【原创】广州市2016届高三下学期高考数学模拟试题精选汇总:三角函数01 Word版含答案
2016年广州市高三一模考试参考答案及评分(理科数学)

理科数学试题答案 第1页(共17页)绝密 ★ 启用前2016年广州市普通高中毕业班综合测试(一)理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题(1)D (2)D (3)C (4)B (5)C (6)A (7)A (8)A(9)D(10)B(11)A(12)B二.填空题(13)43(14(15)40- (16)2三.解答题(17)(Ⅰ) 解法一: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =.在△BCD 中,因为CD BC ⊥,5CD =,2BD x =, 所以cos CD CDB BD ∠=52x=.………………………………………………………2分 在△ACD 中,因为AD x =,5CD =,AC =由余弦定理得222cos 2AD CD AC ADC AD CD +-∠==⨯⨯ ………4分因为CDB ADC ∠+∠=π, 所以cos cos ADC CDB ∠=-∠,52x=-.………………………………………………………5分 解得5x =.所以AD 的长为5. …………………………………………………………………6分理科数学试题答案 第2页(共17页)解法二: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =. 在△BCD 中,因为CD BC ⊥,5CD =,2BD x =,所以BC =所以cos BC CBD BD ∠==2分 在△ABC 中,因为3AB x =,BCAC =由余弦定理得2222cos 2AB BC AC CBA AB BC +-∠==⨯⨯.…………4分=2………………………………………………5分 解得5x =.所以AD 的长为5. …………………………………………………………………6分 (Ⅱ)解法一:由(Ⅰ)求得315AB x ==,BC=.………………8分所以cos 2BC CBD BD ∠==1sin 2CBD ∠=.…………………………10分 所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠111522=⨯⨯=12分 解法二:由(Ⅰ)求得315AB x ==,BC ==.………………8分因为AC =ABC 为等腰三角形.因为cos BC CBD BD ∠==所以30CBD ∠=.……………………………10分 所以△ABC 底边AB上的高12h BC == 所以12ABC S AB h ∆=⨯⨯1152=⨯=12分理科数学试题答案 第3页(共17页)解法三:因为AD 的长为5, 所以51cos ==22CD CDB BD x ∠=,解得3CDB π∠=.……………………………8分所以12sin 23ADC S AD CD ∆π=⨯⨯⨯=.1sin 232BCD S BD CD ∆π=⨯⨯⨯=.……………………………………10分所以ABC ADC BCD S S S ∆∆∆=+=……………………………………………12分(18)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,………………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分 (Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X 服从二项分布(),B n p ,其中3n =.由(Ⅰ)得,区间[)45,75内的频率为0.30.2+0.1=0.6+,将频率视为概率得0.6p =.………………………………………………………5分 因为X 的所有可能取值为0,1,2,3,…………………………………………6分且0033(0)C 0.60.40.064P X ==⨯⨯=,1123(1)C 0.60.40.288P X ==⨯⨯=, 2213(2)C 0.60.40.432P X ==⨯⨯=,3303(3)C 0.60.40.216P X ==⨯⨯=.所以X所以X 的数学期望为00.06410.28820.43230.216 1.8EX =⨯+⨯+⨯+⨯=. (或直接根据二项分布的均值公式得到30.6 1.8EX np ==⨯=)……………12分………………………10分理科数学试题答案 第4页(共17页)(19)(Ⅰ)证明:因为1AO ⊥BD ⊂平面ABCD ,所以1AO BD ⊥因为ABCD 是菱形,所以CO BD ⊥因为1AO CO O = ,所以BD ⊥平面1A CO 因为BD ⊂平面11BB D D ,所以平面11BB D D ⊥平面1ACO .…………………………………………………4分 (Ⅱ)解法一:因为1AO ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB ,OC ,1OA方 向为x ,y ,z 轴正方向建立如图所示空间直角坐标系.………………………5分 因为12AB AA ==,60BAD ∠=, 所以1OB OD ==,OA OC ==11OA ==.………………6分则()1,0,0B ,()C ,()0,A ,()10,0,1A ,所以()11BB AA ==设平面1OBB 的法向量为n 因为()1,0,0OB = ,1OB =所以0,0.x x z =⎧⎪⎨+=⎪⎩令1=y ,得(0,1,=n 同理可求得平面1OCB 的法向量为()1,0,1=-m .………………………………10分 所以cos ,<>==n m .…………………………………………………11分理科数学试题答案 第5页(共17页)因为二面角1B OB C --的平面角为钝角,所以二面角1B OB C --的余弦值为412分解法二:由(Ⅰ)知平面连接11AC 与11B D 交于点连接1CO ,1OO ,因为11AA CC =,1//AA 所以11CAAC 因为O ,1O 分别是AC ,11所以11OAO C 为平行四边形.且111OC OA ==. 因为平面1ACO 平面11BB D D 1OO =, 过点C 作1CH OO ⊥于H ,则CH ⊥平面11BB D D .过点H 作1HK OB ⊥于K ,连接CK ,则1CK OB ⊥.所以CKH ∠是二面角1B OB C --的平面角的补角.……………………………6分 在1Rt OCO ∆中,11122O C OC CH OO ⨯===.………………………………7分在1OCB ∆中,因为1AO ⊥11A B ,所以1OB ==因为11A B CD =,11//A B CD , 所以11B C A D ==因为22211B C OC OB +=,所以1OCB ∆为直角三角形.……………………………8分 所以11CB OC CK OB ===⨯9分所以KH ==.…………………………………………………10分理科数学试题答案 第6页(共17页)所以cos 4KH CKH CK∠==.……………………………………………………11分所以二面角1B OB C --的余弦值为4-.……………………………………12分(20)(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.……………………………1分 设椭圆的右焦点为()220F ,,已知点(2B 在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以2a ==………………………………………………………2分所以a =2b =.………………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①…………………1分因为点(2B 在椭圆C 上,所以22421a b +=. ②…………………2分由①②解得,a =2b =.…………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 (Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A的坐标为()-.…………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =0y =理科数学试题答案 第7页(共17页)所以直线AE的方程为y x =+.……………………………6分因为直线AE ,AF 分别与y 轴交于点M ,N ,令0x =得y =M ⎛ ⎝.……………………7分同理可得点N ⎛⎫ ⎝.…………………………………………………8分所以MN ==9分设MN的中点为P ,则点P 的坐标为0,P k ⎛⎫- ⎪ ⎪⎝⎭. (10)分 则以MN 为直径的圆的方程为22x y k ⎛++=⎝⎭2, 即224x y y k++=.…………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分 解法二:因为椭圆C 的左端点为A ,则点A 的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点00(,)E x y ,则点00(,)F x y --.所以直线AE的方程为y x =+.………………………………6分 因为直线AE 与y 轴交于点M ,令0x =得y =,即点M ⎛⎫⎝.……………………………7分同理可得点N ⎛⎫⎝.……………………………………………………8分理科数学试题答案 第8页(共17页)所以020168yMN x ==-.因为点00(,)E x y 在椭圆C 上,所以2200184x y +=.所以08MN y =.……………………………………………………………………9分 设MN 的中点为P ,则点P的坐标为000,P y ⎛⎫-⎪ ⎪⎝⎭.………………………10分 则以MN为直径的圆的方程为2200x y y ⎛⎫++= ⎪ ⎪⎝⎭2016y .即220+x y y y +=4.………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分 解法三:因为椭圆C 的左顶点为A ,则点A的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点(),2sin E θθ(0θ<<π),则点(),2sin F θθ--. 所以直线AE的方程为y x =+.………………………6分因为直线AE 与y 轴交于点M ,令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫⎪+⎝⎭.………………………………7分 同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.………………………………………………………8分 所以2sin 2sin 4cos 1cos 1sin MN θθθθθ=-=+-.………………………………………9分理科数学试题答案 第9页(共17页)设MN 的中点为P ,则点P 的坐标为2cos 0,sin P θθ⎛⎫-⎪⎝⎭.………………………10分 则以MN 为直径的圆的方程为222cos sin x y θθ⎛⎫++= ⎪⎝⎭24sin θ, 即224cos 4sin x y y θθ++=.………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分(21)(Ⅰ)解:因为+3()e x m f x x =-,所以+2()e 3x m f x x '=-.……………………………………………………………1分 因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.…………………………………………………2分(Ⅱ)证法一:因为+3()e x m f x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x mx -+->.当1m ≥时,()()+1e ln 12e ln 12x mx x x +-+-≥-+-.要证()+eln 120x mx -+->,只需证明1e ln(1)20x x +-+->.………………4分以下给出三种思路证明1e ln(1)20x x +-+->. 思路1:设()()1eln 12x h x x +=-+-,则()11e 1x h x x +'=-+. 设()11e 1x p x x +=-+,则()()121e 01x p x x +'=+>+. 所以函数()p x =()11e 1x h x x +'=-+在()1+-∞,上单调递增.…………………6分 因为121e 202h ⎛⎫'-=-< ⎪⎝⎭,()0e 10h '=->,所以函数()11e1x h x x +'=-+在()1+-∞,上有唯一零点0x ,且01,02x ⎛⎫∈- ⎪⎝⎭.理科数学试题答案 第10页(共17页)………………………………8分 因为()00h x '=,所以0+101e1x x =+,即()()00ln 11x x +=-+.………………9分 当()01,x x ∈-时,()0h x '<;当()0,x x ∈+∞时,()0h x '>,所以当0x x =时,()h x 取得最小值()0h x .………………………………………10分 所以()()()0100=e ln 12x h x h x x +≥-+-()0011201x x =++->+. 综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 思路2:先证明1e 2x x +≥+()x ∈R .……………………………………………5分设()1e2x h x x +=--,则()+1e 1x h x '=-.因为当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以当1x <-时,函数()h x 单调递减,当1x >-时,函数()h x 单调递增. 所以()()10h x h ≥-=. 所以1e2x x +≥+(当且仅当1x =-时取等号).…………………………………7分所以要证明1e ln(1)20x x +-+->,只需证明()2ln(1)20x x +-+->.………………………………………………8分 下面证明()ln 10x x -+≥.设()()ln 1p x x x =-+,则()1111xp x x x '=-=++. 当10x -<<时,()0p x '<,当0x >时,()0p x '>,所以当10x -<<时,函数()p x 单调递减,当0x >时,函数()p x 单调递增. 所以()()00p x p ≥=.所以()ln 10x x -+≥(当且仅当0x =时取等号).……………………………10分 由于取等号的条件不同,理科数学试题答案 第11页(共17页)所以1e ln(1)20x x +-+->.综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 (若考生先放缩()ln 1x +,或e x、()ln 1x +同时放缩,请参考此思路给分!) 思路3:先证明1e ln(1)20x x +-+->.令1t x =+,转化为证明e ln 2tt ->()0t >.……………………………………5分因为曲线e t y =与曲线ln y t =关于直线y t =对称,设直线0x x =()00x >与曲线e t y =、ln y t =分别交于点A 、B ,点A 、B 到直线y t =的距离分别为1d 、2d ,则)12AB d d =+.其中01x d =,2d ()00x >.①设()000e x h x x =-()00x >,则()00e 1x h x '=-. 因为00x >,所以()00e 10x h x '=->.所以()0h x 在()0,+∞上单调递增,则()()001h x h >=.所以01x d =>. ②设()000ln p x x x =-()00x >,则()0000111x p x x x -'=-=. 因为当001x <<时,()00p x '<;当01x >时,()00p x '>, 所以当001x <<时,函数()000ln p x x x =-单调递减;当01x >时,函数()000ln p x x x =-单调递增. 所以()()011p x p ≥=.所以2d =≥.所以)122AB d d ≥+>=⎭.理科数学试题答案 第12页(共17页)综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分 证法二:因为+3()e x m f x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x m x -+->.…………………………4分 以下给出两种思路证明()+e ln 120x m x -+->. 思路1:设()()+e ln 12x m h x x =-+-,则()+1e 1x mh x x '=-+. 设()+1e1x mp x x =-+,则()()+21e 01x m p x x '=+>+. 所以函数()p x =()+1e 1x mh x x '=-+在()+∞-1,上单调递增.………………6分 因为1m ≥, 所以()()1e+1e 1ee e e e 10mmmmm m h ----+-+'-+=-=-<,()0e 10m h '=->.所以函数()+1e1x mh x x '=-+在()+∞-1,上有唯一零点0x ,且()01e ,0m x -∈-+. …………………8分 因为()00h x '=,所以0+01e1x mx =+,即()00ln 1x x m +=--.………………9分 当()00,x x ∈时,()0h x '<;当()0,x x ∈+∞时,()0h x '>.所以当0x x =时,()h x 取得最小值()0h x .……………………………………10分 所以()()()0+00e ln 12x mh x h x x ≥=-+-00121x m x =++-+ ()0011301x m x =+++->+. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分 思路2:先证明e 1()xx x ≥+∈R ,且ln(1)(1)x x x +≤>-.…………………5分 设()e 1xF x x =--,则()e 1x F x '=-.因为当0x <时,()0F x '<;当0x >时,()0F x '>,理科数学试题答案 第13页(共17页)所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 所以当0x =时,()F x 取得最小值(0)0F =.所以()(0)0F x F ≥=,即e 1()x x x ≥+∈R .…………………………………7分 所以ln(1)x x +≤(当且仅当0x =时取等号).…………………………………8分 再证明()+e ln 120x m x -+->. 由e 1()x x x ≥+∈R ,得1e 2x x +≥+(当且仅当1x =-时取等号).…………9分 因为1x >-,1m ≥,且1e 2x x +≥+与ln(1)x x +≤不同时取等号,所以 ()()+11eln 12e e ln 12x mm x x x -+-+-=⋅-+-11e (2)2(e 1)(2)0m m x x x -->+--=-+≥.综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分(22)(Ⅰ)证明:因为AD 是⊙O 的切线,所以DAC B ∠=∠(弦切角定理). (1)因为DE CA ,所以DAC EDA ∠=∠.……………………………2所以EDA B ∠=∠.因为AED DEB ∠=∠(公共角),所以△AED ∽△DEB .……………………………………………………………3分 所以DE AE BEDE=.即2DE AE BE = .…………………………………………………………………4分 (Ⅱ)解:因为EF 是⊙O 的切线,EAB 是⊙O 的割线,所以2EF EA EB = (切割线定理).……………………………………………5分 因为4EF =,2EA =,所以8EB =,6AB EB EA =-=.…………………7分理科数学试题答案 第14页(共17页)由(Ⅰ)知2DE AE BE = ,所以4DE =.………………………………………8分 因为DE CA ,所以△BAC ∽△BED . ………………………………………9分 所以BA ACBEED =.所以6438BA EDAC BE⋅⨯===. …………………………………………………10分(23)(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分 因为222x y ρ=+,sin y ρθ=,…………………………………………………2分所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+. ……………………………………5分因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短, 所以曲线C 在点D 处的切线与直线l:5y =+平行. 即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-.………………7分 因为()220011x y +-=,解得0x =或0x = 所以点D的坐标为12⎛⎫ ⎪ ⎪⎝⎭,或32⎫⎪⎪⎝⎭,.……………………………………9分 由于点D到直线5y =+的距离最短,理科数学试题答案 第15页(共17页)所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………………………………10分 解法二:因为直线l的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l50y +-=.……………………………………5分因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分 所以点D 到直线l的距离为d =2sin 3ϕπ⎛⎫=-+ ⎪⎝⎭.………………………………8分 因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分 此时D 32⎫⎪⎪⎝⎭,,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………10分(24)(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分 ①当1x ≤-时,不等式化为112x x --+≥,无解;②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<;③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分 (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()f x x x =+ ()01a ≤≤,当x ≤()f x x x =-=0<.理科数学试题答案 第16页(共17页)当x <时,()f x x x =2x =£+=当x ≥()f x x x ==所以()max f x ⎡⎤⎣⎦=7分思路2:因为 ()f x x x =-x x ≤+==当且仅当x ≥ 所以()max f x ⎡⎤⎣⎦=7分因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,所以max b >.………………………………………………………8分以下给出三种思路求()g a =.思路1:令()g a = 所以()21ga =+2212≤++=.=12a =时等号成立. 所以()max g a =⎡⎤⎣⎦所以b的取值范围为)+∞.…………………………………………………10分思路2:令()g a =因为01a ≤≤,所以可设2cos a θ= 02θπ⎛⎫≤≤⎪⎝⎭, 则()g a=cos sin 4θθθπ⎛⎫=+=+≤ ⎪⎝⎭理科数学试题答案 第17页(共17页)当且仅当4θπ=时等号成立. 所以b的取值范围为)+∞.…………………………………………………10分思路3:令()g a =因为01a ≤≤,设x y ìï=ïíï=ïî则221x y +=()01,01x y ##.问题转化为在221x y +=()01,01x y ##的条件下,求z x y =+的最大值.利用数形结合的方法容易求得z此时2x y ==.所以b的取值范围为)+∞.…………………………………………………10分。
广州市2016届高考数学模拟试卷(文科)(1月份) 含解析

2016年广东省广州市高考数学模拟试卷(文科)(1月份)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁U B=()A.{x|0<x≤1} B.{x|1<x<2} C.{x|0<x<1}D.{x|1≤x<2}2.已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i3.已知||=1,=(0,2),且•=1,则向量与夹角的大小为()A.B.C.D.4.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件5.设a=log37,b=21。
1,c=0。
83.1,则()A.b<a<c B.a<c<b C.c<b<a D.c<a<b6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.2 B.﹣2 C.﹣98 D.987.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的圆周和两条半径,则这个几何体的体积为()A.π B.πC.πD.π8.数列{a n}中,对任意n∈N*,a1+a2+…+a n=2n﹣1,则a12+a22+…+a n2等于() A.(2n﹣1)2 B. C.4n﹣1 D.9.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.10.执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)11.已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为()A.2x±y=0 B.x±2y=0 C.4x±3y=0 D.3x±4y=012.已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x >0)的零点个数为()A.0 B.1 C.0或1 D.无数个二.填空题:本大题共4小题,每小题5分.13.函数y=的定义域是.14.设x,y满足约束条件,则z=x﹣2y的最大值为.15.设数列{a n}的各项都是正数,且对任意n∈N*,都有4S n=a n2+2a n,其中S n为数列{a n}的前n项和,则数列{a n}的通项公式为a n=.16.已知以F为焦点的抛物线y2=4x上的两点A,B满足=2,则弦AB中点到抛物线准线的距离为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.18.“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:接受挑战不接受挑战合计男性45 15 60女性25 15 40合计70 30 100根据表中数据,能否有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?0。
广东省广州市高考数学一轮复习模拟试题精选 专题 三角函数

三角函数一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) A .向左平移4π个长度单位 B .向右平移4π个长度单位 C .向左平移2π个长度单位D .向右平移2π个长度单位【答案】B2.已知角α的终边经过点)4,3(-P ,那么ααcos 2sin +的值等于( )A .52 B .51-C .51 D .52-【答案】D3.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为030、060,则塔高是( )A .3400米 B .33400米 C .3200米 D .200米【答案】A4.已知1cos(75),18090,cos(15)3ααα+=-<<--=且则( )A .13-B .3-C .3D .13【答案】B5.将函数sin 2y x =的图象向右平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( )A .22sin y x =B .22cos y x =C .)42sin(1π++=x y D .cos 2y x =【答案】A6.在△ABC 中,若2=a ,b =,060B = ,则角A 的大小为( )A . 30或150B .60或 120C .30D . 60【答案】C7.表达式sin(45)sin(45)A A +--化简后为( )A .AB .AC .1sin 2A D . 1sin 2A -【答案】B8.已知锐角ABC ∆的面积为4,3BC CA ==,则角C 的大小为( ) A . 75° B .60°C .45°D .30°【答案】B9.cos330=( )A .12B . 12-C .D . 【答案】C10.当0<x<2π时,函数f (x )=21cos 28sin sin 2x x x ++的最小值为( )A .2B .23C .4D .43【答案】C11.函数sin 22y x π⎛⎫=+⎪⎝⎭是( ) A . 周期为π2的偶函数B . 周期为π2的奇函数C . 周期为π的偶函数D . 周期为π的奇函数【答案】C12.o 585sin 的值为( )A . BC .D .【答案】A二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.在ABC ∆中,内角C B A ,,的对边分别是a b c ,,,若22a b -=,sin C B =,则A = .【答案】 30° 14.如果1cos 3α=,且α是第四象限角,那么cos()2πα+= .15.已知),)44x y x y ππαα+=+-=-,则22x y +的值是【答案】116.已知角α的终边经过点)6,(--x P ,且135cos -=α,则=+ααtan 1sin 1 【答案】32-三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.如图1,OA ,OB 是某地一个湖泊的两条互相垂直的湖堤,线段CD 和曲线段EF 分别是湖泊中的一座栈桥和一条防波堤。
广东省广州市普通高中2016届高三下学期综合测试(一)理数试题(解析版)

2016年广州市普通高中毕业班综合测试(一)理科数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)(1)已知集合{}1A x x =<,{}20B x x x =-≤,则AB =( )(A ){}11x x -≤≤ (B ){}01x x ≤≤ (C ){}01x x <≤ (D ){}01x x ≤< 【答案】D 【解析】 试题分析:{}11A x x =-<<,{}01B x x ≤≤,{}01A B x x ∴=≤<,故选D.考点:集合的交集. (2)已知复数3i1iz +=-,其中i 为虚数单位,则复数z 的共轭复数z 所对应的点在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】D 【解析】 试题分析:()()()()()31124112i i z i i i ++==+-+12i =+,12z i ∴=-,即z 对应点在第四象限,故选D.考点:1、复数的概念;2、复数的运算.(3)执行如图所示的程序框图,如果输入3x =,则输出k 的值为( )【答案】C 【解析】试题分析: 第一循环2339,2x k =⨯+==;第二循环29321,4x k =⨯+==;第三循环221345,6x k =⨯+==;第四循环245393,8x k =⨯+==;第五循环2933189,10x k =⨯+==, 189100>结束循环,输出10k =,故选C.考点: 程序框图及循环结构. (4)如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为( ) (A )3 (B )6 (C )12 (D )24 【答案】B 【解析】 试题分析:函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的相邻两个零点之间的距离为函数的半个周期,,626T ππωω∴===,故选B. 考点:三角函数的图象和周期.(5)设等差数列{}n a 的前n 项和为n S ,且271224a a a ++=,则13S =( ) (A )52 (B )78 (C )104 (D )208 【答案】C 【解析】 试题分析:271224a a a ++=,7324a ∴=,即78a =,∴()11313713131042a a S a +===,故选C.考点:等差数列的性质及前n 项和公式.(6)如果1P ,2P ,…,n P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,n x ,F 是抛物线C 的焦点,若1210n x x x +++=,则12n PF P F P F +++=( )(A )10n + (B )20n + (C )210n + (D )220n + 【答案】A 【解析】 试题分析:24,12py x =∴=,由抛物线定义可知11221,2PF x P F x =+=+,⋅⋅⋅,1n n P F x =+,12n PF P F P F ∴++⋅⋅⋅()12n n x x x =+++⋅⋅⋅+10n =+,故选A. 考点:1、抛物线的标准方程;2、抛物线的定义及简单几何性质. (7)在梯形ABCD 中,ADBC ,已知4AD =,6BC =,若CD mBA nBC =+(),m n ∈R ,则mn=( ) (A )3- (B )13- (C )13(D )3 【答案】A 【解析】试题分析: 过A 作AE CD 交BG 于E ,则CD EA EB BA ==+13BC BA =-+,即1m =,13n =-,3mn=-,故选A.考点: 1、平面向量基本概念定理;2、向量的运算.(8)设实数x ,y 满足约束条件10,10,1x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩, 则()222x y ++的取值范围是( )(A )1,172⎡⎤⎢⎥⎣⎦ (B )[]1,17 (C)⎡⎣ (D)【答案】A 【解析】试题分析:画出约束条件所表示的可行域,如图,()()1,2,0.2A D --,由可行域知()22z x y =++的最大值是217AD =,最小值为D 到直线10x y --=的距离的平方为12,故选A.考点: 利用可行域求目标函数的最值.(9)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上, 则该球的体积为( )(A )20π (B (C )5π (D 【答案】D 【解析】试题分析:由题意知,22215124R ⎛⎫=+= ⎪⎝⎭,34=3R V R π=∴=球,故选D.考点: 1、棱柱的性质;2、球的体积公式. (10)已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-; 3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是( )(A )1 (B )2 (C )3 (D )4 【答案】B 【解析】试题分析:如果l 与α内无数条平行线垂直,则l 与α不一定垂直,所以1p 错误;()22x x f x -=-,()()22x x f x f x -∴-=-=-,故2p 正确;()1,f x =只有一个根0x =,0x ∴>时,()f x 1=无解,故3p 错误; 因为在ABC ∆中A B >一定有a b >,再由正弦定理可得sin sin A B >,故4p 正确;故选B. 考点:1、直线与平面垂直的判定;2、正弦定理及函数的奇偶性.(11)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表 面积为( )(A )8++ (B )8++(C )2+(D )12【答案】A 【解析】试题分析:由三视图可知,几何体是以P 为顶点,以ABC ∆为底面,以PC 为高的三棱锥,如图.由三视图可知4,2PC BC ==,可求得AB PB AC ===AP =,所以ABC BC PAC S S S S ∆∆P ∆=++表PAB S ∆+8=+A.CP考点:1、几何体的三视图;2、几何体的表面积.(12)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角 形”.1 2 3 4 5 … 2013 2014 2015 2016 3 5 7 9 ………… 4027 4029 4031 8 12 16 ………………… 8056 8060 20 28 ………………………… 16116 …………………………………………该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有 一个数,则这个数为( ) (A )201520172⨯ (B )201420172⨯ (C )201520162⨯ (D )201420162⨯【答案】B 【解析】试题分析:第一行为1、2、3的三角形,最后一行的数为()1312+⨯;第一行为1、2、3、4的三角形,最后一行的数为()2412+⨯;第一行为1、2、3、4、5的三角形最后一行的数为,()3512+⨯…可猜想第一行为1、2、3…2016最后一行的数为()2014201420161220172+⨯=⨯,故选B.考点:归纳推理及不完全归纳法.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)(13)一个总体中有60个个体,随机编号0,1,2,…,59,依编号顺序平均分成6个小组,组号 依次为1,2,3,…,6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3, 则在第5组中抽取的号码是 . 【答案】43 【解析】试题分析:总体60个个体,依编号顺序分成6个小组,则间隔编号为60106=,所以在第5组中抽取的号码为310443+⨯=,故答案为43. 考点:系统抽样方法.(14)已知双曲线C :22221x y a b-=()0,0a b >>的左顶点为A ,右焦点为F ,点()0,B b ,且0BA BF =,则双曲线C 的离心率为 .【解析】 试题分析:0,BA BF AB BF =∴⊥,又BO AF ⊥,所以由射影定理知2OB OA OF =,即2b ac =22c a =-,210,e e e --==考点: 1、向量垂直与向量数量积之间的关系;2、双曲线的几何性质及离心率. (15)()422x x --的展开式中,3x 的系数为 . (用数字填写答案) 【答案】40- 【解析】试题分析:()422x x -- ()422x x ⎡⎤=-+⎣⎦展开后只有()42x +与()33242C xx -+中含3x 项其系数和为133124432240C C C ⨯-⨯⨯=-,故答案为40-.考点:二项展开式定理.(16)已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()()22xg x f x =-的零点个数为 个.【答案】2考点: 函数的零点和图象交点的关系.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分12分)如图,在△ABC 中,点D 在边AB 上,CD BC ⊥,AC =,5CD =,2BD AD =. (Ⅰ)求AD 的长; (Ⅱ)求△ABC 的面积.【答案】(Ⅰ)5;【解析】试题分析:(Ⅰ)设AD x=()0x >,则2BD x =.因为CD BC ⊥,5CD =,2BD x =,所以cos CD CDB BD ∠=52x =,由余弦定理得222cos 2AD CD AC ADC AD CD +-∠==⨯⨯.因为cos cos ADC CDB ∠=-∠,即52x=-.解得5x =.所以AD 的长为5;(Ⅱ)由(Ⅰ) 3AB x =15= ,所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠ 可得正确答案. 试题解析:(Ⅰ) 在ABC ∆中,因为2BD AD =,设AD x =()0x >,则2BD x =. 在BCD ∆中,因为CD BC ⊥,5CD =,2BD x =,所以cos CD CDB BD ∠=52x=.在ACD ∆中,因为AD x =,5CD =,AC =,由余弦定理得222cos 2AD CD AC ADC AD CD +-∠==⨯⨯CDB ADC ∠+∠=π, 所以cos cos ADC CDB ∠=-∠,52x=-.解得5x =.所以AD 的长为5.(Ⅱ)由(Ⅰ)求得315AB x ==,BC ==. 所以cos BC CBD BD ∠==,从而1sin 2CBD ∠=,所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠111522=⨯⨯=.考点:余弦定理及三角形面积公式. (18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率 分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1. (Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区 间[)45,75内的产品件数为X ,求X 的分布列与数学期望.【答案】(Ⅰ)0.05;(Ⅱ)1.8. 【解析】试题分析:(Ⅰ)先根据比例设出质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率,再根据各个矩形面积和为1可求得质量指标值落在区间[]75,85内的频率;(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X 服从二项分布(),B n p ,其中3n =,根据独立重复试验概率公式求概率,根据二项分布期望公式求期望. 试题解析:(Ⅰ)设区间[]75,85内的频率为x , 则区间[)55,65,[)65,75内的频率分别为4x 和2x .依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. 所以区间[]75,85内的频率为0.05.(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验, 所以X 服从二项分布(),B n p ,其中3n =.由(Ⅰ)得,区间[)45,75内的频率为0.30.2+0.1=0.6+,将频率视为概率得0.6p =.因为X 的所有可能取值为0、1、2、3, 且033(0)C 0.60.40.064P X ==⨯⨯=,1123(1)C 0.60.40.288P X ==⨯⨯=,2213(2)C 0.60.40.432P X ==⨯⨯=,3303(3)C 0.60.40.216P X ==⨯⨯=.所以X 的分布列为:X 服从二项分布(),B n p ,所以X 的数学期望为30.6 1.8EX =⨯=.考点:1、频率分布直方图;2、离散型随机变量的均值期望. (19)(本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形,ACBD O =,1A O ⊥底面ABCD ,21==AA AB .(Ⅰ)证明:平面1ACO ⊥平面11BB D D ; (Ⅱ)若60BAD ∠=,求二面角1B OB C --的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)【解析】试题分析:(Ⅰ)先证1A O BD ⊥,CO BD ⊥可得BD ⊥平面1A CO ,进而得平面11BB D D ⊥平面1ACO ;(Ⅱ)以O 为原点,OB ,OC ,1OA 方向为x ,y ,z 轴正方向建立如图所示空间直角坐标系.分别求出平面1OBB 的法向量,平面1OCB 的法向量 ,利用空间向量夹角公式即可求得二面角1B OB C -- 的余弦值. 试题解析:(Ⅰ)证明:因为1A O ⊥平面ABCD ,BD ⊂平面ABCD ,所以1A O BD ⊥.因为ABCD 是菱形,所以CO BD ⊥.因为1AO CO O =,所以BD ⊥平面1A CO .因为BD ⊂平面11BB D D , 所以平面11BB D D ⊥平面1ACO .(Ⅱ)解 :因为1A O ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB ,OC ,1OA 方 向为x ,y ,z 轴正方向建立如图所示空间直角坐标系. 因为12AB AA ==,60BAD ∠=, 所以1OB OD ==,OA OC ==11OA ==.则()1,0,0B,()C,()0,A ,()10,0,1A ,所以()11BB AA ==,()11+OB OB BB ==.设平面1OBB 的法向量为(),,x y z =n , 因为()1,0,0OB =,()1OB =,所以0,0.x x z =⎧⎪⎨++=⎪⎩令1=y ,得(0,1,=n .同理可求得平面1OCB 的法向量为()1,0,1=-m .所以cos ,<>==n m 1B OB C --的平面角为钝角, 所以二面角1B OB C --的余弦值为.考点:1、线面及面面垂直的判定定理;2、利用法向量夹角公式求二面角的余弦. (20)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭 圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.【答案】(Ⅰ)22184x y +=;(Ⅱ)经过两定点()12,0P ,()22,0P -.【解析】试题分析:(Ⅰ)椭圆的左焦点为()120F -,,所以224a b -=.由点(2B 在椭圆C 上,得22421a b+=,进而解出,a b 得到椭圆C 的方程;(Ⅱ)直线(0)y kx k =≠与椭圆22184x y +=联立,解得,E F 的坐标(用k 表示),设出AE ,AF 的方程,解出,M N 的坐标,圆方程用k 表示,最后可求得MN 为直径的圆经过两定点.试题解析:(Ⅰ) 设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.因为点(2B 在椭圆C 上,所以22421a b +=.由①②解得,a =2b =.所以椭圆C 的方程为22184x y +=. (Ⅱ)因为椭圆C 的左顶点为A ,则点A的坐标为()-.因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =,则0y =.所以直线AE的方程为y x =+.因为直线AE ,AF 分别与y 轴交于点M ,N ,令0x =得y =,即点M ⎛ ⎝.同理可得点N ⎛ ⎝..设MN 的中点为P ,则点P 的坐标为0,P ⎛ ⎝. 则以MN 为直径的圆的方程为22x y ⎛+=⎝2, 即224x y y +=. 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -. 考点:1、 待定系数法求椭圆;2、圆的方程及几何意义. (21)(本小题满分12分) 已知函数+3()ex mf x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.【答案】(Ⅰ)0m =;(Ⅱ)证明见解析. 【解析】试题分析:(Ⅰ)先求出()f x ',再令()0e 1mf '==,可解得m 的值;(Ⅱ)()3()f x g x x >-等价于()+e ln 120x m x -+->,当1m ≥时,只需证明1e ln(1)20x x +-+->,设()()1e ln 12x h x x +=-+-,则()11e 1x h x x +'=-+,利用()h x 的单调性,可以证明()h x 的最小值()0h x 为正,进而()3()f x g x x >-. 试题解析:(Ⅰ)因为+3()ex mf x x =-,所以+2()e 3x m f x x '=-.因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.(Ⅱ)因为+3()ex mf x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x mx -+->.当1m ≥时,()()+1e ln 12e ln 12x mx x x +-+-≥-+-.要证()+eln 120x mx -+->,只需证明1e ln(1)20x x +-+->设()()1eln 12x h x x +=-+-,则()11e 1x h x x +'=-+. 设()11e 1x p x x +=-+,则()()121e 01x p x x +'=+>+. 所以函数()p x =()11e 1x h x x +'=-+在()1+-∞,上单调递增. 因为121e 202h ⎛⎫'-=-< ⎪⎝⎭,()0e 10h '=->,所以函数()11e 1x h x x +'=-+在()1+-∞,上有唯一零点0x ,且01,02x ⎛⎫∈- ⎪⎝⎭因为()00h x '=,所以0+101e1x x =+,即()()00ln 11x x +=-+. 当()01,x x ∈-时,()0h x '<;当()0,x x ∈+∞时,()0h x '>, 所以当0x x =时,()h x 取得最小值()0h x . 所以()()()0100=eln 12x h x h x x +≥-+-()0011201x x =++->+. 综上可知,当1m ≥时,()3()f x g x x >-.考点:1、利用导数求切线斜率;2、利用导数研究函数的单调性及 最值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图所示,△ABC 内接于⊙O ,直线AD 与⊙O 相切于点A ,交BC 的延长线于点D ,过点D 作DE CA 交BA 的延长线于点E .(Ⅰ)求证:2DE AE BE =;(Ⅱ)若直线EF 与⊙O 相切于点F ,且4EF =,2EA =,求线段AC 的长.【答案】(Ⅰ)证明见解析;(Ⅱ)3.考点:1、三角形相似;2、切割线定理.(23)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方 程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l :32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R )的距离最短,并求出点D 的直角坐标.【答案】(Ⅰ)2220x y y +-=;(Ⅱ)32⎫⎪⎪⎭,.【解析】试题分析:(Ⅰ)利用极坐标方程与直角坐标的互化公式可得:(Ⅱ)参数方程化为普通方程,利用圆心到直线的距离减半径最小可知,过圆心与直线垂直的直线与圆的交点之一取得最小值,根据几何意义排除一个即可.试题解析:(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.因为222x y ρ=+,sin y ρθ=,所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=).(Ⅱ)解:因为直线的参数方程为32x y t ⎧=⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+.因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短, 所以曲线C 在点D 处的切线与直线l:5y =+平行. 即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-. 因为()220011x y +-=,解得0x =或0x = 所以点D 的坐标为12⎛⎫ ⎪ ⎪⎝⎭,或32⎫⎪⎪⎭,. 由于点D到直线5y =+的距离最短,所以点D 的坐标为32⎫⎪⎪⎭,. 考点:1、极坐标方程与直角坐标的方程互化;2、参数方程与普通方程的互化. (24)(本小题满分10分)选修4-5:不等式选讲 设函数()f x x =+ (Ⅰ)当1a =时,求不等式()12f x ≥的解集;(Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.【答案】(Ⅰ)1,4⎡⎫-+∞⎪⎢⎣⎭;(Ⅱ))+∞.【解析】试题分析:(Ⅰ)讨论三种情况1x ≤-,10x -<<,0x ≥,最后找并集即可;(Ⅱ)不等式()f x b ≥的解集为空集,只需()max b f x >⎡⎤⎣⎦,利用基本不等式可得()f x ≤+,进而转化为maxb >,最后运用三角换元法或平方后结合基本不等式求出max .试题解析:(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥. ①当1x ≤-时,不等式化为112x x --+≥,无解; ②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<;③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭. (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.因为 ()f x x =+x +,当且仅当x ≥()max f x ⎡⎤⎣⎦=.因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,所以max b >, 令()g a =+所以()21ga =+2212≤++==,即12a =时等号成立.所以()maxg a =⎡⎤⎣⎦.所以b 的取值范围为)+∞.考点:1、绝对值不等式的解法;2、利用基本不等式求最值.。
【原创】广州市2016届高三下学期高考数学模拟试题精选汇总:三角函数01 Word版含答案

三角函数01一、选择题1 .若f (x )a sin x b =+(a ,b 为常数)的最大值是5,最小值是-1,则ab 的值为 ( )A .、23-B .、23或23- C .、 32-D .、322 .边长为的三角形的最大角与最小角的和是( )( )A .B .C .D .3 .在钝角△A BC 中,已知AB=3, AC=1,∠B=30°,则△ABC 的面积是( )A .23 B .43 C .23 D .43 4 .设函数f(x)=Asin(ϕω+x )(A>0,ω>0,-2π<ϕ<2π)的图象关于直线x=32π对称,且周期为π,则f(x) ( )A .图象过点(0,21) B .最大值为-AC .图象关于(π,0)对称D .在[125π,32π]上是减函数 5 .设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是( )A .23B .43C .32D .36 .已知21)4tan(=+απ,则ααα2cos 1cos 2sin 2+-的值为( )A .35-B .56-C .-1D .27 .为了得到函数x x x y2cos 21cos sin 3+=的图象,只需将函数x y 2sin =的图象( )A .向左平移12π个长度单位 B .向右平移12π个长度单位 C .向左平移6π个长度单位D .向右平移6π个长度单位8 .在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为 ( )A B C .12D .12-9 .在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,,,且1+2cos(B+C)=0,则BC 边上的高等于 ( )A B C .2D .210.把函数=()y sin x x R ∈的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( )A .=(2-),R 3y sin x x π∈ B .=(+),R 26x y sin x π∈C .=(2+),R 3y sin x x π∈D . 2=(2+),R 3y sin x x π∈11.在∆ABC 中,A,B,C 为内角,且sin cos sin cos A A B B =,则∆ABC 是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形12.设函数sin()3y x π=+(x ∈R),则f(x)( )A .在区间[-π,2π-]上是减函数 B .在区间27[,]36ππ上是增函数 C .在区间[8π,4π]上是增函数 D .在区间5[,]36ππ上是减函数13.函数f(x)=sin2x-4sin 3xcosx(x ∈R)的最小正周期为( )A .8π B .4π C .2π D .π14.把函数sin(2)4yx π=+的图象向右平移8π个单位,再把所得图象上各点的横坐标缩短到原来的一半,则所得图象对应的函数解析式是 ( )A .y=sin (4x+83π) B .y=sin (4x+8π) C . y=sin4x D .y=sinx15.函数ln cos y x =⎪⎭⎫ ⎝⎛<<-22ππx 的图象是16.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,其中120,1A b ==,且ABC ∆面积为则sin sin a bA B+=+( )A B .3C .D .17.函数2()22sin f x x x =-,(02x π≤≤)则函数f(x)的最小值为( )A .1B .-2C .√3D .-√318.在∆ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是 ( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对19.△ABC 的三个内角C B A ,,所对的边分别为c b a ,,,a A b B A a 2cos sin sin 2=+,则=ab( )A .32B .22C .3D .220.将函数⎪⎭⎫⎝⎛+=42sin 2)(πx x f 的图像向右平移)0(>ϕϕ个单位,再将图像上每一点横坐标缩短到原来的21倍,所得图像关于直线4π=x 对称,则ϕ的最小正值为 ( )A .8πB .83πC .43πD .2π答案 1. B2. 【答案】B【解析】边7对角为θ,则由余弦定理可知2225871cos ==2582θ+-⨯⨯,所以=60θ,所以最大角与最小角的和为120,选B.3. B4. D5. C6. B7. A8. C9. 【答案】D【解析】由12cos()0B C ++=,得112cos 0,cos 2A A -==,所以3A π=。
【原创】广州市2016届高三下学期高考数学模拟试题精选汇总: 函数01 Word版含答案

函数01一、选择题1 .已知函数12x f (x )x ,g(x )x ,h(x )x ln x =-=+=+的零点分别为x 1,x 2,x 3,则 ( )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 3<x 1<x 2D .x 2<x 3<x 12 .己知函数1f (x )+是偶函数,当1x (,)∈-∞时,函数f (x )单调递减,设1122a f (),b f (),c f ()=-=-=,则a ,b ,c 的大小关系为( )A .c<a<bB .a<b<cC .a<c<bD .c<b<a3 .定义在R 上的函数满足,当时,,则( )( )A .B .C .D .4 .已知函数的图象如图所示则函数的图象是( )5 .函数的定义域为( )( )A .B .C .D .6 .设函数1()ln (0)3f x x x x =->,则函数()f x( )A .在区间(0,1)(1,)+∞, 内均有零点B .在区间(0,1)(1,)+∞, 内均无零点C .在区间(0,1)内有零点,在区间(1,)+∞内无零点D .在区间(0,1)内无零点,在区间(1,)+∞内有零点7 .定义在R 上的奇函数f(x),当x≥0时,f(x)=⎪⎩⎪⎨⎧+∞∈∈+),1[3-x -1)1,0[x ),1x (log 21x ,则关于x 的函数F(x)=f(x)-a(0<a<1)的所有零点之和为 ( )A .2a -1B .1-2aC .2-a -1D .1-2-a8 .设)(x f 是定义在R 上的周期函数,周期为4=T ,对R x ∈都有)()(x f x f =-,且当]0,2[-∈x 时,121)(-⎪⎭⎫⎝⎛=xx f ,若在区间]6,2(-内关于x 的方程)2(log )(+-x x f a =0)1(>a 恰有3个不同的实根,则a 的取值范围是 ( )A .(1,2)B .),2(+∞C .()4,1D .()32,4本卷共12小题,共110分.9 .已知函数()=ln f x x ,则函数()=()'()g x f x f x -的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.定义域为R 的函数()f x 满足(+2)=2()f x f x ,当x ∈[0,2)时,2|x-1.5|-,[0,1)()=-(0.5),[1,2)x x x f x x ⎧∈⎨∈⎩若[-4,-2]x ∈时,1()-42t f x t ≥恒成立,则实数t 的取值范围是( )A .[-2,0)(0,l)B .[-2,0) [l ,+∞)C .[-2,l]D .(-∞,-2](0,l]11.在下列区间中,函数()=+43xf x e x -的零点所在的区间为( )A .(1-4,0) B .(0,14) C .(14,12) D .(12,34)12.定义在R 上的偶函数f(x),当x ∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) A .f(π)>f(-3)>f(-2) B .f(π)>f(-2)>f(-3)C .f(π)<f(-3)<f(-2)D .f(π)<f(-2)<f(-3)13.偶函数f (x )满足(1)(1)f x f x +=-,且在x ∈[0,1]时,f (x )=x 2,则关于x 的方程f (x )=x⎪⎭⎫⎝⎛101在10[0,]3上根的个数是( )A .1个B .2个C .3个D .5个14.设5log 4a =, 25(log 3)b =,4log 5c =,则( )A .a<c<bB .b<c<aC .a<b<cD .b a c <<15.设函数1(1)|-1|)=1(=1)x x f x x ⎧≠⎪⎨⎪⎩(,若关于x 的方程2[()]+()+c=0f x bf x 有三个不同的实数根123,,x x x ,则222123++x x x 等于( )A .13B .5C .223c +2c D .222b +2b16.函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )A .()f x 是偶函数B .()f x 是奇函数C .()(2)f x f x =+D .(3)f x +是奇函数17.给定函数①12=y x-,②23+3=2xx y -,③12=log |1-|y x ,④=sin2xy π,其中在(0,1)上单调递减的个数为 ( ) A .0B .1 个C .2个 D .3个18.已知定义在区间[0,2]上的函数=()y f x 的图象如图所示,则=(2-)y f x 的图象为19.已知函数()()2531m f x m m x --=--是幂函数且是()0,+∞上的增函数,则m 的值为( )A .2B .-1C .-1或2D .020.已知函数2342013()12342013x x x x f x x =+-+-++,2342013()12342013x x x x g x x =-+-+--,设函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的零点均在区间),,](,[Z ∈<b a b a b a 内,则-b a 的最小值为 ( )A .8B .9C .10D .1121.函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不等的实数根,则实数a 的取值范围为 ( )A .(-∞,0)B .[0,1)C .(-∞,1)D .[0,+∞)22.函数x x x f 2log 12)(+-=的零点所在的一个区间是( )A .⎪⎭⎫⎝⎛41,81 B .⎪⎭⎫⎝⎛21,41 C .⎪⎭⎫⎝⎛1,21 D .)2,1(23.若直角坐标平面内的两点P 、Q 满足条件:①P 、Q 都在函数)(x f y =的图像上;②P 、Q关于原点对称,则称点对[P ,Q]是函数)(x f y =的一对“友好点对”(注:点对[P ,Q]与[Q,P]看作同一对“友好点对”).已知函数⎩⎨⎧≤-->=)0(4)0(log )(22x x x x x x f ,则此函数的“友好点对”有( )A .0对B .1对C .2对D .3对答案 1. D 2. A3. 【答案】D【解析】由题意可知,函数的图象关于y 轴对称,且周期为2,故可画出它的大致图象,如图所示:∵且,而函数在是减函数, ∴,选D.4. 【答案】A【解析】由函数的两个根为.x a x b ==,图象可知01,1a b <<<-。
【精选高中试题】广东省广州市2016年高三数学综合测试(一模)试题 文(含解析)

2016年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =(A ){}12x x -≤≤ (B ){}10x x -≤≤ (C ){}12x x ≤≤ (D ){}01x x ≤≤ 答案:D解析:集合A ={}11x x ≤≤-,集合B ={}2x x ≤≤0,所以,A B ={}01x x ≤≤。
(2)已知复数3i1iz +=+,其中i 为虚数单位,则复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 答案:D 解析:(3)(1)22i i z i +==--,对应坐标为(2,-1),在第四象限。
(3)已知函数()2,1,1,1,1x x x f x x x⎧-≤⎪=⎨>⎪-⎩则()()2f f -的值为(A )12(B )15 (C )15- (D )12-答案:C解析:2f (-)=4+2=6,11((2))(6)165f f f -===--,选C 。
(4)设P 是△ABC 所在平面内的一点,且2CP PA =,则△PAB 与△PBC 的面积之比是(A )13 (B )12 (C )23 (D )34答案:B解析:依题意,得:CP =2PA ,设点P 到AC 之间的距离为h ,则 △PAB 与△PBC 的面积之比为1212BPA BCPPA h S S PC h ∆∆==12(5)如果函数()cos 4f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为 (A )3 (B )6 (C )12 (D )24答案:B解析:依题意,得:周期T =3π,23ππω=,所以,ω=6。
2016年广东省广州市高考数学一模试卷(理科)

【选修 4-1:几何,△ABC 内接于⊙O,直线 AD 与⊙O 相切于点 A,交 BC 的延长线于点 D,过点 D 作 DE∥CA 交 BA 的延长线于点 E. (I)求证:DE2=AE•BE; (Ⅱ)若直线 EF 与⊙O 相切于点 F,且 EF=4,EA=2,求线段 AC 的长.
2.(5 分)(2016•广州一模)已知复数,其中 i 为虚数单位,则复数 z 的共轭复 数所对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【考点】复数的代数表示法及其几何意义. 【专题】数形结合;转化思想;数系的扩充和复数. 【分析】利用复数的运算法则、共轭复数、复数的几何意义即可得出. 【解答】解:∵复数===1+2i,复数 z 的共轭复数=1 2i 所对应的点在第四象 限. 故选:D. 【点评】本题考查了复数的运算法则、共轭复数、复数的几何意义,考查了推 理能力与计算能力,属于基础题.
二.填空题:本大题共 4 小题,每小题 5 分. 13.(5 分)一个总体中有 60 个个体,随机编号为 0,1,2,…59,依编号顺序
第 2 页(共 55 页)
平均分成 6 个小组,组号为 1,2,3,…6.现用系统抽样方法抽取一个容量为 6 的样本,若在第 1 组中抽取的号码为 3,则在第 5 组中抽取的号码是 . 14.(5 分)已知双曲线 C:(a>0,b>0)的左顶点为 A,右焦点为 F,点 B (0,b),且,则双曲线 C 的离心率为 . 15.(5 分)(x2 x 2)4 的展开式中,x3 16.( 5 分 ) 已 知 函 数 f( x) =, 则 函的系数数g(为 x) =(2|用x|f数(字x)填写2 答的案零)点 个 数 为.
三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(12 分)如图,在△ABC 中,点 D 在边 AB 上,CD⊥BC,AC=5,CD=5, BD=2AD. (Ⅰ)求 AD 的长; (Ⅱ)求△ABC 的面积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省广州市2016届高三下学期高考数学模拟试题精选汇总-----三角函数01一、选择题1 .若f (x )a sin x b =+(a ,b 为常数)的最大值是5,最小值是-1,则ab 的值为 ( )A .、23-B .、23或23- C .、 32-D .、322 .边长为的三角形的最大角与最小角的和是( )( )A .B .C .D .3 .在钝角△ABC 中,已知AB=3, AC=1,∠B=30°,则△ABC 的面积是( )A .23 B .43 C .23 D .43 4 .设函数f(x)=Asin(ϕω+x )(A>0,ω>0,-2π<ϕ<2π)的图象关于直线x=32π对称,且周期为π,则f(x) ( )A .图象过点(0,21) B .最大值为-AC .图象关于(π,0)对称D .在[125π,32π]上是减函数 5 .设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是( )A .23B .43C .32D .36 .已知21)4tan(=+απ,则ααα2cos 1cos 2sin 2+-的值为( )A .35-B .56-C .-1D .27 .为了得到函数x x x y 2cos 21cos sin 3+=的图象,只需将函数x y 2sin =的图象 ( )A .向左平移12π个长度单位 B .向右平移12π个长度单位C .向左平移6π个长度单位D .向右平移6π个长度单位 8 .在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为 ( )A B .2C .12D .12-9 .在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,1+2cos(B+C)=0,则BC 边上的高等于 ( )A B C .2D .210.把函数=()y sin x x R ∈的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( )A .=(2-),R 3y sin x x π∈ B .=(+),R 26x y sin x π∈C .=(2+),R 3y sin x x π∈D . 2=(2+),R 3y sin x x π∈ 11.在∆ABC 中,A,B,C 为内角,且sin cos sin cos A A B B =,则∆ABC 是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形12.设函数sin()3yx π=+(x ∈R),则f(x)( )A .在区间[-π,2π-]上是减函数B .在区间27[,]36ππ上是增函数 C .在区间[8π,4π]上是增函数 D .在区间5[,]36ππ上是减函数 13.函数f(x)=sin2x-4sin 3xcosx(x ∈R)的最小正周期为( )A .8π B .4π C .2π D .π14.把函数sin(2)4y x π=+的图象向右平移8π个单位,再把所得图象上各点的横坐标缩短到原来的一半,则所得图象对应的函数解析式是 ( )A .y=sin (4x+83π) B .y=sin (4x+8π) C . y=sin4x D .y=sinx15.函数ln cos y x=⎪⎭⎫ ⎝⎛<<-22ππx 的图象是16.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,其中120,1A b ==,且ABC ∆面积为则sin sin a bA B+=+( )A B .3C .D .17.函数2()22sin f x x x -,(02x π≤≤)则函数f(x)的最小值为( )A .1B .-2C .√3D .-√318.在∆ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是 ( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对19.△ABC 的三个内角C B A ,,所对的边分别为c b a ,,,a A b B A a 2cossin sin 2=+,则=ab( )A .32B .22C .3D .220.将函数⎪⎭⎫⎝⎛+=42sin 2)(πx x f 的图像向右平移)0(>ϕϕ个单位,再将图像上每一点横坐标缩短到原来的21倍,所得图像关于直线4π=x 对称,则ϕ的最小正值为 ( )A .8πB .83πC .43πD .2π答案 1. B2. 【答案】B【解析】边7对角为θ,则由余弦定理可知2225871cos ==2582θ+-⨯⨯,所以=60θ,所以最大角与最小角的和为120,选B.3. B4. D5. C6. B7. A8. C9. 【答案】D【解析】由12cos()0B C ++=,得112cos 0,cos 2A A -==,所以3A π=。
有正弦定理得sin sin a b A B =sin 3=,得sin 2B =,因为b a <,所以B A <,即4B π=。
由余弦定理得2222cos a b c bc A =+-得232c =+,即210c -=,解得c =,所以BC 边上的高为sin h c B ===D. 10. 【答案】C【解析】把函数=()y sin x x R ∈的图象上所有的点向左平行移动3π个单位长度,得到函数sin()3y x π=+,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到函数sin(2)3y x π=+,所以选C.11. 【答案】D【解析】由sin cos sin cos A A B B =得sin 2sin 2sin(2)A B B π==-,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰或直角三角形,选D.12. 【答案】B【解析】当2736x ππ≤≤时,2733363x πππππ+≤+≤+,即332x πππ≤+≤,此时函数sin()3y x π=+单调递减,所以sin()3y x π=+在区间27[,]36ππ上是增函数,选B. 13. 【答案】C【解析】221()sin 22sin 2sin sin 2(12sin )sin 2cos 2sin 42f x x x x x x x x x =-=-==,所以函数的周期为2242T πππω===,选C. 14. 【答案】C【解析】把函数s i n (2)4y x π=+的图象向右平移8π个单位,得到函数sin[2())sin 284y x x ππ=-+=,再把所得图象上各点的横坐标缩短到原来的一半,则所得图象对应的函数解析式是sin[2(2)]sin 4y x x ==,选C.15. 【答案】A【解析】函数为偶函数,图象关于y 轴对称,所以排除B,D.又0cos 1x <<,所以ln cos 0y x =<,排除C ,选A.16. 【答案】D 01sin1202ABCSbc ==,即12c =,所以4c =,所以22202cos12021a b c bc =+-=,所以a =。
因为2sin sin a bR A B==,所以2sin a R A ===,所以2(sin sin )2sin sin sin sin a b R A B R A B A B ++===++选D. 17. 【答案】B解:2()22sin 2cos 212sin(2)16f x x x x x x π=-=+-=+-,当02x π≤≤,702,2666x x ππππ≤≤≤+≤,所以当7266x ππ-=时,函数()f x 有最小值71()2sin()12()1262f x π=-=⨯--=-,选B. 18. 【答案】B解:由题意知374,4a a =-=,所以733tan a a A =+,所以73tan 24a a A -==.361,93b a ==,所以363(tan )a b B =,即3tan 27B =,所以t a n 3B =,所以t a n t a n 23t a n ()11t a n t a n 123A B A B A B +++===---⨯,即tan 1C =,因为t a n 30B =>,所以最大值90B <,即三角形为锐角三角形,选B.19. 【答案】D解:由正弦定理得s i ns i nabA B =,即sin sin a B b A =.所以由a Ab B A a 2c o s s i n s i n 2=+得22sin cos b A b A +=,即b =,所以ba=,选D.20. 【答案】B解:函数⎪⎭⎫⎝⎛+=42sin 2)(πx x f 的图像向右平移)0(>ϕϕ个单位得到2sin[2()]2sin(22)44y x x ππϕϕ=-+=+-,再将图像上每一点横坐标缩短到原来的21倍得到2sin(42)4y x πϕ=+-,此时 关于直线4π=x 对,即当4π=x 时,4242,4442x k k Z ππππϕϕπ+-=⨯+-=+∈,所以324k πϕπ=+,3,82k k Z ππϕ=+∈,所以当0k =时,ϕ的最小正值为38πϕ=,选B.。