2-1线性方程组和矩阵
线性代数 2-1

3 − 1 1 2 0 − 1 −6 2 − 2 −5 −4 5 = − 1 0 − 1 − 5 − 2 − 4 3 0 −2 2 0 2
三、矩阵的乘法运算
某企业有三个生产车间,各车间都生产甲、乙两种产品, 某企业有三个生产车间,各车间都生产甲、乙两种产品, 矩阵A表示一年中各车间生产的各种产品的数量 矩阵B表 表示一年中各车间生产的各种产品的数量, 矩阵 表示一年中各车间生产的各种产品的数量,矩阵 表 示各种产品的单位价格和单位利润(万元),矩阵C表示 ),矩阵 示各种产品的单位价格和单位利润(万元),矩阵 表示 各车间的总收入和总利润, 各车间的总收入和总利润,即: c11 c12 1 a11 a12 1 b b 甲 C = c21 c22 2 A = a21 a22 2 B = 11 12 b b 乙 c c32 3 a 3 21 22 31 31 a32 单价 单利 总收入 总利润 甲 乙
a11b11 + a12b21 a11b12 + a12b22 1 C = a21b11 + a22b21 a21b12 + a22b22 2 a b + a b a b + a b 3 31 11 32 21 31 12 32 22 总收入 总利润
分析A、 、 之间的关系 之间的关系。 分析 、B、C之间的关系。
... a1n ... a2n ... ... ... amn
b 1 b2 ... bm
n个 x m 变量 1, y2 ,⋯, ym之 y 变量 1, x2 ,⋯, xn与 个 间的 关系 式 y1 = a11x1 + a12x2 +⋯+ a1n xn , y = a x + a x +⋯+ a x , 2 21 1 22 2 2n n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ym = am1x1 + am2 x2 +⋯+ amn xn
《线性代数》第1章线性方程组与矩阵

记为 En 或 E即,
1 0 L 0
E
0
1L
0
.
L L O M
0
0L
1
定义2 两个矩阵的行数相等、列数也相等,则称这两个矩阵为同型矩阵.
如果两个同型矩阵
A (aij )mn 和 B (bij )mn 中所有对应位置的元素都相等, 即 aij bij ,其中
该线性方程组由常数 aij i 1,2,L ,m ; j 1,2,L ,n 和 bi i 1, 2,L , m完全确定, 可以用一个 mn 1 个数排成的 m 行 n 1列的数表
a11 a12 L
°A
a21
a22
L
M M
am1
am2
L
a1n b1
a2n
b2
M M
amn bm
一、矩阵的定义
得到的 n m 矩阵称为矩阵 A 的转置矩阵,记为 AT ,即
a11 a21 L
AT
a12
L
a22 L LL
a1n
a2n L
am1
am 2
.
L
anm
矩阵的转置满足下面的运算规律(这里 k 为常数, A 与 B 为同型矩阵):
数 aij 位于矩阵aij 的第 i 行第 j 列,称为矩阵的i, j 元素, 其中 i 称为元素 aij 的行标, j 称为元素 aij 的列标.
一般地,常用英文大写字母 A, B,L 或字母, , ,L 表示矩阵.
一、矩阵的定义
第1章 线性方程组与矩阵 6
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵 称为复矩阵. 本书除特别指明外,都是指实矩阵.
线性方程组与矩阵的特征值与特征向量

线性方程组与矩阵的特征值与特征向量线性方程组和矩阵理论是线性代数的重要分支,它们在各个领域都有广泛的应用。
本文将介绍线性方程组与矩阵的特征值与特征向量的概念、性质以及应用。
一、线性方程组线性方程组是由线性方程组成的方程集合,其中每个方程都是关于变量的一次多项式,并且每个方程中的系数都是常数。
线性方程组可以表示成矩阵的形式,即Ax = b,其中A是一个m×n的矩阵,x是一个n维列向量,b是一个m维列向量。
解线性方程组的方法有很多,例如高斯消元法、矩阵的逆等。
但解析解的存在与否与方程组的特征有关。
二、特征值与特征向量的定义设A是一个n阶方阵,如果存在一个非零向量x使得Ax = λx,其中λ是一个常数,那么称λ为矩阵A的特征值,x称为矩阵A对应于特征值λ的特征向量。
三、特征值与特征向量的性质1. 矩阵A的特征值满足特征方程|A-λI|=0,其中I是单位矩阵。
2. 矩阵A的特征向量x对应于特征值λ的充要条件是(A-λI)x=0,其中0是零向量。
3. 矩阵A的特征值之和等于其主对角线元素之和,即tr(A) = λ₁ + λ₂ + … + λₙ,其中tr(A)表示矩阵A的迹。
4. 矩阵A的特征值之积等于其行列式的值,即|A| = λ₁λ₂…λₙ。
四、求解特征值与特征向量的方法对于一个n阶方阵A,求解特征值与特征向量的方法有很多,最常用的方法是求解特征方程|A-λI|=0,通过解特征方程可以求得特征值。
然后将特征值带入(A-λI)x=0,通过高斯消元法求解得到特征向量。
五、特征值与特征向量的应用特征值与特征向量在许多领域都有广泛的应用,主要包括以下几个方面:1. 特征值分解:将一个对称矩阵分解为特征值和特征向量的乘积形式,可以用于数据降维、图像处理等。
2. 特征值在几何学中的应用:特征向量可以表示几何变换的方向和比例关系,例如在二维平面上的旋转变换。
3. 特征值在电力系统中的应用:特征值与特征向量可以用于电力系统的稳定性分析和系统校正。
矩阵与线性方程组的数学模型和解法

矩阵与线性方程组的数学模型和解法矩阵和线性方程组是线性代数中常见的数学概念,广泛应用于各个学科领域,包括工程、科学、经济等。
本文将介绍矩阵和线性方程组的数学模型以及常见的解法。
1. 矩阵的数学模型矩阵是由数字排列成的矩形阵列。
一个m×n的矩阵表示为:[A] = [a_ij]其中,a_ij是矩阵中第i行第j列的元素。
矩阵按行数和列数分别称为行数和列数,即m×n的矩阵有m行n列。
2. 线性方程组的数学模型线性方程组是一组以线性关系描述的方程组。
形式如下:a_11x_1 + a_12x_2 + ... + a_1nx_n = b_1a_21x_1 + a_22x_2 + ... + a_2nx_n = b_2......................a_m1x_1 + a_m2x_2 + ... + a_mnx_n = b_m其中,x_1, x_2, ..., x_n是未知数,a_ij是系数矩阵的元素,b_1, b_2, ..., b_m是常数项。
3. 线性方程组的解法解一个线性方程组的目标是找到一组满足所有方程的未知数值的解。
下面介绍两种常见的解法:高斯消元法和矩阵求逆法。
a. 高斯消元法高斯消元法是一种通过消元和回代的操作来求解线性方程组的方法。
具体步骤如下:Step 1: 构造增广矩阵[A|b],其中A为系数矩阵,b为常数项矩阵。
Step 2: 利用初等行变换将增广矩阵化简为上三角矩阵。
Step 3: 从最后一行开始,利用回代法求出未知数的值。
b. 矩阵求逆法矩阵求逆法是利用逆矩阵的性质来求解线性方程组的方法。
具体步骤如下:Step 1: 构造增广矩阵[A|I],其中A为系数矩阵,I为单位矩阵。
Step 2: 利用初等行变换将增广矩阵化简为[I|B],其中B为所求逆矩阵。
Step 3: 利用逆矩阵的性质,将常数项矩阵变换为解的矩阵。
4. 矩阵与线性方程组的应用矩阵和线性方程组在各个学科领域都有广泛的应用。
矩阵与线性方程组的关系

矩阵与线性方程组的关系在线性代数中,矩阵和线性方程组是两个重要的概念。
矩阵是一个具有矩形排列的数的集合,而线性方程组是一组方程,其中的每个方程都是关于未知数的线性表达式。
本文将探讨矩阵与线性方程组之间的关系及其应用。
一、矩阵的定义与基本操作矩阵是由数域上的元素按照一定规律排列而成的矩形阵列。
一个矩阵通常用大写字母表示,例如A。
矩阵的行数和列数分别表示为m和n,可以记作A(m*n)。
矩阵中的每个元素用小写字母表示,并由其所在的行号和列号来指定。
例如A(i,j)表示矩阵A中位于第i行第j列的元素。
矩阵有一些基本的运算和操作,例如矩阵加法、矩阵数乘、矩阵乘法等。
矩阵加法的定义是,对于同型矩阵A和B,它们的和定义为相应位置元素相加得到的矩阵。
矩阵数乘的定义是,对于任意矩阵A和标量k,它们的乘积定义为将矩阵A的每个元素乘以标量k得到的矩阵。
矩阵乘法的定义是,对于矩阵A(m*p)和B(p*n),它们的乘积AB 定义为矩阵C(m*n),其中C(i,j)等于A的第i行和B的第j列对应元素的乘积之和。
二、线性方程组的定义与解法线性方程组是一个或多个关于未知数的线性方程组成的集合。
一个线性方程组通常用大括号包围,并用系数矩阵和常数向量来表示。
例如,以下是一个包含三个方程和三个未知数的线性方程组:{a11x1 + a12x2 + a13x3 = b1a21x1 + a22x2 + a23x3 = b2a31x1 + a32x2 + a33x3 = b3要解线性方程组,可以使用矩阵的逆运算或高斯消元法等方法。
其中,矩阵的逆运算是通过求解逆矩阵来得到线性方程组的解。
逆矩阵的定义是,对于一个矩阵A,如果存在一个矩阵B使得AB=BA=I,其中I是单位矩阵,则称B为A的逆矩阵。
三、矩阵与线性方程组的关系矩阵和线性方程组之间存在着密切的关系。
对于一个由m个方程和n个未知数组成的线性方程组,可以使用矩阵的形式来表示。
设系数矩阵为A(m*n),未知数向量为X(n*1),常数向量为B(m*1),则线性方程组可以表示为AX=B。
矩阵与二元一次方程组

矩阵与二元一次方程组
我们明白,关于x ,y 的二元一次方程组
⎩⎨⎧=+=+②①n dy cx m by ax
能够用下述方法来求解:将①×d -②×b ,得
〔ad -bc 〕x =dm -bn
再将②×a -①×c ,得
〔ad -bc 〕y =an -cm
当ad -bc ≠0时,方程组的解为
⎪⎪⎩
⎪⎪⎨⎧--=--=bc ad cm an y bc ad bn dm x 观看上述结果,我们能够发明x ,y 的分母是一样的,是将线性方程组的系数矩阵a b c d ⎛⎫ ⎪⎝⎭
中主对角线上两数的积减去副对角线上两数之积得到的结果、我们将矩阵A =a b c d ⎛⎫ ⎪⎝⎭两边的“⎛⎫ ⎪⎝⎭”
改为“”,引进以下定义:我们把a b c d ⎛⎫ ⎪⎝⎭
称为二阶行列式,它的运算结果是一个数值〔或多项式〕,记为:
det 〔A 〕=d c b
a =ad -bc
有了上述二阶行列式的定义,我们就能够将前述二元一次方程组的一般解改写为
x =m b n d
a b
c d y =a m c n a b c d 为研究方便起见,我们常常将d c b
a 记为D ,将m
b n d 记为D X ,将a m
c n 记为
D y ,因此,
x =D
D x ,y =D D y 那个公式是高等数学中克莱姆法那么的一个特别情形、克莱姆,瑞士数学家、。
线性代数目录

线性代数⽬录第⼀章 线性⽅程组与矩阵 1第⼀节 矩阵的概念及运算 1 ⼀、矩阵的定义 1 ⼆、矩阵的线性运算 3 三、矩阵的乘法 4 四、矩阵的转置 6习题1-1 7第⼆节 分块矩阵 8 ⼀、分块矩阵的概念 8 ⼆、分块矩阵的运算 10习题1-2 13第三节 线性⽅程组与矩阵的初等变换 14 ⼀、矩阵的初等变换 14 ⼆、求解线性⽅程组 18习题1-3 22第四节 初等矩阵与矩阵的逆矩阵 23 ⼀、⽅阵的逆矩阵 24 ⼆、初等矩阵 25 三、初等矩阵与逆矩阵的应⽤ 26习题1-4 29本章⼩结 31拓展阅读 32测试题⼀ 33第⼆章 ⽅阵的⾏列式 35第⼀节 ⾏列式的定义 35 ⼀、排列 35 ⼆、n 阶⾏列式 37 三、⼏类特殊的n 阶⾏列式的值 39习题2-1 41第⼆节 ⾏列式的性质 41 ⼀、⾏列式的性质 41 ⼆、⾏列式的计算举例 45 三、⽅阵可逆的充要条件 48习题2-2 50第三节 ⾏列式按⾏(列)展开 51 ⼀、余⼦式与代数余⼦式 52 ⼆、⾏列式按⾏(列)展开 52习题2-3 57第四节 矩阵求逆公式与克莱默法则 58 ⼀、伴随矩阵与矩阵的求逆公式 58 ⼆、克莱默法则 59习题2-4 62本章⼩结 63拓展阅读 64测试题⼆ 65第三章 向量空间与线性⽅程组解的结构 67第⼀节 向量组及其线性组合 67 ⼀、向量的概念及运算 67 ⼆、向量组及其线性组合 69 三、向量组的等价 71习题3-1 74第⼆节 向量组的线性相关性 74⼀、向量组的线性相关与线性⽆关 75⼆、向量组线性相关性的⼀些重要结论 77习题3-2 80第三节 向量组的秩与矩阵的秩 81 ⼀、向量组秩的概念 81 ⼆、矩阵秩的概念 82 三、矩阵秩的求法 83 四、向量组的秩与矩阵的秩的关系 85习题3-3 87第四节 线性⽅程组解的结构 88 ⼀、线性⽅程组有解的判定定理 88 ⼆、齐次线性⽅程组解的结构 90 三、⾮齐次线性⽅程组解的结构 94习题3-4 96第五节 向量空间 97 ⼀、向量空间及其⼦空间 97 ⼆、向量空间的基、维数与坐标 99 三、基变换与坐标变换 101习题3-5 103本章⼩结 105拓展阅读 106测试题三 107第四章 相似矩阵及⼆次型 109第⼀节 向量的内积、长度及正交性 109 ⼀、向量的内积、长度 109 ⼆、正交向量组 110 三、施密特正交化过程 112 四、正交矩阵 113习题4-1 115第⼆节 ⽅阵的特征值与特征向量 115 ⼀、⽅阵的特征值与特征向量的概念及其求法 116 ⼆、⽅阵的特征值与特征向量的性质 119习题4-2 121第三节 相似矩阵 122 ⼀、⽅阵相似的定义和性质 122 ⼆、⽅阵的相似对⾓化 123习题4-3 124第四节 实对称矩阵的相似对⾓化 125 ⼀、实对称矩阵的特征值和特征向量的性质 125 ⼆、实对称矩阵的相似对⾓化 126习题4-4 129第五节 ⼆次型及其标准形 129 ⼀、⼆次型及其标准形的定义 130 ⼆、⽤正交变换化⼆次型为标准形 131 三、⽤配⽅法化⼆次型为标准形 134习题4-5 135第六节 正定⼆次型与正定矩阵 136 ⼀、惯性定理 136 ⼆、正定⼆次型与正定阵 137习题4-6 138本章⼩结 139拓展阅读 140测试题四 141第五章 线性空间与线性变换 143第⼀节 线性空间的定义与性质 143 ⼀、线性空间的定义 143 ⼆、线性空间的性质 145 三、线性空间的⼦空间 146习题5-1 147第⼆节 维数、基与坐标 147 ⼀、线性空间的基、维数与坐标 147 ⼆、基变换与坐标变换 149习题5-2 150第三节 线性变换 151 ⼀、线性变换的定义 151 ⼆、线性变换的性质 153 三、线性变换的矩阵表⽰式 154习题5-3 158本章⼩结 161拓展阅读 162测试题五 163部分习题答案 165。
矩阵与线性方程组

矩阵与线性方程组在数学中,矩阵与线性方程组有着密切的联系。
矩阵是线性代数中的基本工具之一,通过矩阵的运算可以解决线性方程组,或者将其转化为更简单的形式。
本文将介绍矩阵的定义、性质以及其与线性方程组的关系,并通过实例来说明其应用。
一、矩阵的定义和基本运算矩阵由数个数值排列成的矩形阵列组成,其中每个数值称为矩阵的元素,用小写字母表示。
一个m×n的矩阵具有m行和n列。
矩阵可以用方括号或圆括号来表示,如A=[a_ij]或A=(a_ij),其中a_ij表示矩阵中第i行第j列的元素。
矩阵的运算包括加法、减法、数乘和乘法。
矩阵的加法和减法只能在行数和列数相同的矩阵之间进行,即如果A和B是m×n的矩阵,则A±B也是m×n的矩阵。
数乘是指将一个矩阵的每个元素乘以一个常数,即如果A是m×n的矩阵,k是一个常数,则kA也是m×n的矩阵。
矩阵的乘法是指将一个矩阵的行与另一个矩阵的列相乘再相加得到一个新的矩阵,即若A是m×n的矩阵,B是n×p的矩阵,则AB是m×p的矩阵。
二、矩阵的性质矩阵有许多重要的性质,包括可逆矩阵、特征值与特征向量、转置矩阵等。
其中,可逆矩阵是指存在一个同阶的矩阵与之相乘等于单位矩阵的矩阵,记作A^{-1}。
特征值与特征向量是指当一个n×n的矩阵A与一个非零向量x满足Ax=λx时,λ称为A的特征值,x称为A的对应于特征值λ的特征向量。
转置矩阵是指将一个矩阵的行和列互换得到的新的矩阵,记作A^T。
三、矩阵与线性方程组的关系线性方程组是指由一组线性方程组成的方程组,其中未知数的最高次数为1。
线性方程组可以用矩阵形式表示,即Ax=b,其中A是一个m×n的矩阵,x是一个n×1的矩阵,b是一个m×1的矩阵。
这个方程组的解可以通过求解矩阵方程Ax=b来得到。
通过矩阵的运算,我们可以将线性方程组转化为更简单的形式进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y P1 x1, y1
Px, y
O
X
例2 设 A 1 2 3, 3 1 2
B 1 x 3, y 1 z
已知 A B,求 x, y, z. 解 A B,
x 2, y 3, z 2.
三、小结
a11 a12
a1n b1
a21
a22
a2n
b2
对线性方程组的 研究可转化为对
am1
am 2
பைடு நூலகம்
amn
bm
这张表的研究. B
例. 某航空公司在A,B,C,D四
城市之间开辟了若干航线 ,
如图所示表示了四城市间的 A
C
航班图,如果从A到B有航班,
则用带箭头的线连接 A 与B.
排成的 m行 n列的数表
a11 a12 a1n
a21 a22 a2n
am1 am2 amn
称为 m n矩阵.简称 m n 矩阵. 记作
主对角线 a11
A
a21
副对角线 am1
a12 a22 am1
a1n a2n amn
am1 am1
a1n a2n 系数矩阵 amn
线性变换与矩阵之间存在着一一对应关系.
若线性变换为
y1 x1,
y2
x2
,
yn xn
y1 x1,
y2
x2
,
yn xn
称之为恒等变换.
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
ym am1 x1 am2 x2 amn xn .
表示一个从变量x1, x2, , xn 到变量 y1, y2, , ym的 线性变换. 其中 aij为常数.
矩阵A的
m , n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
元素是实数的矩阵称为实矩阵,
元素是复数的矩阵称为复矩阵.
例如
1 9
0 6
3 4
5 3
是一个 2 4 实矩阵,
13 2
6 2
2i 2
是一个
3 4
为同型矩阵.
3 7 3 9
2.两个矩阵 A aij 与B bij 为同型矩阵,并且
对应元素相等,即
aij bij i 1,2, ,m; j 1,2, ,n,
则称矩阵 A与B相等,记作 A B.
例1 n个变量x1, x2, , xn与m个变量y1, y2, , ym之 间的关系式
对应
1 0 0
0
1
0
单位阵.
0 0 1
线性变换
x1 y1
cosx sinx
siny, cosy.
对应 cos sin sin cos
这是一个以原点为中心
旋转 角的旋转变换.
第二章 矩阵及其运算
第一节 线性方程组和矩阵
一、线性方程组
a11x1 a12 x2 L a1n xn b1
设线性方程组
a21x1 LLL
a22x2 L LLLL
L
a2n xn b2 LLLL
am1x1 am2x2 L amn xn bm
0
0
0
0.
0 0 0 0
(5)方阵
1 0
E
En
0
1 O
0 0
O
0 0
1
称为单位矩阵(或单位阵).
全为1
同型矩阵与矩阵相等的概念
1.两个矩阵的行数相等,列数相等时,称为同 型矩阵.
例如
1 5
62 与 184
若常数项b1,b2,L ,bm不全为零, 则称此方程组为非
齐次线性方程组; 若常数项b1, b2,L ,bm 全为零,
此时称方程组为齐次线性方程组.
线性方程组
的解取决于
系数 aij i 1,2,L ,m, j 1,2,L ,n,
常数项 bi i 1,2, ,n
线性方程组的系数与常数项按原位置可排为
33
复矩阵,
1 2
2 2 2
4
2 3 5 9
是一个 3 1 矩阵,
4
是一个 1 4 矩阵,
是一个 11 矩阵.
几种特殊矩阵
(1)行数与列数都等于 n 的矩阵 A ,称为 n 阶
方阵.也可记作 An .
例如
13 2
6 2
2i 2
O0
的方阵,称为对角
n
矩阵(或对角阵).
记作 A diag1,2 , ,n .
(4)元素全为零的矩阵称为零矩阵,m n 零
矩阵记作 omn 或 o .
注意 不同阶数的零矩阵是不相等的.
例如
0 0 0 0
0 0
0 0
0 0
0 0
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
ym am1 x1 am2 x2 amn xn .
a11 a12
A
a21
a22
是一个3 阶方阵.
2 2 2
(2)只有一行的矩阵
A a1,a2 , ,an ,
称为行矩阵(或行向量).
只有一列的矩阵
a1
B
a2 ,
an
称为列矩阵(或列向量). 不全为0
1 0
(3)形如
0
2
0 O 0
0
D
四城市间的航班图情况常用表格来表示: 到站
A
B
C
D
A
发站 B C
D
其中 表示有航班.
为了便于计算,把表中的 0,就得到一个数表:
改成1,空白地方填上
A
B
C
D
A B
C D
0
1
1
0
1
0
1
0
1
0
0
1
0
1
0
0
这个数表反映了四城市间交通联接情况.
二、矩阵的定义
由 m n 个数 aij i 1,2, ,m; j 1,2, ,n