率地利用周六的时间,在高一新生第一次摸底考试后采取周六到校自主学习,同时由班主任老师值班,家长轮流值班.一个月后进行了第一次月考,高一数学教研组通过系统抽样抽取了名学生,并统计了他们这两次数学考试的优良人数和非优良人数,其中部分统计数据如下:(1)请画出这次调查得到的列联表,并判定能否在犯错误的概率不超过的前提下认为周六到校自习对提高学生成绩有效?(2)从这组学生摸底考试数学优良成绩中和第一次月考数学非优良成绩中,按分层抽样随机抽取个成绩,再从这个成绩中随机抽取个,求这个成绩来自同一次考试的概率.下面是临界值表供参考:(参考公式:()()()()()22n ad bcΚa b c d a c b d-=++++,其中【解析】(1列联表如下:计算得的观测值为80010.8287k=>,因此能在犯错误的概率不超过的前提下,认为周六到校自习对提高学生成绩有效.。

2018年高考题数学(文)分项版汇编专题07 概率与统计 Word版含解析

2018年高考题数学(文)分项版汇编专题07 概率与统计 Word版含解析

7.概率与统计1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B. 点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。

3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能,则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知,5位裁判打出的分数分别为,故平均数为.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样点睛:本题主要考查简单随机抽样,属于基础题。

2013~2018年高考数学全国卷“概率与统计”专题分析

2013~2018年高考数学全国卷“概率与统计”专题分析

教学参谋1考卷解析2018年8月2013〜2018年高考数学全国卷“概率与统计”专题分析®内江师范学院数学与信息科学学院余小芬蒲葭露刘成龙多数高考试题立意深刻、构思巧妙、设计新颖,直接 体现了高考命题理念、命题原则、命题思路.研究高考试 题,对把握试题特点、知识考点、难易程度有益;对把握 高考命题动态、领会命题精神有利;对提高复习的针对 性、减少复习盲目性有效.本文以2013~2018年高考数学 全国卷中“概率与统计”试题为研究对象,从试题特点、考查要点、教学建议进行分析,以飨读者.—、2013~2018年全国卷“概率与统计”试题特点1.命题背景概率与统计是高考数学中考查实际应用能力和数 学建模能力的一个重要载体,也是考查必然与或然数学 思想的重要内容.全国卷概率与统计命题取材贴近生产、生活,比如,概率部分常以抽签选号、比赛得分、电路 流通、质量抽检等角度命题,考查各类随机事件的概率;统计部分常从成本控制、利润获取、方案决策、数据预测 等角度命题,考查利用样本数据估计总体特征,利用均 值、方差等对实际问题作出评价或判断.特别指出,2018 年高考重视数学文化考查,比如2018年全国I卷理科第 10题以古希腊数学家希波克拉底研究的直角三角形外 接半圆图形为载体考查几何概型,2018年全国n卷理科 第8题以哥德巴赫猜想为背景考查古典概型等等.2知识考查近年全国卷中概率与统计部分主要考查抽样方法 (以分层抽样为主)、统计图(表)的应用(识图、作图、用 图)、系数的相关性(独立性检验思想、回归思想的运 用)、随机事件(互斥事件、独立事件、独立重复试验、等 可能事件)的概率、离散型随机变量的分布列、期望、方 差、正态分布.概率与统计命题中呈现一定的交汇性.首先,概率 与统计知识交织紧密,尤其以统计图(表)为载体,结合 图(表)中数据,运用频率估计概率思想,考查古典概型、互斥事件的概率加法公式、对立事件的概率乘法公式 等.其次,在分析生产、销售中的成本、利润问题时,概率统计与分段函数、函数最值相结合是历年考查的热点.3. 能力考查《普通高中数学课程标准(2017年版)》(下文简称 《标准》)指出数学学科核心素养包括:数学抽象、逻辑推 理、数学建模、直观想象、数学运算和数据分析.其中,数 据分析是指针对研究对象获取数据,运用数学方法对数 据进行整理、分析和推断,形成关于研究对象知识的素 养.概率与统计部分教学的主要目的是使学生体会统计 与概率的基本思想,处理数据、制定决策,培养学生“用 数据说话”的理性思维.全国卷概率与统计部分对学生 能力的考查呈现6大特点:淡化解题技巧,重视通性通 法;减少运算速度要求,强调运算思路本身;重视形成科 学正确的随机观念认识随机现象;重视培养对信息的阅 读、筛选、分析能力;重视培养解决实际问题中的估算、判断、决策能力;重视必然与或然、分类与整合、化归与 转化等数学思想在解题中的运用■4. 命题规律⑴客观题的命题规律2013~2014年全国卷客观题主要考查概率知识,尤 其古典概型在历年试题中均有涉及.从2015年开始,客 观题重视考查统计知识,以对统计图的认识为主要考査 形式.同时,几何概型成为概率部分的“新兴”考点,尤其 在2016、2017、2018年考查题数最多,主要涉及线段、面 积模型.此外,抽样方法、样本数据特征、二项分布、正态 分布等知识点隔年交替考查,主要考查基本概念、公式 等规则的运用•⑵解答题的命题规律2010年前,全国卷考查核心为随机事件的概率,重 视逻辑推理,强调排列组合问题解答的技巧性,但在合 情推理和应用意识方面考查较少.从2011年开始,增加 考查频率分布表、频率分布直方图的应用,通过利用图 (表冲数据,利用频率估计概率的思想解决问题.2013~ 2016年,又增加对茎叶图、散点图、折线图的应用考查,增加考查绘制(或完善)茎叶图、频率分布直方图,增加 回归分析统计案例,重视结合实际生活经验对问题进行42十7龙*?高中2018年8月考卷解析教学参谋判断、评价、预测处理.2017年独立性检验在停考7年后 “重登舞台”,并且2018年依然“隆重登场”;正态分布在 停考3后,2017年“再现身影尤其是正态分布试题具有鲜明的特点:从以往考查“已知规则、简单套用”过渡到 考查“理解原理、回归运算”.(裴光亚语)总的来看,尽管 解答题焕然一新,但对中位数、均值、标准差等数据的计 算仍为考查重点,频率估计概率、样本估计总体仍是问 题解决的核心思想.二、2010~2018年全国卷"概率与统计”试题分类评析为进一步把握命题方向,下面对近八年全国卷概率 与统狀题分类评析•1.统计部分(1) 抽样方法在统计的教学中,应引导学生根据实际问题的需 求,选择不同的抽样方法获取数据,理解数据蕴含的信 息.常见抽样方法有简单随机抽样、系统抽样、分层抽样. 近年全国卷中,抽样方法主要涉及分层抽样.例如2018 年全国I卷文科第18题、2018年全国H I卷文科第14题、2013年全国I卷理科第3题.(2) 统计图表的应用统计图表具有直观、实用的特性.《标准》指出:根据 数据分析的需求,选择适当的统计图表描述和表达数 据,并从样本数据中提取需要的数字特征,估计总体的 统计规律,解决相应的实际问题.高考对统计的考查也 常以统计图表为信息载体,从多角度、多层次命制试题, 充分考查学生识图、作图、用图的能九(i )简单识图应用近年,全国卷立足生产、生活热点,设计出很多可读 性强、图文新颖、贴近生活的统计图.比如2016年全国m 卷理科第4题介绍一年中各月平均最高气温和平均最低 气温的雷达图、2017年全国m卷理科第3题考查了以“旅 游”为背景的折线统计图、2018年全国I卷理科第3题呈 现了关于新农村建设的农村经济收入变化饼状图.(i i)用样本的数字特征估计总体特征“以数据进行推断的思考方式已成为现代社会普遍 应用的思维模式,以样本估计总体是统计学最核心的思 想方法历年全国卷中,不乏用样本估计总体的试题,这类题考查学生画(或完善)频率分布直方图、茎叶图 等,并从样本中提取或计算重要数据,如“三数”、标准差 等,进而要求对总体进行合理的解释或评价的能九例如2018年全国I卷文科第19题,该题坚持了高考 “立德树人”的基本导向,通过对比某家庭使用节水龙头 前后的用水量,让学生树立保护水资源的可持续发展意识,培养节约用水的良好品行.第1问考查频数分布表、频率分布直方图,强调学生的作图能力;第2问考查利用 样本数据特征估计总体特征、古典概型等基本知识,考 查学生的估算意识以及计算能力;第3问涉及对节水前 后用水量的对比,考查学生对频数分布表的理解和应 甩近年全国卷同类型考题还有:2017年全国I卷文科 第2题;2015年全国I I卷文(理)科第18题等.可见,样本 估计总体是历年全国卷文科数学的高频考点.(i i i)统计图(表)的综合应用在工农业生产与经济生活中,质量控制、成本控制、风险控制以及产品库存等问题是经常要面对并需解决 的问题,而这些问题中普遍受到随机因素或不确定性变 量的影响,自然地需要建立随机模型,需要搜集、整理和 处理数据,需要应用统计或概率的知识和方法并最终作 出决策.高考命题常以上述实际问题为背景,以统计图 (表)为载体,考查频率与概率、随机变量分布列、期望的 计算及应用等知识,考查学生的建模、数据处理等综合 能九例如2016年全国I卷理科第19题,该题以实际生产 中成本控制为命题背景,考查柱状图的应用.第1问根据 柱状图及频率估计概率的基本思想,考查分布列的求 解.在计算;r所对应的各个概率时,涉及分类讨论思想,将问题转化为互斥事件的和以及独立事件的积进行处 理;第2问在第1问分布列的基础上,考查互斥事件的概 率加法公式;第3问以费用期望值的最小化为决策依据 确定购买量.事实上,为确定最优购买量,应逐一计算n= 16,17,…,22时所对应的期望值,通过比较得出最小期 望值所对应的41即为最优购买量.但为降低运算量,减 少重复表示,命题者只要求考生计算并对比n=19与n=20 所对应的期望值,这也体现了试题设问方式和能力考查 方向的新变化.近年全国卷同类型考题还有:2017年全 国HI卷文(理)科第18题;201碑全国I卷文科第1顿等.(3)变量的相关性2017年《考试大纲》对“变量的相关性”和“统计案 例”的要求是:两个“会”一会作两个有关联变量的数 据的散点图,会利用散点图认识变量间的相关关系.三 个“了解”—了解最小二乘法的思想,了解独立性检验 (只要求2x2列联表)的基本思想、了解回归分析的基本 思想.两个“能”—能根据给出的线性回归方程系数公 式建立线性回归方程;能应用一些常见的统计方法解决 一些实际问题.特别指出,在教学中,不要求学生记忆线 性回归方程、独立性检验中的相关公式或取值,能利用 已知公式代值计算、并利用所得结果对问题进行判断或 预测即可.重点考查统计思想的运用.高中十龙*? 43(i ) 独立性检验思想的应用独立性检验可谓是逐步登上高考舞台的新生花且. 独立性检验试题首次出现在2009年辽宁省卷中,由此拉 开了对独立性检验考查的序幕.近年全国卷独立性检验 的试题有:2018年全国H I 卷文(理)科第19题,2017年全 国n 卷文(理)科第19题.鉴于独立性检验在实际问题中 的应用广泛,其极有可能成为新的热门考点,复习备考 中应引起重视.以2018年全国m 卷文(理)科第19题为例,该题第2 问考查学生对独立性检验思想的应甩首先根据中位数m 完善两种生产方式下工人完成工作情况的列联表,进而 利用公式得出随机变量於的观测值,最后与临界值比较 得出结论.(i i ) 回归思想的应用回归思想是统计学的重要思想.高考试题对回归思 想的应用往往从画散点图,理解相关系数的意义,利用 最小二乘法求回归方程,预测等角度设置问题以2018年全国n 卷文(理)科第18题为例,该题考查 折线图,变量间的相关关系.第1问直接利用题中所给两 模型的回归方程,不难得出该地区2018年的环境基础设 施投资额的预测值;该题考查了对利用回归方程进行数 据计算、模型拟合的回归思想的应用.近年全国卷同类 型考题还有:2016年全国ID 卷文(理)科第18题,2015年 全国I 卷文(理)科第19题等.2•概率部分(1)随机事件的概率例1 (2013年大纲卷•文20)甲、乙、丙三人进行羽 毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结 束时,负的一方在下一局当裁判,设各局双方获胜的概率均为各局比赛的结果相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(n )求前4局中乙恰好当1次裁判的概率_评析:本例考查相互独立事件、互斥事件、对立事件 概率的求法.(I )问考查学生的逻辑推理能力.由于第1 局甲当裁判,所以“第4局甲当裁判”必推出“第2局比赛 结果为甲胜”(这样甲才能进入第三局比赛)且“第三局 比赛结果为甲负进而利用相互独立事件同时发生的 概率乘法公式解决问题.(n )问考查分类讨论、化归与 转化的数学思想.解题关键是分析出“前4局中乙恰好当 1次裁判”的三种具体赛况:(乙负,乙裁,乙胜,乙赛), (乙胜,乙胜,乙负,乙裁),(乙胜,乙负,乙裁,乙赛).近 年全国卷同类型考题还有:2014年大纲卷文科第20题.特别指出,在随机事件的概率部分,除了事件的关 系和运算是考查的重点,古典概型、几何概型、条件概率参谋J 考卷醜f ____________________________________2018年8月也是近年考查的热点.例如古典概型的考题有:2018年 全国n 卷文科第5题、理科第8题,2017年全国n 卷文科 第11题等;几何概型的考题有:2018年全国I 卷文科第9 题、理科第10题,2017年全国I 卷文科第4题、理科第2 题等;条件概率的考题有:2018年全国m 卷文科第5题、2016年全国n卷文(理)科第18题(n )问等.⑵离散型随机变量的分布列、均值与方差均值和方差(或标准差)是统计学的重要概念.均值 反映了随机变量取值的平均水平,方差(或标准差)刻画 随机变量的分散程度,它们都是解决实际问题的重要理 论依据.高考对离散型随机变量的分布列、均值、方差的 常见考查方式有两种:一是利用随机事件的概率性质或 公式求解分布列,再求期望、方差.这是2014年前大纲卷 理科数学解答题的高频考点.二是结合统计图(表)考 查,利用分布列、均值、方差等对实际问题作出判断、决 策等,这是历年新课标卷解答题的考查重点、热点.例2 (2018年全国I 卷•理20)某工厂的某种产品 成箱包装,每箱200件,每一箱产品在交付用户之前要对 产品作检验,如检验出不合格品,则更换为合格品.检验 时,先从这箱产品中任取20件作检验,再根据检验结果 决定是否对余下的所有产品作检验.设每件产品为不合 格品的概率都为;),且各件产品是否为不合格品 相互独立.(I )记20#产品中恰有2件不合格品的概率为办),求/t p )的最大值点P 。

[精品]2018年高考数学文科考点过关习题第八章概率与统计56和答案

[精品]2018年高考数学文科考点过关习题第八章概率与统计56和答案

考点测试56 变量间的相关关系与统计案例一、基础小题1.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-2x +100 B.y ^=2x +100 C.y ^=-2x -100 D.y ^=2x -100答案 A解析 B 、D 为正相关,C 中y ^值恒为负,不符合题意. 2.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元答案 B解析 ∵a ^=y -b ^x =49+26+39+544-9.4×4+2+3+54=9.1,∴回归方程为y ^=9.4x +9.1.令x =6,得y ^=9.4×6+9.1=65.5(万元).3.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点中心(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确.当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.4.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1答案 D解析 样本点都在直线上时,其数据的估计值与真实值是相等的,即y i =y ^i ,代入相关系数公式r =1-∑i =1ny i -y ^i2∑i =1ny i -y2=1.5.设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .直线l 过点(x ,y )B.x和y的相关系数为直线l的斜率C.x和y的相关系数在0到1之间D.当n为偶数时,分布在l两侧的样本点的个数一定相同答案 A解析因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以B、C错误;D中n为偶数时,分布在l两侧的样本点的个数可以不相同,所以D错误;根据线性回归直线一定经过样本点中心可知A正确.6.在一次对性别与说谎是否相关的调查中,得到如下数据:) A.在此次调查中有95%的把握认为是否说谎与性别有关B.在此次调查中有99%的把握认为是否说谎与性别有关C.在此次调查中有99.5%的把握认为是否说谎与性别有关D.在此次调查中没有充分的证据显示说谎与性别有关答案 D解析由于K2=30× 6×9-7×8 213×17×14×16≈0.0024,由于K2很小,因此,在此次调查中没有充分的证据显示说谎与性别有关.故选D.7.如图所示,有5组(x,y)数据,去掉________组数据后,剩下的4组数据具有较强的线性相关关系.答案D解析由散点图知呈带状区域时有较强的线性相关关系,故去掉D.8.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:根据表中所给的数据,能否在犯错误的概率不超过0.15的前提下认为这两种手术对病人又发作过心脏病的影响有差别?_______________________________________________________ .答案 1.78 不能作出这两种手术对病人又发作心脏病的影响有差别的结论解析根据列联表中的数据,可以求得K 2=392× 39×167-29×157268×324×196×196≈1.78,而K 2<2.072,所以我们不能在犯错误的概率不超过0.15的前提下,作出这两种手术对病人又发作心脏病的影响有差别的结论.二、高考小题9.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 答案 D解析 由柱形图,知2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D 错误.10.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元答案 B解析 ∵x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=y -0.76x =8-0.76×10=0.4, ∴y ^=0.76x +0.4.当x =15时,y ^=0.76×15+0.4=11.8.11.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A.成绩C.智商D.阅读量答案 D解析根据K2=n ad-bc 2a+b c+d a+c b+d,代入题中数据计算得表1:K2=52× 6×22-10×14 216×36×20×32≈0.009;表2:K 2=52× 4×20-12×16216×36×20×32≈1.769;表3:K 2=52× 8×24-8×12216×36×20×32≈1.3;表4:K 2=52× 14×30-6×2 216×36×20×32≈23.48.∵D 选项K 2最大,∴阅读量与性别有关联的可能性最大,故选D. 12.根据如下样本数据得到的回归方程为y =bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <0答案 B解析 把样本数据中的x ,y 分别当作点的横、纵坐标,在平面直角坐标系xOy 中作出散点图,由图可知b <0,a >0.故选B.13.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5 D.y ^=-0.3x +4.4答案 A解析 由变量x 与y 正相关知C 、D 均错,又回归直线经过样本中心(3,3.5),代入验证得A 正确,B 错误.故选A.三、模拟小题14.已知x ,y 的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x +132,则b ^的值为( )A .-12B.12 C .-110D.110答案 A解析 将x =3,y =5代入到y ^=b ^x +132中,得b ^=-12.故选A.15.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( )A.116B.18C.14D.12答案 B解析 依题意可知样本中心点为⎝ ⎛⎭⎪⎫34,38,则38=13×34+a ,解得a ^=18. 16.下列说法错误的是( )A .在回归模型中,预报变量y 的值不能由解释变量x 唯一确定B .在线性回归分析中,相关系数r 的值越大,变量间的相关性越强C .在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D .在回归分析中,R 2为0.98的模型比R 2为0.80的模型拟合的效果好答案 B解析 对于A ,在回归模型中,预报变量y 的值由解释变量x 和随机误差e 共同确定,即x 只能解释部分y 的变化,∴A 正确;对于B ,线性回归分析中,相关系数r 的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴B 错误;对于C ,在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高,C 正确;对于D ,在回归分析中,用相关指数R 2来刻画回归的效果时,R 2取值越大,说明模型拟合的效果越好,∴R 2为0.98的模型比R 2为0.80的模型拟合的效果好,D 正确.故选B.17.为了检验某套眼保健操预防学生近视的作用,把500名做该套眼保健操的学生与另外500名未做该套眼保健操的学生的视力情况作记录并比较,提出假设H 0:“这套眼保健操不能起到预防近视的作用”,利用2×2列联表计算所得的K 2≈3.918.经查对临界值表知P (K 2≥3.841)≈0.05.对此,四名同学得出了以下结论:①有95%的把握认为“这套眼保健操能起到预防近视的作用”;②若某人未做该套眼保健操,那么他有95%的可能得近视;③这套眼保健操预防近视的有效率为95%;④这套眼保健操预防近视的有效率为5%.其中所有正确结论的序号是________. 答案 ①解析 根据查对临界值表知P (K 2≥3.841)≈0.05,故有95%的把握认为“这套眼保健操能起到预防近视的作用”,即①正确;95%仅是指“这套眼保健操能起到预防近视的作用”的可信程度,所以②③④错误.18.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.已知家庭的月储蓄y 关于月收入x 的线性回归方程为y ^=b ^x +a ^,则变量x 与y ________(填“正相关”或“负相关”);若该居民区某家庭月收入为7千元,预测该家庭的月储蓄是________千元.答案 正相关 1.7解析 由题意,知n =10,x =110∑i =110x i =8,y =110∑i =110y i =2,∴b^=184-10×8×2720-10×82=0.3,a ^=2-0.3×8=-0.4,∴y ^=0.3x -0.4,∵0.3>0,∴变量x 与y 正相关.当x =7时,y ^=0.3×7-0.4=1.7(千元).一、高考大题1.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑7i =1y i =9.32,∑7i =1t i y i =40.17,∑7i =1y i -y 2=0.55,7≈2.646.参考公式:相关系数r =∑ni =1 t i -t y i -y∑ni =1t i -t 2∑ni =1y i -y 2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1t i -t y i -y ∑ni =1t i -t 2,a ^=y -b ^ t . 解 (1)由折线图中数据和附注中参考数据得t =4,∑7i =1(t i -t )2=28,∑7i =1y i -y 2=0.55,∑7i =1(t i -t )(y i -y )=∑7i =1t i y i -t ∑7i =1y i=40.17-4×9.32=2.89, r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑7i =1t i -t y i -y ∑7i =1t i -t 2=2.8928≈0.103, a ^=y -b ^t =1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t . 将2016年对应的t =9代入回归方程得 y ^=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨. 2.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程; (3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑ni =1u i -u v i -v ∑n i =1u i -u 2,α^=v -β^ u . 解 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2) 令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑8i =1 w i -w y i -y ∑8i =1w i -w 2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x的回归方程为y ^=100.6+68x .(3)①由(2),知当x =49时,年销售量y 的预报值 y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.②根据(2)的结果,知年利润z 的预报值z ^=0.2×(100.6+68x )-x =-x +13.6x +20.12,所以当x =13.62=6.8,即x =46.24时,z ^取得最大值,故年宣传费为46.24千元时,年利润的预报值最大. 二、模拟大题3.班主任对班级22名学生进行了作业量多少的调查,数据如下:在喜欢玩电脑游戏的12人中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.(1)根据以上数据建立一个2×2列联表;(2)试问喜欢玩电脑游戏与认为作业多少是否有关系.参考公式:K 2=n ad -bc2a +bc +d a +c b +d,其中n =a+b +c +d .参考数据:解 (1)(2)K 2=12×10×13×9≈6.418,∵3.841<6.418,∴有95%的把握认为喜欢玩电脑游戏与认为作业多少有关. 4.为使政府部门与群众的沟通日常化,某城市社区组织“网络在线问政”活动.2015年,该社区每月通过问卷形式进行一次网上问政.2016年初,社区随机抽取了60名居民,对居民上网参政议政意愿进行调查.已知上网参与问政次数与参与人数的频数分布表如下:附:χ2=11221221n 1+n 2+n +1n +2,(1)居民”,请你根据频数分布表,完成2×2列联表,据此调查是否有99%的把握认为在此社区内“上网参政议政与性别有关”;(2)6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.解(1)由题意,知积极上网参政的有8+14+10+6=38人,不积极上网参政的有8+14=22人,2×2列联表为:∴χ2=40×20×38×22≈7.03,∵7.03>6.635,∴有99%的把握认为“上网参政议政与性别有关”.(2)选取男居民人数为6×4060=4人,选取女居民人数为6×2060=2人,记4个男居民分别为A、B、C、D,2个女居民分别为甲、乙,则基本事件有(A,B,C),(A,B,D),(A,B,甲),(A,B,乙),(A,C,D),(A,C,甲),(A,C,乙),(A,D,甲),(A,D,乙),(A,甲,乙),(B,C,D),(B,C,甲),(B,C,乙),(B,D,甲),(B,D,乙),(B,甲,乙),(C,D,甲),(C,D,乙),(C,甲,乙),(D,甲,乙),共20种.满足条件的基本事件有12种,∴所求概率为P =1220=35.5.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:(2)若周六同一时段车流量是200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?参考公式:b ^=∑i =1nx i -x y i -y∑i =1nx i -x2,a ^=y -b ^·x .解 (1)由条件可知,x =15∑i =15x i =5405=108,y =15∑i =15y i =4205=84,∑i =15(x i -x )(y i -y )=(-8)×(-6)+(-6)×(-4)+0×0+6×4+8×6=144,∑i =15(x i -x )2=(-8)2+(-6)2+02+62+82=200,b ^=∑i =15x i -x y i -y∑i =15x i -x2=144200=0.72, a ^=y -b ^x =84-0.72×108=6.24, 故y 关于x 的线性回归方程为y ^=0.72x +6.24. (2)当x =200时,y ^=0.72×200+6.24=150.24.所以可以预测此时PM2.5的浓度约为150.24微克/立方米. 6.某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:与销量的回归直线方程y ^=b ^x +a ^;(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)附:b ^=∑i =1nx i -x y i -y ∑i =1nx i -x2=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y -b^x .解 (1)A ,B ,C 三家连锁店平均售价和销量分别为(83,83),(85,80),(87,74),∴x =85,y =79,∴b ^=错误!=-2.25,∴a ^=y -b ^x =270.25,∴y ^=-2.25x +270.25. (2)设该款夏装的单价应定为x 元,利润为f (x )元, 则f (x )=(x -40)(-2.25x +270.25) =-2.25x 2+360.25x -10810,∴当x ≈80时,f (x )取得最大值.故该款夏装的单价应定为80元.。

高考文科数学2010—2018真题分类 专题十 概率与统计第二十八讲 统计初步(带答案)

高考文科数学2010—2018真题分类 专题十  概率与统计第二十八讲 统计初步(带答案)

专题十 概率与统计第二十八讲 统计初步一、选择题1.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2017新课标Ⅰ)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .1x ,2x ,…,n x 的平均数B .1x ,2x ,…,n x 的标准差C .1x ,2x ,…,n x 的最大值D .1x ,2x ,…,n x 的中位数3.(2017新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(2017山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.3,5 B.5,5 C.3,7 D.5,75.(2016年全国III卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个6.(2016年北京)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛7.(2016年山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56 B.60 C.120 D.1408.(2015新课标2)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关9.(2015湖北)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为A.134石B.169石C.338石D.1365石10.(2015北京)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为A.90 B.100 C.180 D.30011.(2015四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是A.抽签法B.系统抽样法C.分层抽样法D.随机数法12.(2015陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数是A.93 B.123 C.137 D.16713.(2015湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为A .3B .4C .5D .614.(2014广东)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为A .50B .40C .25D .2015.(2014广东)已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A .200,20B .100,20C .200,10D .100,1016.(2014湖南)对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )A .123p p p =<B .231p p p =<C .132p p p =<D .123p p p ==17.(2013新课标1)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是A、简单随机抽样B、按性别分层抽样C、按学段分层抽样D、系统抽样18.(2013福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100]加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为A.588 B.480 C.450 D.12019.(2013山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:9 4 0 1 0 x 9 18 7 7则7个剩余分数的方差为A.1169B.367C.36 D20.(2012陕西)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是6 17 85 0 0 1 1 4 7 94 5 5 5 7 7 8 8 93 1 24 4 8 92 0 23 31 2 5A .46,45,56B .46,45,53C .47,45,56D .45,47,53二、填空题21.(2018全国卷Ⅲ)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.22.(2018江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .110999823.(2017江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.24.(2016年北京)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.25.(2015广东)已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x + 的均值为 .26.(2015湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a = .(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.27.(2014江苏)为了了解一片经济的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.28.(2014天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.29.(2013辽宁)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.::,现用分层抽样的方法30.(2012江苏)某学校高一、高二、高三年级的学生人数之比为334从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.31.(2012浙江)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.32.(2012山东)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.三、解答题33.(2018全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 3m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)34.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++, 2()0.0500.0100.0013.841 6.63510.828P K k k ≥ 35.(2017新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:新养殖法旧养殖法箱产量/kg箱产量/kg(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较。

2016_2018学年高考数学试题分项版解析专题7概率与统计理含解析

2016_2018学年高考数学试题分项版解析专题7概率与统计理含解析

专题 27 概率与统计考纲解读明方向考点内容解读要求 高考示例常考题型预测热度①理解古典概型及其概率计算公式;2017 山东 ,8;2016 天津 ,16;选择题1. 古典概型②会计算一些随机事件所含的基本事掌握★★★2015 广东 ,4; 解答题件数及事件发生的概率2014 陕西 ,62017 课标全国①了解随机数的意义 , 能运用模拟方Ⅰ,2;2. 几何概型法估计概率 ;了解2016 课标全国选择题★☆☆②了解几何概型的意义Ⅰ,4;2015 湖北 ,7分析解读 1. 掌握在古典概型条件下 , 能应用任何事件的概率公式解决实际问题 .2. 通过实例 , 理解几何概型及其概率计算公式 , 并会运用公式求解一些简单的有关概率的问题. 本节在高考中单独命题时 ,通常以选 择题、填空题形式出现 , 分值约为 5 分, 属中低档题 . 随机事件 , 古典概型与随机变量的分布列 , 期望与方差等综合在一起考查时一般以解答题形式出现, 分值约为12 分, 属中档题 .考点内容解读要求高考示例预测热常考题型度①理解随机抽样的必要性和重要性;2017 江苏 ,3;2015 湖北 ,2;选择题1. 随机抽样②会用简单随机抽样方法从总体中抽取样本; 理解★★☆2014 湖南 ,2;填空题了解分层抽样和系统抽样方法2013 课标全国Ⅰ ,3①了解分布的意义和作用 , 会列频率分布表 ,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点;2017 课标全国②理解样本数据标准差的意义和作用 , 会计算Ⅲ,3;数据标准差 ;2016 山东 ,3;选择题2. 用样本估③能从样本数据中提取基本的数字特征 ( 如平2016 四川 ,16;填空题 ★★★计总体均数、标准差 ), 并给出合理的解释 ;掌握2015 广东 ,17;解答题④会用样本的频率分布估计总体分布 , 会用样2015 江苏 ,2;本的基本数字特征估计总体的基本数字特征 ,2014 山东 ,7理解用样本估计总体的思想;⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题分析解读 1. 掌握简单随机抽样、系统抽样、分层抽样等常用抽样方法 , 体会三种抽样方法的区别与联系及具体的操作步骤 .2. 会用样本的频率分布估计总体的分布 , 会用样本的数字特征估计总体的数字特征.3. 样 本数字特征及频率分布直方图为高考热点 . 有关统计内容及方法主要以选择题、填空题的形式呈现, 分值约为 5 分 , 属容易题 ; 抽样方法和各种统计图表与概率的有关内容相结合也会出现在解答题中, 分值约为 12 分,属中档题 .考点内容解读要求 高考示例预测热常考题型度(1) ①会作两个有关联变量的数据的散点图 , 会利用散点图认识变量间的相关关系 ;②了解最小二乘法的思想, 能根据给出的线性2017 山东 ,5;2016 课标全国回归方程系数公式建立线性回归方程.Ⅲ,18;变量的相关, 并能应用这选择题 (2) 了解下列一些常见的统计方法 了解2015 课标Ⅰ ,19; 性、★★☆些方法解决一些实际问题 .2015 福建 ,4; 解答题统计案例①独立性检验 : 了解独立性检验 ( 只要求 2×2列2014 课标Ⅱ ,19;联表 ) 的基本思想、方法及其简单应用;2014 重庆 ,3②回归分析 : 了解回归分析的基本思想、方法及其简单应用分析解读1. 理解用回归分析处理变量相关关系的数学方法 , 理解最小二乘法 .2. 了解独立性检验的基本思想 , 认识统计方法在决策中的作用 .3. 了解回归的基本思想方法及其简单应用.4. 回归分析与独立性检验在 今后的高考中分值可能会提高 . 本节在高考中主要以选择题、解答题的形式呈现, 分值约为 5 分或 12 分, 小题为容易题 , 解答题属中档题 .2018 年高考全景展示1.【 2018 年理新课标I 卷】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB , AC .△ ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II, III的概率分别记为p 1,p 2, p 3,则A. p 1=p 2B. p 1=p 3C. p 2=p 3D. p 1=p 2+p 3【答案】 A【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出详解:设p 1, p 2, p 3 的关系,从而求得结果,则有.,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果. 2.【 2018 年理新课标 I 卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】 A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项 .点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果 .3.【 2018 年理数全国卷II 】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如.在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A. B. C. D.【答案】 C点睛:古典概型中基本事件数的探求方法:(1) 列举法 . (2)树状图法:适合于较为复杂的问题中的基本事件的探求 . 对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.4.【 2018 年江苏卷】某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参加活动,则恰好选中 2 名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率 .详解:从 5 名学生中抽取 2 名学生,共有10 种方法,其中恰好选中 2 名女生的方法有 3 种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法 .(2) 树状图法:适合于较为复杂的问题中的基本事件的探求. 对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3) 列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4) 排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【 2018 年江苏卷】已知 5 位裁判给某运动员打出的分数的茎叶图如图所示,那么这 5 位裁判打出的分数的平均数为________.【答案】 90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知, 5 位裁判打出的分数分别为,故平均数为.点睛:的平均数为.6.【 2018 年全国卷Ⅲ理】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40 名工人,将他们随机分成两组,每组20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:( 1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;( 2)求 40 名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式( 3)根据( 2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,【答案】(1)第二种生产方式的效率更高 . 理由见解析( 2) 80( 3)能【解析】分析:( 1)计算两种生产方式的平均时间即可。

2018高考数学(文)分类汇编 统计与概率综合及统计案例 Word版含解析【 高考】

2018高考数学(文)分类汇编 统计与概率综合及统计案例 Word版含解析【 高考】

第二节 统计与概率综合及统计案例题型138 抽样方式2013年1.(2013江西文5)总体有编号为01,02,,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( ).A .08B .07C .02D .012.(2013湖南文3) 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件, 60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为的样本进行调查,其中从丙车间的产品中抽取了件,则n =( ).A. B.10 C.12 D.132014年 1.(2014四川文2)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( ).A.总体B.个体C.样本的容量D.从总体中抽取的一个样本2.(2014重庆文3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取70人,则n =( ). A.100B.150C.200D.2503.(2014广东文6)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ).A.50B.40C.25D.20 4.(2014湖南文3)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( ).A.123p p p =<B. 231p p p =<C.132p p p =<D.123p p p == 5.(2014湖北文11)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总 数为件.6.(2014天津文9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.2015年1.(2015四川文3)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是().A. 抽签法B. 系统抽样法C. 分层抽样法D. 随机数法1.解析按照各种抽样方法的适用范围可知,应使用分层抽样.故选C.2.(2015福建文13)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.2.解析由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=(人).3.(2015北京文4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为().A.90B. 100C. 180D.3003.解析依题意,老年教师人数为900320180160043004300⨯=(人).故选C.2017年1.(2017江苏卷3)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.1.解析按照分层抽样的概念应从丙种型号的产品中抽取60300181000⨯=(件).20330443454365577783210题型139 样本分析——用样本估计总体2013年1. (2013四川文7)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据茎 叶图如图所示.以组距为将数据分组成[)[)[)[)0551030353540,,,,,,,,时,所作的频率分布直方图是( ).A.B.C . D.2. (2013山东文10)将某选手的个得分去掉个最高分,去掉一个最低分,个剩余分数的平均分为91.现场作的个分数的茎叶图后来有个数据模糊,无法辨认,在图中以表示:则个剩余分数的方差为( )A.11616 B.367 C.36D. 3.(2013辽宁文5) 某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[)[)[)[)20404060608080100,,,,,,,.若低于60分的人数是15人,则该班的学生人数是( ).A. 45B. 508779401091x/分C. 55D. 604.(2013江苏则成绩较为稳定(方差较小)的那位运动员成绩的方差为5.(2013湖北文12)某学员在一次射击测试中射靶10次,命中环数如下:7879,,,,5491074,,,,,,则(1)平均命中环数为; (2)命中环数的标准差为.6. (2013辽宁文16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为,样本方差为,且样本数据互不 相同,则样本数据中的最大值为.2014年1.(2014陕西文9)某公司10位员工的月工资(单位:元)为1210,,x x x ,其均值和方差分别为和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ).A.,22100s +B.100x +,22100s +C.,2sD. +100,2s2.(2014山东文8)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[)[)[)[)[]12,13,13,14,14,15,15,16,16,17,将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有人,则第三组中有疗效的人数为( ).A. B. C. 12 3.(2014江苏6位:cm ),所得数据均在区间[]80130,上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm .kPa(加上原点处数字0)4.(2014新课标Ⅰ文18)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如图所示频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定? 5.(2014北京文18)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:100 90 80 110 /cmO75 85 95 105(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).6. (2014新课标Ⅱ文19)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.7.(2014(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.2015年1.(2015重庆文4)重庆市2013年各月的平均气温(C)数据的茎叶图如下:0 8 91 2 5 82 0 03 3 8 3 1 2则这组数据的中位数是( ).A. 19B.20C. 21.5D. 23 1. 解析 将茎叶图各数据从小到大排列,中位数为2020202+=.故选B . 2.(2015湖南文2) 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.13 0 0 3 4 5 6 6 8 8 8 914 1 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 8 15 0 1 2 2 3 3 3若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间[]139,151上的运动员人数是( ).A. 3B. 4C. 5D. 62. 解析 由茎叶图可知,在区间]151,139[的人数为20,再由系统抽样的性质可知人数为435720=⨯人.故选B. 3.(2015湖北文2) 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ).A .134石B .169石C .338石D .1365石 3.解析 设一石米中有粒谷,这批米内夹谷石,则281534254x n n ⋅=⋅,得153428169254x ⨯=≈.故选B.4.(2015山东文6)为比较甲、乙两地某月14时的气温状况,随机选取该月中的天,将这天中14时的气温数据(单位:℃)制成如图所示的茎叶图. 考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ). A. ①③B. ①④C. ②③D. ②④4.解析 由茎叶图可知,甲的数据为26,28,29,31,31;乙的数据为28,29,30,31,32. 所以()12628293131295x =⨯++++=甲,()12829+303132305x =⨯+++=乙. 所以x x <甲乙,①正确; 又()()()()()2222221182629282929293129312955s ⎡⎤=-+-+-+-+-=⎣⎦甲; ()()()()()22222212830293030303130323025s ⎡⎤=-+-+-+-+-=⎣⎦乙. 可得22s s >甲乙,所以s s >甲乙.④正确.故选B.5.(2015广东文12) 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为.5.解析 因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,又样本数据121x +,221x +,⋅⋅⋅,21n x +的和为()122n x x x n ++++,所以样本数据的均值为21x +=11.评注本题考查均值的性质.6.(2015湖北文14)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.30.9],内,其频率分布直方图如图所示. (1)直方图中的=.(2)在这些购物者中,消费金额在区间[0.50.9],内的购物者的人数为./万元a6. 解析 由频率分布直方图及频率和等于,可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[]0.50.9,内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=, 所以消费金额在区间[]0.50.9,内的购物者的人数为0.6100006000⨯=.7.(2015广东文17)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图所示./度(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则从月平均用电量在[)220,240的用户中应抽取多少户? 7.解析()1由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=, 得0.0075x =.(2)由图可知,月平均用电量的众数是2202402302+=. 因为()0.0020.00950.011200.450.5++⨯=<, 又()0.0020.00950.0110.0125200.70.5+++⨯=>,所以月平均用电量的中位数在[)220,240内.设中位数为,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=, 得224a =,所以月平均用电量的中位数是224.(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=(户); 月平均用电量为[)240,260的用户有0.00752010015⨯⨯=(户); 月平均用电量为[)260,280的用户有0.0052010010⨯⨯=(户); 月平均用电量为[]280,300的用户有0.0025201005⨯⨯=(户). 抽取比例为11125151055=+++,所以从月平均用电量在[)220,240的用户中应抽取12555⨯=(户).2016年1.(2016山东文3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.,样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ). A.56 B.60 C.120 D.1401. D 解析 由图可知组距为2.5,每周的自习时间少于22.5小时的频率为0.30=2.5×)0.1+0.02(,所以,每周自习时间不少于22.5小时的人数是140=0.301×200)(-人.故选D.2.(2016上海文4)某次体检,位同学的身高(单位:m )分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是(m ).2.1.76解析 将数据从小到大排序1.69,1.72,1.76,1.78,1.80,故中位数为1.76.3.(2016江苏4)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.3. 0.1解析由题意得 5.1x =,故()22222210.40.300.30.40.15s=++++=./小时17.54.(2016四川文16)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)00.50.5,1⋅⋅⋅,,,[]4,4.5分成组,制成了如图所示的频率分布直方图.(1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于吨的人数.请说明理由;(3)估计居民月均用水量的中位数.4.解析 ()由频率分布直方图,可知:月用水量在[]0,05.的频率为0.080.5=0.04.⨯ 同理,在[)(][)[)[)[)0.5,1 1.5,222.53,3.5 3.5,44,4.5,,,,,,等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由()10.04+0.08+0.21+0.25+0.06+0.04+0.020=0.5+0.5a a -⨯⨯,解得0.30.a =(2)由(1)得,100位居民月均水量不低于吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于吨的人数为3000000.13=36000.⨯(3)设中位数为x 吨.因为前组的频率之和为0.040.080.15+0.21+0.250.730.5++=>, 而前4组的频率之和为0.040.080.150.210.480.5+++=<,所以2 2.5.x <… 由()0.5020.50.48x ⨯-=-,解得 2.04.x =故可估计居民月均用水量的中位数为2.04吨.5.(2016北京文17)某市民用水拟实行阶梯水价,每人用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图: (1)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当3w =时,估计该市居民该月的人均水费.5. 解析 (1)由用水量的频率分布直方图知,该市居民该月用水量在区间[](](](](]0.5,1,1,1.5,1.5,2,2,2.5,2.5,3内的频率依次为0.1,0.15,0.2,0.25,0.15. 所以该月用水量不超过立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w 至少定为.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表40.160.1580.2100.25120.15170.05220.05270.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=10.5用水量(立方米)(元).2017年1.(2017全国1文2)为评估一种农作物的种植效果,选了块地作试验田.这块地的亩产量(单位:kg )分别为12n x x x ⋯,,,,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ).A .12n x x x ⋯,,,的平均数 B .12n x x x ⋯,,,的标准差 C .12n x x x ⋯,,,的最大值 D .12n x x x ⋯,,,的中位数 1. 解析 刻画评估这种农作物亩产量稳定程度的指标是标准差.故选B. 2.(2017山东卷文8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件). 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ).A. 3,5B. 5,5C. 3,7D. 5,72. 解析 由于甲组中位数为65,故5y =,计算得乙组平均数为66,故3x =.故选A.题型140 统计图表与概率的综合2013年1. (2013陕西文5)对一批产品的长度(单位: 毫米)进行抽样检测,下图为检测结果的频率分布直方图. 根据标准,产品长度在区间[)2025,上为一等品, 在区间[)1520,和区间[)2530,上为二等品, 在区间[)1015,和[]3035,上为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为( ).毫米O0.060.040.02A. 0.09B. 0.20C. 0.25D. 0.452. (2013重庆文6) 下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[)2230, 内的概率为( ).A. 0.2B. 0.4C. 0.5D. 0.6开始结束3. (2013安徽文17)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30 名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲 乙 (1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12x x ,,估计12x x -的值. 4.(2013广东文17)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,其中重量在[)80,85的有几个?(3)在(2)中抽出的个苹果中,任取个,求重量在[)80,85和[)95,100中各有的概率.5. (2013四川文1812324,,,,这24个整数中都可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为的 概率()123i P i =,,; (2)甲、乙两同学依据自己对程序框图的理解,各自编写程序 重复运行次后,统计记录了输出y 的值为()123i i =,,的频数 以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分) 乙的频数统计表(部分)当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(123)i i =,,的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.6. (2013湖南文18)某人在如图所示的直角边长为米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过米.(1(2)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率.2014年1.(2014重庆文17)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示:7632(I )求频率分布直方图中的值;(II )分别求出成绩落在[)6050,与[)7060,中的学生人数; (III )从成绩在[)7050,的学生中任选2人,求此2人的成绩都在[)7060,中的概率.2015年1.(2015全国Ⅱ文3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ).A. 逐年比较,2008年减少二氧化碳排放量的效果显著B. 2007年我国治理二氧化碳排放显现成效C. 2006年以来我国二氧化碳年排放量呈逐渐减少趋势D. 2006年以来我国二氧化碳年排放量与年份正相关2010年2012年2009年2013年2004年2006年2007年2008年2011年2005年190020001.解析由柱形图可以看出,我国二氧化硫排放量呈下降趋势,故年排放量与年份是负相关关系,依题意,需选不正确的.故选D.命题意图 本题考查统计的基本知识,要注意读懂题意和图表,理解相关性有正相关和负相关. 2.(2015安徽文17)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[)40,50,[)50,60,,[)80,90,[]90,100.(1)求频率分布图中的值;(2)估计该企业的职工对该部门评分不低于80分的概率;(3)从评分在[)40,60的受访职工中,随机抽取2人,求此2人评分都在[)40,50的概率.2. 解析 (1)由频率分布直方图可知,()0.0040.0180.02220.028101a +++⨯+⨯=, 解得0.006a =.(2)由频率估计概率,评分不低于80分的概率为()0.0220.018100.4+⨯=. (3)由频率分布直方图可知:在[)40,50内的人数为0.00410502⨯⨯=(人), 在[)50,60内的人数为0.00610503⨯⨯=(人).设[)40,50内的2人评分分别为12,a a ,[)50,60内的3人评分分别为123,,A A A ,则从[)40,60的受访职工中随机抽取2人,2人评分的基本事件有()12,a a ,()11,a A ,()12,a A ,()13,a A ,()21,a A ,()22,a A ,()23,a A ,()12,A A ,()13,A A ,()23,A A ,共10种.其中2人评分都在[)40,50的概率为110. 3.(2015全国Ⅱ文18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得出A 地区用户满意评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表(1)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B 地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.3. 分析 (1) 根据题意通过两地区用户满意度评分的频率分布直方图可以看出B 地区用户满意评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,A 地区用户的评分满意度比较分散;(2)由直方图得()A P C 的估计值为0.6.()B P C 的估计值为0.25,所以A 地区的用户满意度等级为不满意的概率大.解析 (1)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值;B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(2)A 地区用户的满意度等级为不满意的概率大.记A C 表示事件:“A 地区用户的满意度等级为不满意”;B C 表示事件:“B 地区用户的满意度等级为不满意”.由直方图得()A P C 的估计值为()0.010.020.03100.6++⨯=,()B P C 的估计值为()0.0050.02100.25+⨯=.所以A 地区用户的满意度等级为不满意的概率大.评注 高考中对统计与概率的考查,主要建立在实际问题中,特别要能读懂题意,分析题目中的数据,并对数据进行处理,在解答中要注意概率的计算方法.2016年1.(2016全国甲文18)某险种的基本保费为a (单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求()P A 的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求()P B 的估计值;(3)求续保人本年度平均保费的估计值.1.解析 (1)由所给数据知,事件A 发生当且仅当一年内出险次数小于,所以()60500.55200P A +==. (2)由所给数据知,事件B 发生当且仅当一年内出险次数大于等于且小于等于,所以3030()0.3200P B +==. (3)由题所求分布列为调查名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.1020.05 1.1925a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=.2.(2016山东文16)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若3xy …,则奖励玩具一个; ②若8xy …,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.2.解析 用数对(),x y 表示儿童参加活动先后记录的数,则基本事件空间Ω与点集(){},|,,14,14S x y x y x y=∈∈N N 剟剟一一对应.因为S 中元素个数是4416,⨯=所以基本事件总数为16.n =(1)记“3xy …”为事件A .则事件A 包含的基本事件共有个,即()()()()()1,1,1,2,1,3,2,1,3,1, 所以()5,16P A =即小亮获得玩具的概率为516. (2)记“8xy …”为事件B ,“38xy <<”为事件C .3421则事件B 包含的基本事件共有6个,即()()()()()()2,4,3,3,3,44,2,4,3,4,4,所以()63.168P B == 则事件C 包含的基本事件共有个,即()()()()()1,4,2,2,2,3,3,2,4,1,所以()5.16P C = 因为35,816> 所以小亮获得水杯的概率大于获得饮料的概率. 3.(2016全国乙文19)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x 表示台机器在三年使用期内需更换的易损零件数,y 表示台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若19n =,求y 与x 的函数解析式;(2)若要求 “需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买台机器的同时应购买19个还是20个易损零件?3.解析(1)当19x …时,192003800y =⨯=(元);当19x >时,()19200195005005700y x x =⨯+-⨯=-(元),所以3800,,195005700,,19x x y x x x ∈⎧=⎨-∈>⎩N N ….(2)由柱状图可知更换易损零件数的频率如表所示.所以更换易损零件数不大于18的频率为:,更换易损零件数不大于19的频率为:0.060.160.240.240.700.5+++=>,故n 最小值为19.(3)若每台都购买19个易损零件,则这100台机器在购买易损零件上所需费用的平均数为:10019200205002105004000100⨯⨯+⨯+⨯⨯=(元);若每台都够买20个易损零件,则这100台机器在购买易损零件上所需费用的平均数为 10020200105004050100⨯⨯+⨯=(元).因为40004050<,所以购买台机器的同时应购买19个易损零件.2017年1.(2017全国3卷文3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳1.解析由图易知月接待游客量是随月份的变化而波动的,有上升也有下降,所以选项A错误.故选A.评注与2016年的雷达图考法类似,近年来,对各类图形与图表的理解与表示成为高考的一个热点,总体来说,此类题型属于基础类题型,用排除法解此类问题会比较快,但要注意题目要求选择错误的一项,如果审题不仔细可能会造成失分!2.(2017全国2卷文19)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg)的某频率直方图如图所示. (1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg”,估计A的概率;(修图:下面表中原点处加数字0)箱产量/kg箱产量/kg。

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考文科数学试题分类汇编训练:概率与统计1.【2017课标1,文2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【解析】试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 【考点】样本特征数【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平; 中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.2.【2017课标1,文4】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B 【解析】【考点】几何概型【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.3.【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A【解析】【考点】茎叶图、样本的数字特征【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.4.【2017天津,文3】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 (A )45(B )35(C )25(D )15【答案】C 【解析】试题分析:选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===.本题选择C 选项. 【考点】古典概型【名师点睛】本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,利用排列组合有关知识,正确找出随机事件A 包含的基本事件的个数和试验中基本事件的总数代入公式()()n A P n =Ω. 5.【2017课标II ,文11】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A.110 B. 15 C. 310 D. 25【答案】D【考点】古典概型概率【名师点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.6.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【考点】折线图【名师点睛】用样本估计总体时统计图表主要有1.频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长方形的面积之和为1);2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.7.【2017江苏,7】 记函数()f x 的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ . 【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【考点】几何概型概率【名师点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率. 8.【2017江苏,3】 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件.【答案】18【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .9.【2017课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.【答案】(1)18.0-≈r ,可以;(2)(ⅰ)需要;(ⅱ)均值与标准差估计值分别为10.02,0.09. 【解析】试题分析:(1)依公式求r ;(2)(i )由9.97,0.212x s =≈,得抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查;(ii )剔除第13个数据,则均值的估计值为10.02,方差为0.09.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,0.09≈. 【考点】相关系数,方差均值计算【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.10.【2017课标II ,文19】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ), 其频率分布直方图如下:(1) 记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。

附: )22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)0.62.(2)有把握(3)新养殖法优于旧养殖法 【解析】(2)根据箱产量的频率分布直方图得列联表K 2=15.70510010096104⨯⨯⨯≈由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图平均值(或中位数)在45kg 到50kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.【考点】频率分布直方图【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1; (2)频率分布直方图中均值等于组中值与对应概率乘积的和 (3)均值大小代表水平高低,方差大小代表稳定性11.【2017课标3,文18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。

相关文档
最新文档