种数据挖掘工具分析比较
大数据分析与数据挖掘的区别与联系

大数据分析与数据挖掘的区别与联系一、引言随着互联网的普及,大量数据被不断产生,并被广泛应用到各个领域中。
在大数据时代,如何处理这些数据成为了一个非常重要的问题。
数据分析和数据挖掘成为了解决这一问题的重要工具。
二、大数据分析1. 大数据分析的定义大数据分析是指利用大量数据,运用统计学、计算机科学、数学及其他领域相关技术,通过挖掘数据背后的规律性,提取数据中隐含的有用信息,对数据进行分析和研究的一种方法。
2. 大数据分析的特点- 数据量大- 数据复杂多变- 数据来源多样- 数据处理难度大3. 大数据分析的应用- 金融行业- 医疗行业- 零售行业- 互联网行业三、数据挖掘1. 数据挖掘的定义数据挖掘是指在大量数据中,通过运用机器学习、数据挖掘技术,自动地发现隐含于数据中的规律性、趋势性和模式性的过程。
2. 数据挖掘的过程- 数据清洗- 数据预处理- 特征选择- 利用机器学习算法进行数据挖掘- 结果解释3. 数据挖掘的技术- 聚类分析- 关联规则挖掘- 分类分析- 预测分析四、大数据分析与数据挖掘的关系和区别大数据分析和数据挖掘都是处理大量数据的方法,但二者的研究重点和应用范畴有所不同。
数据挖掘的重点在于如何从大数据中发现隐藏的规律,自动地进行模式识别、分类、聚类、预测等。
而大数据分析更侧重于利用大数据解决实际问题,如产品设计、市场营销、客户服务等。
五、结论随着大数据时代的到来,大数据分析和数据挖掘成为了处理大数据的关键技术,它们相辅相成,共同为我们提供了更多的解决方案。
我们需要深入了解这两种技术,以更好地利用大数据来提高我们的生产力和竞争力。
数据挖掘的5种工具与技巧

数据挖掘的5种工具与技巧数据挖掘是对海量数据进行分析和提取有用信息的一项技术。
在大数据时代,数据挖掘已经成为了产业、政府和学术中不可或缺的技术之一。
而取得好的数据分析和挖掘结果,要依赖于有效的工具和技巧。
本文将讨论数据挖掘中5种必备的工具和技巧。
一、PythonPython是数据挖掘中最重要的编程语言之一。
它是一种通用编程语言,具有数据分析的功能。
Python拥有丰富的库,比如PyBrain、Scikit Learn、NumPy和Matplotlib等等。
这些库能够帮助开发者进行机器学习、数据清理、数据分析和可视化等工作,极大地简化了数据挖掘的复杂度。
值得一提的是,Python通过在线资源的分享和社区的互动,其资料和案例丰富,成为了有史以来最流行、最受欢迎的编程语言之一。
二、R语言与Python类似,R语言也是数据分析及挖掘领域非常重要的语言之一。
R语言具有数据分析和建模的强大功能,拥有大量成熟的包和工具来帮助人们进行分析和数据可视化的工作。
与Python 不同的是,R语言更加注重数学和统计分析的工具,是一种专门用于数据处理的语言。
此外,R语言的使用非常灵活,可以进行大多数的数据挖掘任务。
三、SQLSQL是一种结构化查询语言,主要应用于关系型数据库的管理和查询。
它是在1970年代诞生的,至今仍然是操作数据库最重要的语言之一。
SQL提供了许多关于数据的分析和筛选的函数,并通过数据库的查询功能来过滤出所需的数据,例如GROUP BY、HAVING、JOIN等等。
这使得SQL成为了处理大型数据的有效语言。
四、TableauTableau是一种数据可视化工具,适用于快速可视化和分析数据。
它提供了丰富的可视化方式,例如线图、条形图、饼图、地图和散点图等。
Tableau把数据和图表联系起来,在交互式的平台上帮助用户了解数据背后的趋势和洞察。
这种工具能够简化数据分析的复杂性,提高数据的可读性,让人们更好地理解数据中隐藏的信息。
审计师行业工作中的数据分析方法与工具

审计师行业工作中的数据分析方法与工具在审计师行业的工作中,数据分析方法和工具起着至关重要的作用。
随着数字化时代的发展,数据分析已经成为审计师进行有效和准确审计的必备技能。
本文将探讨在审计师行业工作中常用的数据分析方法和工具。
一、数据分析方法1. 抽样法抽样法是审计师在进行大规模数据分析时常用的方法。
通过抽取样本数据并进行分析,可以为审计师提供对总体数据的了解。
常用的抽样方法包括随机抽样、系统抽样和目标抽样等。
2. 比较法比较法是审计师用来进行数据分析的常见方法之一。
通过对比不同时间段、不同企业或不同部门的数据,审计师可以发现潜在的风险和异常情况。
比较法的一种常见形式是趋势分析,利用时间序列数据进行比较和分析,以便更好地了解企业的经营情况。
3. 比率和比例分析审计师经常使用比率和比例分析来评估企业的财务状况和业务绩效。
比率和比例分析可以帮助审计师了解企业的盈利能力、偿债能力、运营效率等方面的情况。
常见的比率和比例包括资产负债率、营业利润率、存货周转率等。
4. 帕累托分析帕累托分析可以帮助审计师确定重要的问题和风险。
审计师可以通过该方法识别出导致绝大部分问题的关键因素,进而有针对性地进行数据采集和分析。
帕累托分析以其简单性和实用性而受到广泛应用。
二、数据分析工具1. 电子表格软件电子表格软件如Excel是审计师最常用的工具之一。
通过Excel等电子表格软件,审计师可以对数据进行排序、筛选、计算和可视化等处理。
此外,电子表格软件还提供了各种函数和宏,方便审计师进行数据分析和处理。
2. 数据挖掘工具数据挖掘工具可以帮助审计师从大规模数据中发现隐藏的信息和模式。
这些工具可以对数据进行聚类、分类、关联规则挖掘等分析。
常见的数据挖掘工具包括RapidMiner、KNIME和Weka等。
3. 数据可视化工具数据可视化工具如Tableau和Power BI等能够将数据以图表、仪表盘等形式进行可视化。
通过数据可视化,审计师可以更直观地呈现分析结果,发现数据中的趋势和异常情况。
款常用的数据挖掘工具推荐

12款常用的数据挖掘工具推荐数据挖掘工具是使用数据挖掘技术从大型数据集中发现并识别模式的计算机软件。
数据在当今世界中就意味着金钱,但是因为大多数数据都是非结构化的。
因此,拥有数据挖掘工具将成为帮助您获得正确数据的一种方法。
常用的数据挖掘工具1.RR是一套完整的数据处理、计算和制图软件系统。
其功能包括:数据存储和处理系统;数组运算工具(其向量、矩阵运算方面功能尤其强大);完整连贯的统计分析工具;优秀的统计制图功能;简便而强大的编程语言:可操纵数据的输入和输出,可实现分支、循环,用户可自定义功能。
2.Oracle数据挖掘(ODM)Oracle Data Mining是Oracle的一个数据挖掘软件。
Oracle数据挖掘是在Oracle 数据库内核中实现的,挖掘模型是第一类数据库对象。
Oracle数据挖掘流程使用Oracle 数据库的内置功能来最大限度地提高可伸缩性并有效利用系统资源。
3.TableauTableau提供了一系列专注于商业智能的交互式数据可视化产品。
Tableau允许通过将数据转化为视觉上吸引人的交互式可视化(称为仪表板)来实现数据的洞察与分析。
这个过程只需要几秒或几分钟,并且通过使用易于使用的拖放界面来实现。
5. ScrapyScrapy,Python开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。
Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
6、WekaWeka作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
Weka高级用户可以通过Java编程和命令行来调用其分析组件。
同时,Weka也为普通用户提供了图形化界面,称为Weka KnowledgeFlow Environment和Weka Explorer。
和R相比,Weka在统计分析方面较弱,但在机器学习方面要强得多。
统计分析和数据挖掘的常见方法和工具

统计分析和数据挖掘的常见方法和工具在当今大数据时代,统计分析和数据挖掘已经成为了企业决策和科学研究不可或缺的技术手段。
那么,什么是统计分析和数据挖掘?它们有什么区别?常见的方法和工具又是哪些呢?让我们一一探究。
统计分析和数据挖掘是两个密切相关的概念,但却有着不同的重点。
统计分析是指通过对已知数据进行分析和推断,来获取对未知数据的预测和推测。
而数据挖掘则更加强调对未知数据的探索和发现,通过一系列的算法和技术,从大量数据中发现隐藏的关联规则、模式和趋势等信息。
在数据挖掘领域,聚类、分类、关联规则挖掘和时序数据挖掘是常见的方法。
聚类是将数据集中的对象划分为若干个组或类,使得同类别组内对象间的相似度尽量大,不同类别组间对象间的相似度尽量小。
分类则是基于训练数据集中已知类别的样本来构建分类模型,再将该模型应用于未知样本中去进行分类。
关联规则挖掘旨在发现数据集中不同数据之间的关联关系,如市场销售中的购物篮分析等。
时序数据挖掘则是关注时间序列数据中变化趋势的发掘,如股票的波动预测和气温的变化趋势分析等。
同时,在统计分析和数据挖掘的实践中,有许多常见的工具和技术,如R语言、Python、SPSS、SAS和机器学习等。
R语言是一个开源的、统计分析领域常用的编程语言,因其丰富的开源库和社区支持等优势,被广泛应用于数据可视化、机器学习和统计分析等领域。
Python同样也是一种开源的编程语言,其强大的数据分析库如pandas、NumPy和matplotlib等使其成为了数据科学家和机器学习爱好者的首选。
SPSS和SAS则是商业化的统计分析软件,具有友好的用户界面和强大的数据处理能力,在市场调研和大型企业中得到了广泛的应用。
机器学习则是一个包含多种算法和技术的领域,许多数据挖掘领域的任务都可以通过机器学习来解决。
如有监督学习、无监督学习和强化学习等,广泛应用于图像处理、自然语言处理和智能交互等领域。
然而,在统计分析和数据挖掘的实践中,也存在一些重要的注意事项。
生产工艺异常处理流程中的数据分析与趋势工具推荐

生产工艺异常处理流程中的数据分析与趋势工具推荐随着科技的不断发展,现代生产工艺异常处理流程中的数据分析变得越来越重要。
通过对生产过程中的数据进行准确、全面的分析,企业可以及时发现异常情况并做出相应的调整,从而提高生产效率和产品质量。
本文将介绍常用的数据分析工具和趋势工具,并推荐其在生产工艺异常处理流程中的应用。
一、数据分析工具推荐1. 数据可视化工具数据可视化工具通过将大量复杂的数据以图形、图表的形式展示出来,帮助人们更直观地理解数据背后的信息。
在生产工艺异常处理流程中,可以使用数据可视化工具绘制生产线上各个环节的运行情况、异常情况等,从而快速发现问题的根源。
2. 数据挖掘工具数据挖掘工具可以对大量的数据进行深入的分析和挖掘,发现其中的规律和异常。
在生产工艺异常处理流程中,数据挖掘工具可以帮助企业分析和识别导致异常的因素,从而指导生产线的调整和改进。
3. 统计分析工具统计分析工具是分析和解释数据背后信息的重要工具。
通过对历史数据进行统计分析,可以预测生产工艺异常的可能性,并采取相应的措施进行预防。
此外,统计分析工具还可以帮助企业评估生产过程中的潜在风险,并制定相应的风险控制策略。
二、趋势工具推荐1. 控制图控制图是一种用于监控过程稳定性的工具,通过对数据的连续采样和统计分析,可以判断生产过程中是否存在异常。
对于生产工艺异常处理流程,可以使用控制图实时监控各个环节的运行情况,一旦异常出现,及时采取措施进行调整。
2. 趋势图趋势图是用来展示数据随时间变化的趋势的工具。
通过绘制生产工艺异常处理流程中关键参数的趋势图,可以发现生产过程中的变化和趋势,进而预测可能出现的异常情况,并及时采取相应的措施。
3. 散点图散点图可以用来分析不同变量之间的关系,通过观察变量之间的散点分布,可以发现异常点或异常规律。
在生产工艺异常处理流程中,可以使用散点图来分析不同变量之间的关系,找出可能导致异常的因素,并进行相应的调整。
数据分析与数据挖掘

数据分析与数据挖掘数据分析与数据挖掘是当下热门的技术领域,它们不仅是信息时代的必备技能,也是企业和组织在决策和发展过程中不可或缺的重要举措。
本文将从数据分析和数据挖掘的定义、应用、技术和发展趋势等方面进行详细介绍。
一、数据分析和数据挖掘的定义数据分析和数据挖掘是指通过对大量数据进行收集、整理、处理和分析,从中寻找出有用的信息和规律,用于辅助决策和预测未来走势的过程。
数据分析侧重于分析现有数据,揭示事实和规律,帮助企业决策;而数据挖掘则更强调从大数据中发现规律和趋势,并进行预测和建模。
在信息时代,数据已成为一种重要的资源,数据分析和数据挖掘则成为了人们深入挖掘数据价值的重要工具。
数据分析和数据挖掘已经广泛应用于金融、电子商务、医疗健康、教育、互联网、物联网、社交媒体等领域。
在金融领域,数据分析和数据挖掘被用于评估信用风险、市场预测、投资组合管理等;在电子商务领域,它们被用于用户行为分析、个性化推荐、销售预测等;在医疗健康领域,它们被用于疾病诊断、药物研发、健康管理等;在教育领域,它们被用于学生学习行为分析、教学评估、个性化教育等。
数据分析和数据挖掘已经贯穿了各行各业的方方面面,成为了企业和组织决策的得力助手。
数据分析和数据挖掘的技术涉及到统计学、机器学习、人工智能、大数据等多个领域。
统计学是数据分析和数据挖掘的基础,包括描述统计、推断统计、回归分析、假设检验等方法;机器学习是数据挖掘的核心技术,包括监督学习、无监督学习、半监督学习、强化学习等方法;人工智能则为数据分析和数据挖掘提供了更多的自动化和智能化工具;大数据技术使得数据的存储和处理更加高效和便捷。
这些技术的不断发展和融合,推动了数据分析和数据挖掘在各个领域的广泛应用。
随着信息技术的快速发展,数据分析和数据挖掘也在不断向更智能化、更自动化、更精细化的方向发展。
数据分析和数据挖掘将进一步融合人工智能和大数据技术,通过机器学习和深度学习实现更加自动化的数据挖掘和决策支持;数据分析和数据挖掘将向更细分、个性化方向发展,通过大数据分析和用户画像实现更个性化的产品和服务;数据分析和数据挖掘将向更多领域渗透,如智能制造、智能交通、智能家居等领域,为传统产业注入新的活力。
数据挖掘的方法和工具

数据挖掘的方法和工具随着计算机技术的快速发展,数据的存储和获取变得越来越容易。
随之而来的是一个庞大的数据集,其中包含了各式各样的信息。
大数据时代的到来,使得针对这些海量数据的分析和挖掘工作显得格外重要。
数据挖掘技术,作为一种高效的数据处理方法,成为了当今实现数据价值、探讨未知领域的工具之一。
数据挖掘技术的目的数据挖掘技术通过大数据的分析、整合和挖掘,从中发现其中存在的潜在模式、关系和趋势。
从而对数据集的结构和特征进行分析和评估,为数据决策提供支撑和保障。
为了达成这一目标,需采用一系列方法和工具。
下面我们将介绍一些常用的数据挖掘方法和工具。
基于聚类的数据挖掘方法基于聚类的数据挖掘方法,是将大量数据集中在一起,类似于物以类聚,依据数据之间的相似性以及差异性,将其归属到不同的类别之中。
这种方法可以从大量的数据中提取有用的信息,从而为数据分析和决策提供支撑。
在实际应用中,一些聚类算法,如k-means算法、DBSCAN算法、层次聚类算法等,被广泛应用于数据分组和数据分类领域。
基于关联规则的数据挖掘方法基于关联规则的数据挖掘方法,通过分析大量数据之间的关联关系,建立各组数据之间的关联规则,从而利用判断和推理方式对各种数据进行预测和分析。
该方法可以有效地发现数据之间的极强关联,并为数据分析和决策提供一定的支撑。
Apriori算法、FP-growth算法等,是主流的关联规则数据挖掘算法。
基于分类的数据挖掘方法通过分类算法描述数据样本之间的客观差异和相似性,然后将数据分类,并对其进行相关性、差异性分析,从而找出数据的属性和属性值,并使用分类器将该数据应用于相应的分类或预测中。
这种方法适用于数据建模、分类、预测、聚类和分类验证等常见领域。
朴素贝叶斯算法、决策树算法、支持向量机等,是主流的基于分类的数据挖掘算法。
数据挖掘工具与上述算法相关的数据挖掘工具,可以帮助用户高效的进行数据分析和挖掘。
例如R语言具有强大的统计分析功能,是进行数据统计和分析的首选工具之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘工具调查与研究姓名:马蕾5种数据挖掘工具分别为:1、I ntelligent Miner2、S AS Enterpreise Miner3、SPSS Clementine4、马克威分析系统5、GDMIntelligent Miner一、综述:IBM的Exterprise Miner简单易用,是理解数据挖掘的好的开始。
能处理大数据量的挖掘,功能一般,可能仅满足要求.没有数据探索功能。
与其他软件接口差,只能用DB2,连接DB2以外的数据库时,如Oracle, SAS, SPSS需要安装DataJoiner作为中间软件。
难以发布。
结果美观,但同样不好理解。
二、基本内容:一个挖掘项目可有多个发掘库组成;每个发掘库包含多个对象和函数对象:数据:由函数使用的输入数据的名称和位置。
离散化:将记录分至明显可识别的组中的分发操作。
名称映射:映射至类别字段名的值的规范。
结果:由函数创建的结果的名称和位置。
分类:在一个项目的不同类别之间的关联层次或点阵。
值映射:映射至其它值的规范。
函数:发掘:单个发掘函数的参数。
预处理:单个预处理函数的参数。
序列:可以在指定序列中启动的几个函数的规范。
统计:单个统计函数的参数。
统计方法和挖掘算法:单变量曲线,双变量统计,线性回归,因子分析,主变量分析,分类,分群,关联,相似序列,序列模式,预测等。
处理的数据类型:结构化数据(如:数据库表,数据库视图,平面文件) 和半结构化或非结构化数据(如:顾客信件,在线服务,传真,电子邮件,网页等) 。
架构:它采取客户/服务器(C/S)架构,并且它的API提供了C++类和方法Intelligent Miner通过其独有的世界领先技术,例如自动生成典型数据集、发现关联、发现序列规律、概念性分类和可视化呈现,可以自动实现数据选择、数据转换、数据挖掘和结果呈现这一整套数据挖掘操作。
若有必要,对结果数据集还可以重复这一过程,直至得到满意结果为止。
三、现状:现在,IBM的Intelligent Miner已形成系列,它帮助用户从企业数据资产中识别和提炼有价值的信息。
它包括分析软件工具——Intelligent Miner for Data和 IBM Intelligent Miner forText ,帮助企业选取以前未知的、有效的、可行的业务知识——如客户购买行为,隐藏的关系和新的趋势,数据来源可以是大型数据库和企业内部或Internet 上的文本数据源。
然后公司可以应用这些信息进行更好、更准确的决策,获得竞争优势。
四、挖掘案例:(客户细分)1. 商业需求::客户细分2. 数据理解:根据用户基本信息(实际上还包括客户消费行为,人口统计信息等,本示例为简单起见,只在这个表的数据基础上进行挖掘)进行客户细分3. 数据准备:4. 建模:选择挖掘模型(比如是分群,还是分类)确定模型输入,需要做的处理,结果分析选择模型输入字段:挖掘模型选择:神经分群发掘函数使用了一个Kohonen 特征映射神经网络。
Kohonen 特征映射使用一个称作自组织的进程来将相似的输入记录组合在一起。
您可以指定群集的数目和遍数。
这些参数控制进程时间和将数据记录分配到群集时使用的粒度程度。
分群的主任务是为每个群集查找中心。
此中心也称为称为原型。
对于每个在输入数据中的每个记录,神经分群发掘函数计算和记录计分最近的群集原型。
每个数据记录的计分是用到群集原型的欧几里得距离表示的。
计分越靠近0,与群集原型的相似性程度就越高。
计分越高,记录与群集原型就越不相似。
输入数据的每个遍历,中心被调整来达到更好的整个分群模型质量。
在发掘函数运行时,进度指示器显示每次遍历的质量改进状况。
4. 建模:选择模型:指定输入数据:选择分群方式:分群模型设置概要:5. 运行模型:点击蓝色按钮运行模型,运行模型进程:6.模型结果分析:运行结果(群):运行结果,统计:从上面两个图中我们可以看出一些有意义的分群,根据consume_level 和online_duration 分群有一定意义。
而比如用gender进行的分群我们可以直接观察出来,意义不大,只有两个大类,可以直观地看出男女比例:consume_level(消费层次)的群特征信息:可以看出在第2、3类消费层次占的比重较大。
在线通话时长的一点分析:从上面图中可以看出,大部分客户每一个月消费是50元以下的。
50-200各区间逐步递减;而一个月消费300以上的,也从3%,8%,12%逐渐递增的态势。
挖掘的这些消费分群信息,对有针对性的营销,提前对客户进行细分是很有意义的。
6.保存调出模型:客户分类挖掘示例(待续):采用一样的数据,对客户消费水平进行分类预测(consume_level) 混淆矩阵:分类百分率:SAS Enterprise Miner一、综述:SAS完仝以统计理论为基础,功能强大,有完备的数据探索功能。
但难以掌握,要求是高级统计分析专业人员.结果难以理解。
价格也极其昂贵,而且是租赁模式。
二、基本内容:支持SAS统计模块,使之具有杰出的力量和影响,它还通过大量数据挖掘算法增强了那些模块。
SAS使用它的SEMMA方法学以提供一个能支持包括关联、聚类、决策树、神经元网络和统计回归在内的广阔范围的模型数据挖掘工具。
SAS Entelprise Miner设计为被初学者和有经验的用户使用。
它的GUI界面是数据流驱动的,且它易于理解和使用。
它允许一个分析者通过构造一个使用链接连接数据结点和处理结点的可视数据流图建造一个模型。
另外,此界面允许把处理结点直接插入到数据流中。
由于支持多种模型,所以Enterprise Miner允许用户比较(评估)不同模型并利用评估结点选择最适合的。
另外,Enterprise Miner提供了一个能产生被任何SAS应用程序所访问的评分模型的评分结点。
三、用户配置:SAS Enterprise Miner能运行在客户/服务器上或(计算机的外围设备)能独立运行的配置上。
此外,在客户/服务器模式下,Enterprise Miner允许把服务器配置成一个数据服务器、计算服务器或两者的综合。
EntepnseMiner被设计成能在所有SAS支持的平台上运行。
该结构支持胖客户机配置(要求客户机上的完全SAS许可证)以及瘦客户机(浏览器)版本。
四、数据挖掘技术、算法和应用程序:SAS Entelprise Miner支持关联、聚类、决策树、神经元网络和经典的统计回归技术。
五、前景:它在统计分析软件上的丰富经验,所以SAS开发出了一个全功能、易于使用、可靠和易于管理的系统。
模型选项和算法所覆盖的广阔范围、设计良好的用户界面、现存数据商店的能力和在统计分析市场所占的巨大份额(允许一个公司获得一个增加的SAS部件而不是一个新的工具)都可能使SAS在数据挖掘市场上取得领先位置。
由于它最近刚投放市场,所以在写此书时只能获得少数公布的用户基推测试。
这些结果表明Enterprise Miner在可伸缩性、预测准确性和处理时间上都表现得很好。
总的来说,此工具适合于企业在数据挖掘方面的应用以及CBM的全部决策支持应用。
六、案例:SAS软件成就安利(中国)高效物流安利(中国)透过库存优化系统提升服务效率20%,客户满意率指标达到97%安利是国际上知名的直销企业,1992年进入中国市场。
目前,中国是安利在全球最大的市场,安利(中国)2008年的销售业绩达179亿元人民币,占安利全球收入的1/3强,并且保持着强劲的增长势头。
目前,安利(中国)拥有1000多种产品,全国共有229间店铺、29个配送中心、22个外仓和1个4万平方米的物流中心,仓库总面积达10万平方米,存储量达万个卡板,每年的运输里程1,396万公里,相当于绕地球349圈。
安利(中国)特有的“店铺+直销+经销”的多元化营销模式和频繁而快速的的市场促销活动,加大了库存管理的难度,要求运营流程和相关人员具有更高的灵活应变能力。
为了更好地配合安利业务的高速发展,使得信息流的发展能够与未来企业供应链的飞速发展相适应并具有一定的前瞻性,安利(中国)管理层决定进一步深化当前的商业分析应用,在供应链管理方面引入SAS技术,建立“库存优化系统(Inventory Optimization System,缩写IOS )”,统筹考虑各种相互约束的条件,将“正确的产品”以“正确的成本”在“正确的时间”送达“正确的地点”,实现对复杂市场环境的快速反应,从而进一步提高企业的市场竞争力。
库存优化系统(IOS)的主要功能IOS是一种极为有效的库存管理工具,它提供了基于服务水平、交货时间和成本等用户指定的约束条件测算最佳库存水平和模式的能力。
具体功能如下:1.多层次的产品需求预测通过业内领先的SAS时间序列分析技术,根据过往历史上的相关销售数据,对不同层次的商品、地区进行自动诊断、建模、执行以及调整预测,可以精密到具体产品、店铺级别的需求数据,预测未来的客户需求量。
IOS 采集了安利(中国)历史三年、超过7千万张订单的数据进行分析。
预测的结果由于考虑了需求的变动趋势、季节性波动、产品促销、产品属性等因素,并基于最为健壮的模型库,因此生成的预测数据更为准确。
并且具有高可扩展性、灵活变动等特点。
2.考虑全面的智能排车系统根据预测的需求量,运用优化模型计算出每个地区的补货频率。
同时,结合车型、运载量、运输成本等相关运输数据,计算出未来一周最优的排车计划。
排车计划会结合各补货计划人员负责的区域,以均衡各人的工作安排,及更妥善的人力分配。
系统中直观、清晰地展现出当前的排车计划、车辆信息等。
排车计划由于受到公司策略安排、产品促销、库存调配、人手安排等因素的影响,具有一定的变动性。
计划人员可以灵活方便地对其进行变动,而这些变动又被系统纪录起来,并区分成计划调整和临时变动两种状态,以作为日后排车的依据和对排车效果分析的数据源。
3.最优化的库存补货策略库存补货策略首先要基于多层次的补货网络,从成品生产的工厂到物流中心到外仓,从外仓到店铺。
综合考虑各个产品的预测需求量和需求的变动性、运输时间、包装规格、库存成本、运输成本、运输频率、客户服务水平、库存策略、最小订货量等影响因素后,更精细地动态制定库存补货策略,包括重订购水平以及订购至水平。
这些补货策略能细致到具体每个仓库、每间店铺中的每个产品,而且能随着时间的推移动态适应市场变化,并进行相应的调整。
4.指标分析和预警功能此功能为整个库存管理提供日常所需的KPI(Key Performance Indication)报表和紧急状态预警。
包括库存水平分析、采购建议分析、存货预警、暂时缺货EAS(Emerging Alert System)分析、运输空载率、产品销售监控等一系列分析数据和报表。