线性方程组和矩阵

合集下载

高中数学知识点总结线性方程组与矩阵运算

高中数学知识点总结线性方程组与矩阵运算

高中数学知识点总结线性方程组与矩阵运算高中数学知识点总结:线性方程组与矩阵运算在高中数学学习中,线性方程组与矩阵运算是一个重要的章节。

本文将对这两个知识点进行详细总结,以帮助同学们更好地理解和掌握相关概念与方法。

一、线性方程组1. 定义与基本形式线性方程组是由若干个线性方程组成的方程组。

一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b其中,a₁、a₂、...、aₙ称为系数,x₁、x₂、...、xₙ称为未知数,b为常数。

2. 解的存在与唯一性对于线性方程组来说,存在三种解的情况:(1)无解:若线性方程组的系数矩阵的秩r小于增广矩阵的秩s,则线性方程组无解。

(2)有唯一解:若线性方程组的系数矩阵的秩r等于增广矩阵的秩s,并且r=未知数的个数n,则线性方程组有唯一解。

(3)有无穷多解:若线性方程组的系数矩阵的秩r等于增广矩阵的秩s,但r<n,则线性方程组有无穷多解。

3. 解的求解方法(1)代入法:将一个方程的解代入到其他方程中,逐步求解出未知数。

(2)消元法:通过行变换等操作,将线性方程组转化为简化行阶梯形矩阵,从而求解出未知数。

二、矩阵运算1. 矩阵的定义与基本性质矩阵是一个按照行和列排列起来的数的矩形阵列。

常用的表示方法为:A=(aij)ₙₓₙ其中,A表示矩阵,aij表示矩阵中第i行、第j列的元素,ₙ表示矩阵的行数,ₙ表示矩阵的列数。

矩阵的基本性质包括加法、数乘、乘法等。

其中,加法满足交换律和结合律,数乘和乘法满足分配律。

2. 矩阵的基本运算(1)矩阵的加法与减法:两个矩阵进行加法或减法时,需要行列相同,将对应位置的元素进行相加或相减。

(2)矩阵的数乘:一个矩阵与一个数相乘时,将矩阵中的每个元素与该数相乘。

(3)矩阵的乘法:两个矩阵Aₙₓₙ和Bₙₓₙ相乘的结果为一个矩阵Cₙₓₙ。

Cₙₓₙ的第i行第j列的元素cij等于A的第i行与B的第j列对应元素的乘积之和。

3. 矩阵的转置与逆矩阵(1)矩阵的转置:将矩阵的行与列进行互换得到的新矩阵称为原矩阵的转置矩阵。

线性方程组与矩阵

线性方程组与矩阵

线性方程组与矩阵线性方程组和矩阵是线性代数中重要的概念和工具,在数学和工程领域都有广泛的应用。

本文将介绍线性方程组和矩阵的基本定义、解法和应用。

一、线性方程组线性方程组是由一组线性方程构成的方程组,其中每个方程都是由未知数的线性项和常数项构成。

一般地,一个包含n个未知数的线性方程组可以表示为:a11*x1 + a12*x2 + a13*x3 + ... + a1n*xn = b1a21*x1 + a22*x2 + a23*x3 + ... + a2n*xn = b2a31*x1 + a32*x2 + a33*x3 + ... + a3n*xn = b3...an1*x1 + an2*x2 + an3*x3 + ... + ann*xn = bn其中,a11, a12, ..., ann是系数矩阵的元素,x1, x2, ..., xn是未知数,b1, b2, ..., bn是常数项。

这个方程组可以用矩阵和向量的形式更简洁地表示为Ax=b,其中A是系数矩阵,x和b分别是未知数和常数项的向量。

二、矩阵矩阵是线性代数中的基本工具,是由m行n列的数按一定规律排列的数表。

一个常见的表示形式是使用方括号将元素括起来,并按行或列排列。

例如:A = [a11 a12 a13a21 a22 a23a31 a32 a33]其中, A是一个3行3列的矩阵,a11、a12等是矩阵的元素。

矩阵可以进行加法、乘法和数乘等运算,符合相应的运算规则和性质。

矩阵的乘法特别有用,可以用于表示线性方程组的系数矩阵与未知数向量之间的关系。

三、线性方程组的解法解线性方程组的方法有很多,包括高斯消元法、LU分解法、矩阵逆法等。

其中高斯消元法是最常用的解法,可以将线性方程组化为一个等价的三角形式方程组,从而求得解。

高斯消元法的基本步骤如下:1. 将线性方程组写成增广矩阵的形式,即将系数矩阵A和常数项向量b合并为一个矩阵[B]。

2. 利用初等行变换将系数矩阵化为上三角矩阵。

《线性代数》第1章线性方程组与矩阵

《线性代数》第1章线性方程组与矩阵
当 a1 a2 L an 1 时,这个数量矩阵就称为 n 阶单位矩阵,简称为单位阵,
记为 En 或 E即,
1 0 L 0
E
0
1L
0
.
L L O M
0
0L
1
定义2 两个矩阵的行数相等、列数也相等,则称这两个矩阵为同型矩阵.
如果两个同型矩阵
A (aij )mn 和 B (bij )mn 中所有对应位置的元素都相等, 即 aij bij ,其中
该线性方程组由常数 aij i 1,2,L ,m ; j 1,2,L ,n 和 bi i 1, 2,L , m完全确定, 可以用一个 mn 1 个数排成的 m 行 n 1列的数表
a11 a12 L
°A
a21
a22
L
M M
am1
am2
L
a1n b1
a2n
b2
M M
amn bm
一、矩阵的定义
得到的 n m 矩阵称为矩阵 A 的转置矩阵,记为 AT ,即
a11 a21 L
AT
a12
L
a22 L LL
a1n
a2n L
am1
am 2
.
L
anm
矩阵的转置满足下面的运算规律(这里 k 为常数, A 与 B 为同型矩阵):
数 aij 位于矩阵aij 的第 i 行第 j 列,称为矩阵的i, j 元素, 其中 i 称为元素 aij 的行标, j 称为元素 aij 的列标.
一般地,常用英文大写字母 A, B,L 或字母, , ,L 表示矩阵.
一、矩阵的定义
第1章 线性方程组与矩阵 6
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵 称为复矩阵. 本书除特别指明外,都是指实矩阵.

线性方程组与矩阵的秩

线性方程组与矩阵的秩

线性方程组与矩阵的秩线性方程组是数学领域中的一个重要概念,与之密切相关的是矩阵的秩。

本文将介绍线性方程组和矩阵的基本概念、性质及其在实际问题中的应用。

一、线性方程组的定义及性质线性方程组是由若干个线性方程组成的方程组,一般表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,aᵢₙ为系数,xₙ为未知数,bᵢ为常数,m为方程组的数量,n为未知数的数量。

线性方程组的性质包括可解性和解的唯一性。

对于一个线性方程组,当其中的方程数量与未知数数量相等,并且方程组的系数矩阵满秩时,方程组可解且解唯一;当方程数量大于未知数数量时,方程组可能无解;当方程数量小于未知数数量时,方程组可能有无穷多解。

二、矩阵的定义及性质矩阵是一个按照行和列排列的数表,用来表示线性方程组的系数。

一个m×n的矩阵A可表示为:A = [a₁₁ a₁₂ ... a₁ₙa₂₁ a₂₂ ... a₂ₙ...aₙ₁ aₙ₂ ... aₙₙ]矩阵的基本性质包括矩阵的加法、数乘和乘法运算。

两个矩阵的加法定义为矩阵对应元素相加,数乘定义为矩阵的每个元素乘以一个常数。

矩阵的乘法定义为矩阵的行与列的线性组合。

矩阵的秩是矩阵的一个重要概念,表示矩阵中非零行的最大线性无关组的元素个数。

通常用r(A)表示矩阵A的秩。

矩阵的秩具有以下性质:1. r(A) ≤ min(m, n),即矩阵的秩不会超过矩阵的行数和列数的最小值。

2. 当r(A) = m时,矩阵的列向量线性无关,矩阵的列满秩;当r(A) = n时,矩阵的行向量线性无关,矩阵的行满秩。

3. 矩阵的秩与其行列式的性质相关,当矩阵满秩时,其行列式不为0,反之亦然。

三、线性方程组与矩阵的关系及应用线性方程组可用矩阵的形式表示,设A为系数矩阵,x为未知数向量,b为常数向量,则线性方程组可以表示为Ax = b。

线性方程组与矩阵运算

线性方程组与矩阵运算

线性方程组与矩阵运算线性方程组与矩阵运算是线性代数中重要的基础概念和计算工具。

线性方程组的解等于矩阵运算结果的应用在各个领域中具有广泛且重要的应用,如经济学、物理学等。

本文将介绍线性方程组与矩阵运算的概念、性质以及计算方法。

一、线性方程组在研究线性方程组之前,我们先来了解线性方程的概念。

一个线性方程可以写成形如a₁x₁ + a₂x₂ + ... + aₙxₙ = b的形式,其中x₁,x₂, ..., xₙ是未知数,a₁, a₂, ..., aₙ是已知系数,b是常数项。

一个线性方程组是由若干个线性方程组成的集合,形如:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中m表示方程的个数,n表示未知数的个数。

解一个线性方程组是指找到一组数x₁, x₂, ..., xₙ使得所有的方程都满足。

二、矩阵运算矩阵运算是在线性方程组求解中的重要工具。

一个矩阵是一个由数按照一定规则排列而成的矩形阵列。

在线性方程组中,系数矩阵A是由方程组的所有系数按顺序排列形成的矩阵,常数项矩阵B是由方程组的所有常数项按顺序排列形成的矩阵,未知数矩阵X是由方程组的所有未知数按顺序排列形成的矩阵。

(此处应有矩阵的排版示例)通过矩阵的运算,我们可以将线性方程组表示为:AX = B其中A是系数矩阵,X是未知数矩阵,B是常数项矩阵。

为了求解线性方程组,我们可以通过矩阵的基本运算,如乘法、加法和求逆来计算。

三、矩阵运算的性质矩阵运算具有一些重要的性质,这些性质在线性方程组的求解中起着重要的作用。

1. 加法的交换律和结合律对于任意的矩阵A、B和C,满足以下等式:A +B = B + A(A + B) + C = A + (B + C)2. 数乘的结合律和分配律对于任意的矩阵A和数k,满足以下等式:k(A + B) = kA + kB(k + l)A = kA + lA3. 矩阵乘法的结合律对于任意的矩阵A、B和C,满足以下等式:(AB)C = A(BC)四、线性方程组的求解方法求解线性方程组可以通过矩阵运算中的逆矩阵来实现。

矩阵与线性方程组求解

矩阵与线性方程组求解

矩阵与线性方程组求解在数学领域中,矩阵与线性方程组是非常重要的概念。

矩阵可以用来表示线性方程组,而线性方程组的求解则可以通过矩阵运算来实现。

本文将介绍矩阵与线性方程组的基本概念,并以实例演示如何使用矩阵来求解线性方程组。

一、矩阵的基本概念矩阵是由数个数按照一定的规则排列而成的矩形阵列。

一个矩阵通常用大写字母表示,例如A、B、C等。

矩阵中的每个数称为元素,用小写字母表示,例如a、b、c等。

矩阵的元素按照行和列的顺序排列,可以用下标表示。

例如,A的第i行第j列的元素可以表示为A[i,j]。

二、线性方程组的表示线性方程组是由一系列线性方程组成的方程集合。

每个线性方程可以表示为:a1x1 + a2x2 + ... + anxn = b其中,a1、a2、...、an是已知系数,x1、x2、...、xn是未知数,b是等号右侧的常数。

线性方程组可以用矩阵表示,形式为AX = B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。

三、矩阵的运算1. 矩阵的加法:对应位置的元素相加。

2. 矩阵的减法:对应位置的元素相减。

3. 矩阵的数乘:矩阵中的每个元素乘以一个常数。

4. 矩阵的乘法:矩阵乘法是指两个矩阵相乘的运算,它的定义是:若A是m行n列的矩阵,B是n行p列的矩阵,则A与B的乘积C是一个m行p列的矩阵,其中C[i,j]等于A的第i行与B的第j列对应元素乘积的和。

四、矩阵的逆若一个n阶矩阵A存在一个n阶矩阵B,使得AB=BA=I,其中I是单位矩阵,则称矩阵A是可逆的,矩阵B称为A的逆矩阵。

逆矩阵的存在性是一个重要的性质,可以用来求解线性方程组。

五、使用矩阵求解线性方程组的步骤1. 将线性方程组转化为矩阵形式AX = B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。

2. 判断矩阵A是否可逆,若不可逆则无解,若可逆则继续下一步。

3. 计算A的逆矩阵A^-1。

4. 将方程组转化为X = A^-1B的形式,即X = A^-1B。

线性方程组与矩阵的表示与运算

线性方程组与矩阵的表示与运算

线性方程组与矩阵的表示与运算一、线性方程组1.概念:线性方程组是由多个线性方程构成的组合,通常表示为:a1x + b1y + c1 = 0a2x + b2y + c2 = 0amx + bmy + cm = 0其中,ai, bi, ci (i = 1, 2, …, m) 是常数,x, y 是未知数。

2.线性方程组的解:线性方程组的解是指能够满足所有方程的未知数的值。

线性方程组可能有唯一解、无解或有无限多解。

3.高斯消元法:高斯消元法是一种求解线性方程组的算法,通过初等行变换将线性方程组化为阶梯形或行最简形矩阵,从而求出解。

4.克莱姆法则:克莱姆法则是一种根据线性方程组的系数矩阵的行列式求解线性方程组的方法。

二、矩阵的表示与运算1.概念:矩阵是一个由数列组成的数列,通常表示为:A = [a_{ij}]其中,a_{ij} 是矩阵A的第i行第j列的元素,矩阵A有m行n列,称为m×n 矩阵。

2.矩阵的元素:矩阵的元素可以是实数、复数、向量等。

3.矩阵的运算:(1)矩阵加法:两个矩阵相加,对应元素相加。

(2)矩阵乘法:两个矩阵相乘,第一个矩阵的列数必须等于第二个矩阵的行数。

(3)矩阵的标量乘法:矩阵与标量相乘,矩阵的每个元素都乘以标量。

(4)矩阵的转置:矩阵的转置是将矩阵的行变为列,列变为行。

(5)矩阵的逆:矩阵的逆是指满足AA^(-1) = A^(-1)A = I的矩阵A^(-1),其中I是单位矩阵。

4.特殊矩阵:(1)单位矩阵:单位矩阵是一个方阵,其对角线上的元素都是1,其余元素都是0。

(2)零矩阵:零矩阵是一个所有元素都是0的矩阵。

(3)对角矩阵:对角矩阵是一个只有对角线上有非零元素的矩阵。

(4)正交矩阵:正交矩阵是一个满足AA^(-1) = A^(-1)A = I的方阵。

三、线性方程组与矩阵的关系1.线性方程组的矩阵表示:线性方程组可以表示为一个系数矩阵A和增广矩阵(A|b),其中A是系数矩阵,b是常数矩阵。

大学数学:线性方程组与矩阵的转换知识点+练习

大学数学:线性方程组与矩阵的转换知识点+练习

大学数学:线性方程组与矩阵的转换知识点+练习知识点1. 线性方程组的定义:线性方程组由若干个线性方程组成,每个方程都是关于未知量的一次方程。

2. 线性方程组的解法:- 列主元消去法:根据系数矩阵的列主元素,通过行变换将线性方程组转化为简化行阶梯形式,从而求解未知量。

- 矩阵求逆法:根据系数矩阵的逆矩阵,将线性方程组转化为矩阵方程,然后通过求解矩阵方程得到解。

- 克拉默法则:利用克拉默法则求解线性方程组,需要先计算系数矩阵的行列式,然后通过求解若干个代数余子式得到解。

3. 线性方程组的解的性质:- 唯一解:当线性方程组有且仅有一个解时,称为唯一解。

- 无解:当线性方程组无解时,称为无解。

- 无穷多解:当线性方程组有无穷多个解时,称为无穷多解。

练题1. 求解以下线性方程组:2x + 3y = 75x - 4y = 32. 求解以下线性方程组:3x + 2y - z = 62x - 2y + 4z = 2x + y - 2z = 0答案与解析1. 答案与解析:将线性方程组转化为矩阵方程:[2 3 | 7][5 -4| 3]通过矩阵求逆法求解:[2 3 | 7] [1 -1 | -5/22][5 -4| 3] -> [5/22 -2/22 | 3/22] 得到解:x = -5/22, y = 3/22解析:通过求解系数矩阵的逆矩阵,可以得到线性方程组的解。

在此例中,解为唯一解。

2. 答案与解析:将线性方程组转化为矩阵方程:[3 2 -1 | 6][2 -2 4 | 2][1 1 -2 | 0]通过列主元消去法求解:[3 2 -1 | 6] [1 0 -1 | 4][2 -2 4 | 2] -> [0 3 1 | 2][1 1 -2 | 0] [0 0 0 | 0]得到解:x = 4, y = 2, z = 0解析:通过行变换将系数矩阵转化为简化行阶梯形式,从而可以得到线性方程组的解。

在此例中,解为唯一解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用欧姆定理和楚列斯基定律,可以得到串联电路和并联
电路的转移矩阵分别为
1 0
R1 1

1 1 R2
10 .
• i1
v1

R1
串联电路
i2 • i2
v2

梯形网络
R2
并联电路
i3 •
v3

4、线性方程组
a11 x1 a12 x2 L a1n xn b1
a21 x1 a22 x2 L LLLLLLL
11
不存在数 x 和 y 使 x y 1 和 x y 2 同时成立 , 故方程组
②无解 ; 方程组 ③ : 设 s 为任一数 , 那么 x1 x2 s 是 ③ 的解 , 从而方程组③ 有无限多个解.
这样看来 , 对于线性方程组需要讨论以下问题 : (1) 它是否有解? (2) 在有解时它的解是否惟一 ? (3) 如果有多个解, 如何求出它的所有解?
到站
为了便于计算,把表中的
广州 青岛 成都 拉萨
改成1,空白地方填上 0(变 定性为定量)就得到一个数
广州 0
发站 青岛
1
1 0
1 1
0 0
表:
这个数表反映 了四城市间交
成都 1
1
0
0
3、 电路是电子元件的神经系统 . 参数的计算是电路
设计的重要环节. 其依据来自两个方面,一是客观需要, 二是物理定律.
本次课(§1~ §2 )的要点
一、内容
1、矩阵是一张数表.
2、矩阵与线性变换的一一对应 .
3、矩阵的线性运算
① ②
加法 数乘
: :
对应元素相加. 每个元素倍乘 .
4、矩阵的乘法 (重点)
① 可乘条件 : 左列 = 右行
② 乘法的要领.
5、矩阵乘法的三大特征
① 无交换律 ; AB?= BA
当 AB 有意义时 , BA 不一定有意义.
二、难点 矩阵的乘法及其运算律. (教材第 31、33 页)
三、应用 矩阵乘法可表示变量间的线性变换 .
《线性代数》同济六版
第 2 章 矩阵及其运算
第一节 线性方程组和矩阵
课件制作:黄 明
2018年9月
一、线性方程组
设有 n 个未知数 m 个方程的线性方程组
a11 x1 a12 x2 L a1n xn b1
对于未知数的个数与方程的个数相等的齐次线性 方程组 , 这里先将一个结论告知大家 , 等到后面我们 会进一步地详细说(证)明 .
系数行列式 D 不等于 0 时 ,齐次线性方程只有零解 .
系数行列式 D 等于 0 时 ,齐次线性方程有非零解 .
以上两条结论均是充分且必要条件.
二、矩阵概念的引入
1、某班级同学早餐情况
a21 x1 a22 x2 L LLLLLLL
a2n xn b2 LLLLL
( 1)
am1 x1 am2 x2 L amn xn bm
其中 aij 是第 i 个方程的第 j 个未知数的系数, bi 是
第 i 个方程的常数项, i 1 , 2 , , m ; j 1 , 2 , , n ,
当常数项 b1 , b2 , , bm 不全为零时 , 线性方程组 (1) 叫做 n 元非齐次线性方程组 , 当b1 , b2 , , bm 全为零时 , (1) 式成为
a11x1 a12 x2 a1n xn 0,
a21x1 a22 x2 a2n xn 0,
(2)
am1 x1 am2 x2 amn xn 0,
例如

x
x
y y
0, 2;
x y 0,

x
y
1,
x y 2;
x1 x2 0, ③ 2x1 2x2 0,
3 x1 3x2 0.
就是三个二元线性方程组 , 并且③ 是齐次方程组.
下面讨论这三个方程组的解 . 方程组① : 因其系数行列式
1 D
1 2 0 , 知其有惟一解 x y 1 ; 方程组 ②: 显然
USB 扩展版 ( 图1.2 ) 中有输入和输出终端的电路.

v1 i1
记录输入电
压和
输入电流
(
电压
v
以V
为单位,
电流
i

A
为单位)
,

v2 i2
记录
输出
电压和输出电流.
. i1 . 输入终端v1
电路
i2
.
输出终端 v2 .

v2 i2
A
v1 i1
对于这个四端网络我们称矩阵 A
为转移矩阵.
下图给出了一个梯形网络 . 左边的电路称为串联电路, 电阻为 R1 ( 单位:) ;右边的电路是并联电路,电阻为 R2 .
对线性方程组的 研究可转化为对
这张表的研究.
amn
bm
5、田忌赛马的故事大家都很熟悉:说的是田忌和 齐王各有上等、中等、下等马各一匹. 但是田忌 的马在同等级马中略逊一筹 , 双方每次出一匹马 比赛 , 比赛三场定出胜负.
每一场比赛中, 齐王赢加一分, 齐王输减一分. 每场比赛出场的马匹按先后共有六种策略, 即 (上、中、下) , (上、下、中) , (中、上、下) , (中、下、上) , (下、中、上) (下、上、中) 则可写出齐王的得分数表 :
姓名 周月驰 张曼羽 陈木扁
馒头 4 0 4
包子 2 0 9
鸡蛋 2 0 8
稀饭 1 0 6
为了方便,常用下面的数表表示
4 2 2 1
0 4
0 9
0 8
0 6
这个数表反映 了学生的早餐 情况.
2、某航空公司在A,B,C, D四城市之间的航线图
青岛
广州
成都
拉萨
为了方便,常用下面的表表示
其中 表示有航班.

AB
O

AO ,
or
BO .
③ 无消去律 AB=AC ? B C
6、几个特殊矩阵
① 零矩阵 O (见教材第 26 页) ② 对角矩阵 Λ diag(1, 2, , n ) (见教材第 28 页) ③ 单位矩阵 E (见教材第 28 页) ④ 对称矩阵 A AT (见教材第 37 页)
7、记住伴随矩阵的基本性质 A A AA A E
a2n xn b2 LLLLL
am1 x1 am2 x2 L amn xn bm
的解取决于
系数 常数项
aij i, j 1,2,L ,n(m), bi i 1,2,L ,m
线性方程组的系数与常数项按原位置可排为
a11 a12
a21
a22
am1
am 2
a1n b1
a2n
b2
叫做 n 元齐次线性方程组 .
n 元线性方程组往往简称为线性方程组或方程组.
对于 n 元齐次线性方程组(2) , x1 x2 xn 0
一定是它的解, 这个解叫做齐次线性方程组 (2) 的 零解
如果一组不全为零的数是 (2) 的解 , 则它叫做齐次线性 方程组(2) 的非零解 . 齐次方程组 (2) 一定有零解 , 但不一 定有非零解 .
相关文档
最新文档