2018年普通高等学校招生全国统一考试最新模拟数学(理)试题(全国新课标Ⅰ卷)-含答案
2018年全国1数学理科 试卷及答案(精校版)

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则 A .B .C .D2.已知集合,则 A . B . C .D .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设为等差数列的前项和,若,,则 A .B .C .D .1i2i 1iz -=++||z =0121{}220A x x x =-->A =R ð{}12x x -<<{}12x x -≤≤}{}{|1|2x x x x <->}{}{|1|2x x x x ≤-≥n S {}n a n 3243S S S =+12a ==5a 12-10-10125.设函数,若为奇函数,则曲线在点处的切线方程为 A .B .C .D .6.在中,为边上的中线,为的中点,则 A .B .C .D .7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A .B .C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则= A .5B .6C .7D .89.已知函数.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |=32()(1)f x x a x ax =+-+()f x ()y f x =(0,0)2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =3144AB AC -1344AB AC -3144AB AC +1344AB AC +M A N B M N 1725223FM FN ⋅e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++2213x y -=△A .B .3C .D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。
2018年全国普通高等学校招生统一考试理科数学(新课标I卷)

○…………外………………○…………:___________班级:________○…………内………………○…………2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.设z =1−i 1+i +2i ,则|z|=A. 0B. 12C. 1D. √22.已知集合A ={x |x 2−x −2>0 },则∁R A = A. {x |−1<x <2 } B. {x |−1≤x ≤2 }C. {x|x <−1}∪ {x|x >2}D. {x|x ≤−1}∪ {x|x ≥2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A. −12 B. −10 C. 10 D. 125.设函数f(x)=x 3+(a −1)x 2+ax ,若f(x)为奇函数,则曲线y =f(x)在点(0,0)处的切线方程为A. y =−2xB. y =−xC. y =2xD. y =x6.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为答案第2页,总12页…………○※※答※※题※※…………○A. 2√17 B. 2√ C. 3 D. 2 7.已知函数f(x)={e x ,x ≤0,lnx ,x >0,g(x)=f(x)+x +a .若g ,x )存在2个零点,则a 的取值范围是A. [–1,0,B. [0,+∞,C. [–1,+∞,D. [1,+∞,8.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I,II,III 的概率分别记为p 1,p 2,p 3,则A. p 1=p 2B. p 1=p 3C. p 2=p 3D. p 1=p 2+p 39.已知双曲线C ,x 23−y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若△OMN 为直角三角形,则|MN |= A. 32 B.3 C. 2√3 D. 410.(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)11.若x ,y 满足约束条件{x −2y −2≤0x −y +1≥0y ≤0,则z =3x +2y 的最大值为_____________,12.记S n 为数列{a n }的前n 项和,若S n =2a n +1,则S 6=_____________,13.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案, 14.已知函数f (x )=2sinx +sin2x ,则f (x )的最小值是_____________,三、解答题(题型注释)15.在平面四边形ABCD 中,∠ADC =90∘,∠A =45∘,AB =2,BD =5.(1)求cos∠ADB , (2)若DC=2√2,求BC .16.设椭圆C:x 22+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.17.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立,(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0,,2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用,(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;,ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?18.已知函数f(x)=1x−x+alnx,(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:f(x1)−f(x2)x1−x2<a−2,19.[选修4—4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ−3=0,(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.20.[选修4–5:不等式选讲]已知f(x)=|x+1|−|ax−1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.答案第4页,总12页参数答案1.C【解析】1.分析:首先根据复数的运算法则,将其化简得到z =i ,根据复数模的公式,得到|z |=1,从而选出正确结果. 详解:因为z=1−i 1+i +2i =(1−i)2(1+i)(1−i)+2i =−2i 2+2i =i ,所以|z |=√0+12=1,故选C.2.B【解析】2.分析:首先利用一元二次不等式的解法,求出x 2−x −2>0的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式x 2−x −2>0得x <−1或x >2,所以A={x|x <−1或x >2},所以可以求得C R A ={x|−1≤x ≤2},故选B. 3.A【解析】3.分析:首先设出新农村建设前的经济收入为M ,根据题意,得到新农村建设后的经济收入为2M ,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确; 新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确; 新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D 正确; 故选A. 4.B【解析】4.分析:首先设出等差数列{a n }的公差为d ,利用等差数列的求和公式,得到公差d 所满足的等量关系式,从而求得结果d =−3,之后应用等差数列的通项公式求得a 5=a 1+4d =2−12=−10,从而求得正确结果. 详解:设该等差数列的公差为d , 根据题中的条件可得3(3×2+3×22⋅d)=2×2+d +4×2+4×32⋅d ,整理解得d =−3,所以a 5=a 1+4d =2−12=−10,故选B.5.D【解析】5.分析:利用奇函数偶此项系数为零求得a =1,进而得到f(x)的解析式,再对f(x)求导得出切线的斜率k ,进而求得切线方程.…………○…………装学校:___________姓名…………○…………装详解:因为函数f(x)是奇函数,所以a −1=0,解得a =1, 所以f(x)=x 3+x ,f′(x)=3x 2+1, 所以f′(0)=1,f(0)=0,所以曲线y =f(x)在点(0,0)处的切线方程为y −f(0)=f′(0)x , 化简可得y =x ,故选D. 6.B【解析】6.分析:首先根据题中所给的三视图,得到点M 和点N 在圆柱上所处的位置,点M 在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M 、N 在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征,可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为√42+22=2√5,故选B.7.C【解析】7.分析:首先根据g (x )存在2个零点,得到方程f(x)+x +a =0有两个解,将其转化为f(x)=−x −a 有两个解,即直线y =−x −a 与曲线y =f(x)有两个交点,根据题中所给的函数解析式,画出函数f(x)的图像(将e x (x >0)去掉),再画出直线y =−x ,并将其上下移动,从图中可以发现,当−a ≤1时,满足y =−x −a 与曲线y =f(x)有两个交点,从而求得结果. 详解:画出函数f(x)的图像,y =e x 在y 轴右侧的去掉, 再画出直线y =−x ,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程f(x)=−x −a 有两个解, 也就是函数g(x)有两个零点,此时满足−a ≤1,即a ≥−1,故选C.8.A【解析】8.分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果. 详解:设AC=b,AB =c,BC =a ,则有b 2+c 2=a 2,答案第6页,总12页从而可以求得ΔABC 的面积为S 1=12bc , 黑色部分的面积为S 2=π⋅(c 2)2+π⋅(b 2)2−[π⋅(a 2)2−12bc] =π(c 24+b 24−a 24)+12bc =π⋅c 2+b 2−a 24+12bc =12bc ,其余部分的面积为S 3=π⋅(a 2)2−12bc =πa 24−12bc ,所以有S 1=S 2,根据面积型几何概型的概率公式,可以得到p 1=p 2,故选A.9.B【解析】9.分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到∠FON =30°,根据直角三角形的条件,可以确定直线MN 的倾斜角为60°或120°,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60°,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得M(3,√3),N(32,−√32),利用两点间距离同时求得|MN |的值.详解:根据题意,可知其渐近线的斜率为±√33,且右焦点为F(2,0),从而得到∠FON=30°,所以直线MN 的倾斜角为60°或120°,根据双曲线的对称性,设其倾斜角为60°, 可以得出直线MN 的方程为y =√3(x −2),分别与两条渐近线y =√33x 和y =−√33x 联立,求得M(3,√3),N(32,−√32),所以|MN |=√(3−32)2+(√3+√32)2=3,故选B.10.A【解析】10.分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 详解:根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D 中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的,………装…………○…………__________姓名:___________班级:________………装…………○…………同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2, 所以其面积为26S ==⎝⎭,故选A. 11.6【解析】11.分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式y=−32x +12z ,之后在图中画出直线y =−32x ,在上下移动的过程中,结合12z 的几何意义,可以发现直线y=−32x +12z 过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由z=3x +2y 可得y =−32x +12z ,画出直线y=−32x ,将其上下移动,结合z 2的几何意义,可知当直线过点B 时,z 取得最大值,由{x −2y −2=0y =0,解得B(2,0),此时z max =3×2+0=6,故答案为6. 12.−63【解析】12.分析:首先根据题中所给的S n=2a n +1,类比着写出S n+1=2a n+1+1,两式相减,整理得到a n+1=2a n ,从而确定出数列{a n }为等比数列,再令n =1,结合a 1,S 1的关系,求得a 1=−1,答案第8页,总12页详解:根据S n =2a n +1,可得S n+1=2a n+1+1, 两式相减得a n+1=2a n+1−2a n ,即a n+1=2a n , 当n =1时,S 1=a 1=2a 1+1,解得a 1=−1, 所以数列{a n }是以-1为首项,以2为公布的等比数列, 所以S 6=−(1−26)1−2=−63,故答案是−63.13.16【解析】13.分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果. 详解:根据题意,没有女生入选有C 43=4种选法,从6名学生中任意选3人有C 63=20种选法,故至少有1位女生入选,则不同的选法共有20−4=16种,故答案是16.14.−3√32【解析】14.分析:首先对函数进行求导,化简求得f′(x)=4(cosx +1)(cosx −12),从而确定出函数的单调区间,减区间为[2kπ−5π3,2kπ−π3](k ∈Z),增区间为[2kπ−π3,2kπ+π3](k ∈Z),确定出函数的最小值点,从而求得sinx =−√32,sin2x =−√32代入求得函数的最小值.详解:f′(x)=2cosx +2cos2x =4cos 2x +2cosx −2=4(cosx +1)(cosx −12), 所以当cosx<12时函数单调减,当cosx >12时函数单调增,从而得到函数的减区间为[2kπ−5π3,2kπ−π3](k ∈Z),函数的增区间为[2kπ−π3,2kπ+π3](k ∈Z),所以当x=2kπ−π3,k ∈Z 时,函数f (x )取得最小值, 此时sinx=−√32,sin2x =−√32,所以f (x )min =2×(−√32)−√32=−3√32,故答案是−3√32.15. (1) √235. (2)BC =5.【解析】15.分析:(1)根据正弦定理可以得到BDsin∠A =ABsin∠ADB ,根据题设条件,求得sin∠ADB=√25,结合角的范围,利用同角三角函数关系式,求得cos∠ADB=√1−225=√235,(2)根据题设条件以及第一问的结论可以求得cos∠BDC=sin∠ADB=√25,之后在△BCD中,用余弦定理得到BC所满足的关系,从而求得结果.详解:(1)在△ABD中,由正弦定理得BDsin∠A =ABsin∠ADB.由题设知,5sin45°=2sin∠ADB,所以sin∠ADB=√25.由题设知,∠ADB<90°,所以cos∠ADB=√1−225=√235.(2)由题设及(1)知,cos∠BDC=sin∠ADB=√2 5 .在△BCD中,由余弦定理得BC2=BD2+DC2−2⋅BD⋅DC⋅cos∠BDC=25+8−2×5×2√2×√2 5=25.所以BC=5.16.(1) AM的方程为y=−√22x+√2或y=√22x−√2.(2)证明见解析.【解析】16.分析:(1)首先根据l与x轴垂直,且过点F(1,0),求得直线l的方程为x=1,代入椭圆方程求得点A的坐标为(1,√22)或(1,−√22),利用两点式求得直线AM的方程;(2)分直线l与x轴重合、l与x轴垂直、l与x轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.详解:(1)由已知得F(1,0),l的方程为x=1.由已知可得,点A的坐标为(1,√22)或(1,−√22).所以AM的方程为y=−√22x+√2或y=√22x−√2.(2)当l与x轴重合时,∠OMA=∠OMB=0°.当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x−1)(k≠0),A(x1,y1),B(x2,y2),则x1<√2,x2<√2,直线MA,MB的斜率之和为k MA+k MB=y1x1−2+y2x2−2.由y1=kx1−k,y2=kx2−k得k MA+k MB=2kx1x2−3k(x1+x2)+4k(x1−2)(x2−2).将y=k(x−1)代入x 2+y2=1得答案第10页,总12页(2k 2+1)x 2−4k 2x +2k 2−2=0.所以,x 1+x 2=4k22k 2+1,x 1x 2=2k 2−22k 2+1.则2kx 1x 2−3k(x 1+x 2)+4k =4k 3−4k−12k 3+8k 3+4k2k 2+1=0.从而k MA +k MB =0,故MA ,MB 的倾斜角互补,所以∠OMA =∠OMB .综上,∠OMA =∠OMB . 17.】(1)p 0=0.1.(2) ,i )490.,ii )应该对余下的产品作检验.【解析】17.分析:(1)利用独立重复实验成功次数对应的概率,求得f(p)=C 202p 2(1−p)18,之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意0<p <1的条件;(2)先根据第一问的条件,确定出p =0.1,在解,i )的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解,ii )的时候,就通过比较两个期望的大小,得到结果. 详解:(1)20件产品中恰有2件不合格品的概率为f(p)=C 202p 2(1−p)18.因此f ′(p)=C 202[2p(1−p)18−18p 2(1−p)17]=2C 202p(1−p)17(1−10p).令f ′(p)=0,得p=0.1.当p ∈(0,0.1)时,f ′(p)>0;当p ∈(0.1,1)时,f ′(p)<0.所以f(p)的最大值点为p 0=0.1.(2)由(1)知,p =0.1.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知Y ∼B(180,0.1),X =20×2+25Y ,即X =40+25Y .所以EX =E(40+25Y)=40+25EY =490.,ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于EX >400,故应该对余下的产品作检验. 18.(1)当a ≤2时,f(x)在(0,+∞)单调递减., 当a>2时, f(x)在(0,a−√a 2−42),(a+√a 2−42,+∞)单调递减,在(a−√a 2−42,a+√a 2−42)单调递增.(2)证明见解析.【解析】18.分析:(1)首先确定函数的定义域,之后对函数求导,之后对a 进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2)根据f(x)存在两个极值点,结合第一问的结论,可以确定a >2,令f′(x)=0,得到两个极值点x 1,x 2是方程x 2−ax +1=0的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果. 详解:(1)f(x)的定义域为(0,+∞),f ′(x)=−1x 2−1+ax=−x 2−ax+1x 2.(i )若a ≤2,则f ′(x)≤0,当且仅当a =2,x =1时f ′(x)=0,所以f(x)在(0,+∞)单调递减. (ii )若a>2,令f ′(x)=0得,x =a−√a 2−42或x =a+√a 2−42.第11页,总12页当x ∈(0,a−√a 2−42)∪(a+√a 2−42,+∞)时,f ′(x)<0,当x∈(a−√a 2−42,a+√a 2−42)时,f ′(x)>0.所以f(x)在(0,a−√a 2−42),(a+√a 2−42,+∞)单调递减,在(a−√a 2−42,a+√a 2−42)单调递增.(2)由(1)知,f(x)存在两个极值点当且仅当a >2.由于f(x)的两个极值点x 1,x 2满足x 2−ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f(x 1)−f(x 2)x 1−x 2=−1x 1x 2−1+a lnx 1−lnx 2x 1−x 2=−2+a lnx 1−lnx 2x 1−x2=−2+a −2lnx 21x 2−x 2, 所以f(x 1)−f(x 2)x 1−x 2<a −2等价于1x 2−x 2+2lnx 2<0.设函数g(x)=1x−x +2lnx ,由(1)知,g(x)在(0,+∞)单调递减,又g(1)=0,从而当x ∈(1,+∞)时,g(x)<0.所以1x2−x 2+2lnx 2<0,即f(x 1)−f(x 2)x 1−x2<a −2. 19. (1,(x +1)2+y 2=4,(2)综上,所求C 1的方程为y =−43|x|+2,【解析】19.分析:(1)就根据x =ρcosθ,y =ρsinθ以及ρ2=x 2+y 2,将方程ρ2+2ρcosθ−3=0中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线C 2是圆心为A(−1,0),半径为2的圆,C 1是过点B(0,2)且关于y 轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k 所满足的关系式,从而求得结果. 详解:(1)由x=ρcosθ,y =ρsinθ得C 2的直角坐标方程为(x +1)2+y 2=4,,2)由(1)知C 2是圆心为A(−1,0),半径为2的圆, 由题设知,C 1是过点B(0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点, 当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,所以√k +1=2,故k =−43或k =0,经检验,当k =0时,l 1与C 2没有公共点;当k =−43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点,当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2,所以√k +1=2,故k =0或k =43,经检验,当k=0时,l 1与C 2没有公共点;当k =43时,l 2与C 2没有公共点,综上,所求C 1的方程为y=−43|x|+2,答案第12页,总12页20.(1){x|x >12},(2)(0,2],【解析】20.分析:(1)将a=1代入函数解析式,求得f(x)=|x +1|−|x −1|,利用零点分段将解析式化为f(x)={−2,x ≤−1,2x,−1<x <1,2,x ≥1.,然后利用分段函数,分情况讨论求得不等式f(x)>1的解集为{x|x>12};(2)根据题中所给的x ∈(0,1),其中一个绝对值符号可以去掉,不等式f(x)>x 可以化为x ∈(0,1)时|ax −1|<1,分情况讨论即可求得结果.详解:(1)当a =1时,f(x)=|x +1|−|x −1|,即f(x)={−2,x ≤−1,2x,−1<x <1,2,x ≥1.故不等式f(x)>1的解集为{x|x >12},(2)当x ∈(0,1)时|x +1|−|ax −1|>x 成立等价于当x ∈(0,1)时|ax −1|<1成立,若a ≤0,则当x ∈(0,1)时|ax −1|≥1, 若a>0,|ax −1|<1的解集为0<x <2a,所以2a≥1,故0<a ≤2, 综上,a 的取值范围为(0,2],。
2018普通高等学校招生全国统一考试理科数学全国1卷试题及答案解析

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则 A .B .C .D2.已知集合,则 A . B . C .D .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少1i2i 1iz -=++||z =0121{}220A x x x =-->A =R ð{}12x x -<<{}12x x -≤≤}{}{|1|2x x x x <->}{}{|1|2x x x x ≤-≥B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则 A . B . C .D .5.设函数.若为奇函数,则曲线在点处的切线方程为 A .B .C .D .6.在中,为边上的中线,为的中点,则 A .B .C .D . 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A .B .C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则= A .5B .6C .7D .8n S {}n a n 3243S S S =+12a ==5a 12-10-101232()(1)f x x a x ax =+-+()f x ()y f x =(0,0)2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =3144AB AC -1344AB AC -3144AB AC +1344AB AC +M A N B M N 1725223FM FN ⋅9.已知函数.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若为直角三角形,则|MN |= A .B .3C .D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试仿真卷 理科数学

绝密★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(一)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·晋城一模]已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N = ()A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0M N = .选D .2.[2018·台州期末](i 为虚数单位)班级姓名准考证号 考场号 座位号此卷只装订不密封A .2B .1C .12D.2【答案】C11i 22z ∴=-=,选C . 3.[2018·德州期末]如图所示的阴影部分是由x 轴及曲线sin y x =围成,在矩形区域OABC 内随机取一点,则该点取自阴影部分的概率是()A .2πB .12C .1πD .3π【答案】A【解析】由题意,得矩形区域OABC 的面积为1π1πS =⨯=,阴影部分的面积为OABC 内随机取一点,则该点取自阴影部分的概率为212πS P S ==.故选A . 4.[2018·滁州期末]A .4-B .4C.13-D .13【答案】C【解析】sin 2costan 2ααα-=-⇒=,C .5.[2018·陕西一模]《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A .2 B.4+ C.4+D.4+【答案】C【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三2,且侧棱与底面垂直,侧棱长是2,∴几C .6.[2018·天津期末]已知实数x ,y 满足2210x y x y +-⎧⎪⎨⎪⎩≥≤≥,若z x my =+的最大值为10,则m =() A .1 B .2 C .3 D .4【答案】B【解析】作出可行域,如图ABC △内部(含边界),其中()2,4A ,()2,1B ,()1,1C -,若A 是最优解,则2410m +=,2m =,检验符合题意;若B 是最优解,则210m +=,8m =,检验不符合题意,若8m =,则z 最大值为34;若C 是最优解,则110m -+=,11m =,检验不符合题意;所以2m =,故选B .7.[2018·蚌埠一模]已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是()A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++ ,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-.8.[2018·达州期末]若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为() A .()0,4 B .()0,+∞C .()3,4D .()3,+∞【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.[2018·朝阳期末]阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 当P ,A ,B 不共线时,PAB △面积的最大值是( )开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A.BC.3D.3【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=A .10.[2018·郴州一中]双曲线2222:1(0,0)xy C a b a b -=>>的离心率3e =,右焦点为F ,点A 是双曲线C 的一条渐近线上位于第一象限内的点,AOFOAF ∠=∠,AOF △的面积为,则双曲线C 的方程为()A .2213612x y -= B .221186x y -= C .22193x y -= D .2213x y -=【答案】C【解析】由点A 所在的渐近线为0,bx ay -=三个该渐近线的倾斜角为α,则,AOF OAF ∠=∠ ,所以直线AF 的倾斜角为2α,2222tan 2tan21tan aba bααα==--, 与0bx ay -=联立解得122AOFab S cab c ∴=⨯⨯==△,因为双曲线的离心率3e =b a ∴=,与ab =联立得3a =,b =22193x y -=.故选C .11.[2018·昆明一中]设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为() A.(0,2 B.(0,3C.(2+ D.(2+【答案】C【解析】因为ABC △为锐角三角形,所以cos 2C <<;又因为2A C =,所以sin 2sin cos A C C =,又因为1c =,所以2cos a C =;由sin sin b cB C=, 即2sin sin34cos 1sin sin c B Cb C C C ===-,所以24cos 2cos a b c C C ++=+,令cos t C =,则(,22t ∈⎭,又因为函数242y t t =+在( ,22⎭上单调递增,所以函数值域为(2,故选:C .12.[2018·济南期末]若关于x 的方程e 0e e xx xx m x ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m ∈R ,e 2.71828= 为自然对数的底数,则3122312111e e e x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为() A .1 B .e C .1m - D .1m +【答案】A【解析】101t m t ++=+,()()2110t m t m ∴++++=,由韦达定理可得()1a b t t m +=-+,1a b t t m ⋅=+,()()3131131111x x x x t t e e ⎛⎫⎛⎫∴++=++ ⎪⎪⎝⎭⎝⎭()()1313=+1=11+1=1t t t t m m ++-+++,可得:31223121111e e e x x x x x x ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即3122312111e e e x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为1,故选A . 第Ⅱ卷本卷包括必考题和选考题两部分。
解析:2018年全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1-i1.设z=---2i,则|z|=1+11LA.0B.-C.1D.^2【答案】C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共貌复数,化简复数z,然后求解复数的模.详解:z=—+2i=(I)(I)+2i ♦i)(E1+i=—i+2i=i,则|z|=1,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轴复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.已知集合人={乂尤2一工一2>。
"则4A=A.|x|-l<x<2|B.|x|-l<x<2^D.|x|x<-l}u|x|x>2}【答案】B【解析】分析:首先利用一元二次不等式的解法,求出x2-x-2>0的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式J—X—2>。
得双―1稣所以A={x|X<-liiJcv>2},所以可以求得C R A={x\-l<x<2},故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+ 28% = 58% >50%,所以超过了经 济收入的一半,所以D 正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设S “为等差数列{%}的前〃项和,若3S 3 = S 2 + S 4, %=2,则% =A. -12B. -10C. 10D. 12【答案】B 【解析】分析:首先设出等差数列{%}的公差为d,利用等差数列的求和公式,得到公差d 所满足的等量关系式, 从而求得结果d = -3,之后应用等差数列的通项公式求得% =%+4d = 2-12 = -10,从而求得正确结果.详解:设该等差数列的公差为d,3x2 4x3根据题中的条件可得3(3x2 + —— d ) = 2x2 + d + 4x2 + —— d,2 2整理解得d =-3 ,所以% =%+4d = 2-12 = -10,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到%与的关系,从而求得结果.5. 设函数六x ) = J+(a-1)/+破.若/'(X )为奇函数,则曲线y = f (x )在点(0, 0)处的切线方程为()A. y = -2xB. y = fC. y = 2xD. y = x【答案】D 【解析】【详解】分析:利用奇函数偶次项系数为零求得” =1,进而得到/'(X )的解析式,再对/'(X )求导得出切线的 斜率上,进而求得切线方程.详解:因为函数/'(x)奇函数,所以“-1=0,解得。
精品解析:2018年全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B【解析】分析:首先设出等差数列的公差为,利用等差数列的求和公式,得到公差所满足的等量关系式,从而求得结果,之后应用等差数列的通项公式求得,从而求得正确结果. 详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试理科数学全国1卷试题

2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12小题,每小题 5 分,共 60分。
在每小题给出的四个选项中,只有项是符合题目要求的。
1i1.设z 1 i2i,则|z|1iA.01B.2C.1 D.22.已知集合A xx2x 2 0 ,则e R AA .x 1 x2 B.x1x2C.x |x 1 U x|x2 D.x |x 1 U x|x 23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记 S n 为等差数列 a n 的前 n 项和 .若 3S 3 S 2 S 4 , a 1 2 ,则 a 5A . 12B . 10C . 10D .125.设函数 f(x) x 3(a 1)x 2ax .若 f(x) 为奇函数,则曲线 y f(x)在点 (0,0) 处的切 线方程为 A . y 2x B . y xC . y 2xD . y xuuur6.在 △ABC 中, AD 为BC 边上的中线, E 为 AD 的中点,则 EB3uuur 1 uuur A . AB AC 441 uuur 3 uuur D . AB AC 447.某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正视图上的对应建设前经济收入构成比例建设后经济收入构成比例1 uuur 3uuur B . AB AC 443uuur 1 uuurC . AB AC44点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到 N 的路径中,最短路径的长度为D .8取值范围是D .[1, +∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成, 三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB ,AC . △ABC 的三边所围成的 区域记为Ⅰ,黑色部分记为Ⅱ, 其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自 Ⅰ,Ⅱ,Ⅲ的概率分别记为 p 1,p 2, p 3,则A.2 17 B . 25C .3D .28.设抛物线 C :y 2=4x 的焦点为 F , 2过点( –2,0)且斜率为 的直线与 C 交于 M ,N两点, uuuur uuur 则FM FN = A .5B .C .79.已知函数 f (x) xe , 0,ln x , x0, g(x) f(x) x a .若 g(x)存在 2 个零点,则 a 的A .[ –1, 0)B .[0,+∞)C .[–1,+∞)A . p 1=p 2B .p 1=p 3得截面面积的最大值为x 2y 2 0x y 1 0 ,则 z 3x 2y 的最大值为 y0 14.记 S n 为数列 a n 的前 n 项和.若S n 2a n 1,则 S6 ___________ .15.从 2 位女生, 4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的选法 共有 种.(用数字填写答案)16.已知函数 f x 2sinx sin2x ,则 f x 的最小值是 ________ .三、解答题:共 70分。
2018年高考新课标I卷_理科数学答案_(精美版)

16
. 【答案】 − 3 23
max
z . 【解析】可行域为 ∆ABC 及其内部,当直线 y = − 3 x + 经过点 B (2,0) 时, z 2 2
y 1 A 1O
=6
.
- -1
C
B 2
x
第2页 共8页
14
. 【解析】由 a
n
1
= S1 = 2a1 + 1
6
得a
1
= −1
,当 n ≥ 2 时,a
☆
n
= S n − S n −1 = 2a n + 1 − 2a n −1 + 1
,即 aa
n
=2
所以 {a }是等比数列, S = −1 + (− 2) + (− 4) + (− 8) + (− 16) + (− 32) = −63 . 15. 【解析】恰有 1 位女生的选法有 C C = 12 种,恰有 2 位女生的选法有 C C = 4 种,所以不同的选法共 有 16 种. 【解析】因为 f ( x) 是奇函数,且 f ( x) = f ( x + 2π ) ,即周期为 2π ,所以只需要研究 f ( x) 在 (− π , π ] 上 16. 的 图 像 . 又 f ′( x) = 2 cos x + 2 cos 2 x = 2(2 cos x + cos x − 1) = 2(2 cos x − 1)(cos x + 1) , 则 f ( x) 在
,
第4页 共8页
☆
19
. 【解析】 (1)右焦点为 F (1,0) ,当 l 与 x 轴垂直时有 l : x = 1 ,则 A 为 (1, 直线 AM 的方程为: 或 ; (2)方法 1:令直线 AM , BM 的斜率分别为 k , k , ①当 l 与 x 轴重合时有 k = k = 0 ,所以 ∠OMA = ∠OMB = 0 ; ②当 l 与 x 轴不重合时,令 l : my = x − 1, A( x , y ), B( x , y ) ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试最新模拟数学(理)试题(全国新课标Ⅰ卷)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|20A x x x =-≤,{}|1381xB x =<<,{}|2,C x x n n N ==∈,则()AB C =( ) A .{}2B .{}0,2C .{}0,2,4D .{}2,42.设i 是虚数单位,若5()2ii x yi i+=-,x ,y R ∈,则复数x yi +的共轭复数是( ) A .2i -B .2i --C .2i +D .2i -+3.已知等差数列{}n a 的前n 项和是n S ,且456718a a a a +++=,则下列命题正确的是( ) A .5a 是常数B .5S 是常数C .10a 是常数D .10S 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是( )A .316B .38C .14D .185.已知点F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,点F 到渐近线的距离是点F 到左顶点的距离的一半,则双曲线C 的离心率为( )A 53B .53C .2D6.已知函数[]sin ,,0,()(0,1],x x f x x π⎧∈-⎪=∈则1()f x dx π-=⎰( )A .2π+B .2π C .22π-+ D .24π-7.执行如图程序框图,则输出的S 的值为( )ABC.D.18.已知函数2()sin cos 0)f x x x x ωωωω=+>的相邻两个零点差的绝对值为4π,则函数()f x 的图象( )A .可由函数()cos 4g x x =的图象向左平移524π个单位而得 B .可由函数()cos 4g x x =的图象向右平移524π个单位而得C .可由函数()cos 2g x x =的图象向右平移724π个单位而得D .可由函数()cos 2g x x =的图象向右平移56π个单位而得9.61(23)(1)x x-+的展开式中剔除常数项后的各项系数和为( )A .73-B .61-C .55-D .63-10.某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是( )A .4πB .8πC .16πD .32π11.设O 为坐标原点,点P 为抛物线C :22(0)y px p =>上异于原点的任意一点,过点P 作斜率为0的直线交y 轴于点M ,点P 是线段MN 的中点,连接ON 并延长交抛物线于点H ,则||||OH ON 的值为( ) A .pB .12C .2D .3212.若函数()y f x =,x M ∈,对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有()()af x f x T =+恒成立,此时T 为()f x 的类周期,函数()y f x =是M 上的a 级类周期函数,若函数()y f x =是定义在区间[0,)+∞内的2级类周期函数,且2T =,当[0,2)x ∈时,212,01,()2(2),12,x x f x f x x ⎧-≤≤⎪=⎨⎪-<<⎩函数21()2ln 2g x x x x m =-+++,若[]16,8x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是( )A .5(,]2-∞B .13(,]2-∞ C .3(,]2-∞-D .13[,)2+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2sin ,cos )a αα=,(1,1)b =-,且a b ⊥,则2()a b -= .14.已知x ,y 满足约束条件20,20,4180,x y x y x y -≤⎧⎪-≥⎨⎪+-≤⎩则目标函数53z x y =-的最小值为 .15.在等比数列{}n a 中,2412a a a ⋅=,且4a 与72a 的等差中项为17,设(1)n n n b a =-,*n N ∈,则数列{}n b 的前2018项和为 .16.有一个容器,下部是高为5.5cm 的圆柱体,上部是与圆柱共底面且母线长为6cm 的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角A ,B ,C 的对边a ,b ,c 分别满足22c b ==,2cos cos cos 0b A a C c A ++=,又点D 满足1233AD AB AC =+.(1)求a 及角A 的大小; (2)求||AD 的值.18.在四棱柱1111ABCD A BC D -中,底面ABCD是正方形,且1BC BB =1160A AB A AD ∠=∠=︒.(1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB 所成角的正弦值为14. 19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布2(,)N μσ,利用该正态分布,求Z 落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为11.95σ≈; ②若2~(,)Z N μσ,则()0.6826P Z μσμσ-<≤+=,(22)0.9544P Z μσμσ-<≤+=.20.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C 的标准方程;(2)若直线l :2y kx =+与椭圆C 相交于A ,B 两点,点D 的坐标为1(0,)2,问直线AD 与BD 的斜率之和AD BD k k +是否为定值?若是,求出该定值,若不是,试说明理由. 21.已知函数()2(1)xf x e a x b =---,其中e 为自然对数的底数. (1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数2()(1)1x g x e a x bx =----,且(1)0g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆1C 的参数方程为1cos ,1sin x a y a θθ=-=⎧⎨=-+⎩(θ是参数,a 是大于0的常数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆2C 的极坐标方程为)4πρθ=-.(1)求圆1C 的极坐标方程和圆2C 的直角坐标方程; (2)分别记直线l :12πθ=,R ρ∈与圆1C 、圆2C 的异于原点的交点为A ,B ,若圆1C 与圆2C 外切,试求实数a 的值及线段||AB 的长. 23.选修4-5:不等式选讲 已知函数()|21|f x x =+.(1)求不等式()10|3|f x x ≤--;(2)若正数m ,n 满足2m n mn +=,求证:()(2)16f m f n +-≥.参考答案一、选择题1-5:BADAB 6-10:DCBAB 11、12:CB二、填空题13.185 14.2- 15.100841312- 16.312256cm π三、解答题17.解:(1)由2cos cos cos 0b A a C c A ++=及正弦定理得2sin cos sin cos cos sin B A A C A C -=+,即2sin cos sin()sin B A A C B -=+=, 在ABC ∆中,sin 0B >, 所以1cos 2A =-, 又(0,)A π∈,所以23A π=. 在ABC ∆中,由余弦定理得222222cos 7a b c bc A b c bc =+-=++=,所以a =(2)由1233AD AB AC =+,得2212()33AD AB AC =+4441421()99929=++⨯⨯⨯-=, 所以2||3AD =. 18.解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以1A AB ∆和1A AD ∆均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1AO ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥,而1AO AC O =,所以BD ⊥平面1A AC ,又1AA ⊂平面1A AC ,所以1BD AA ⊥, 又11//CC AA ,所以1BD CC ⊥. (2)由11A B A D =2BD ==,知11A B A D ⊥,于是11122AO AO BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,AO BD O =,得1AO ⊥底面ABCD , 所以OA 、OB 、OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1,0,0)A ,(0,1,0)B ,(0,1,0)D -,1(0,0,1)A ,(1,0,0)C -,(0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)DC DC ==-, 由11(1,0,1)DD AA ==-,易求得1(1,1,1)D --. 设111D E DC λ=([]0,1λ∈),则(1,1,1)(1,1,0)E E E x y z λ++-=-,即(1,1,1)E λλ---. 设平面1B BD 的一个法向量为(,,)n x y z =,由10,0,n DB n BB ⎧⋅=⎪⎨⋅=⎪⎩得0,0,y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =, 设直线DE 与平面1BDB 所成角为θ,则s i n |c o s ,|D E n θ=<>==解得12λ=或13λ=-(舍去). 所以当E 为11D C 的中点时,直线DE 与平面1BDB所成角的正弦值为14.19.解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数x 为:50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布2(,)N μσ,且26μ=,11.95σ≈,∴(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=, ∴Z 落在(14.55,38.45)内的概率是0.6826. ②根据题意得1~(4,)2X B ,04411(0)()216P X C ===;14411(1)()24P X C ===;24413(2)()28P X C ===;34411(3)()24P X C ===;44411(4)()216P X C ===.∴X 的分布列为∴1()422E X =⨯=. 20.解:(1)由已知可得2222sin 4,c ac a b c π⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得22a =,221b c ==,故所求的椭圆方程为2212x y +=.(2)由221,22,x y y kx ⎧+=⎪⎨⎪=+⎩得22(12)860k x kx +++=,则2226424(12)16240k k k ∆=-+=->,解得k <或k >. 设11(,)A x y ,22(,)B x y , 则122812k x x k +=-+,122612x x k =+, 则1112AD y k x -=,2212BDy kx -=,所以122112121()2AD BDy x y x x x k k x x +-++=12121232()2kx x x x x x ++=6603k k -==,所以AD BD k k +为定值,且定值为0. 21.解:(1)'()2(1)xf x e a =--,当函数()f x 在区间[]0,1上单调递增时,'()2(1)0xf x e a =--≥在区间[]0,1上恒成立,∴min 2(1)()1x a e -≤=(其中[]0,1x ∈),解得32a ≤; 当函数()f x 在区间[]0,1上单调递减时,'()2(1)0xf x e a =--≤在区间[]0,1上恒成立, ∴max 2(1)()x a e e -≥=(其中[]0,1x ∈),解得12ea ≥+. 综上所述,实数a 的取值范围是3(,][1,)22e -∞++∞. (2)'()2(1)()xg x e a x b f x =---=.由(0)(1)0g g ==,知()g x 在区间(0,1)内恰有一个零点, 设该零点为0x ,则()g x 在区间0(0,)x 内不单调, 所以()f x 在区间0(0,)x 内存在零点1x ,同理,()f x 在区间0(,1)x 内存在零点2x ,所以()f x 在区间(0,1)内恰有两个零点.由(1)知,当32a ≤时,()f x 在区间[]0,1上单调递增,故()f x 在区间(0,1)内至多有一个零点,不合题意. 当12e a ≥+时,()f x 在区间[]0,1上单调递减,故()f x 在区间(0,1)内至多有一个零点,不合题意, 所以3122e a <<+. 令'()0f x =,得ln(22)(0,1)x a =-∈,所以函数()f x 在区间[]0,ln(22)a -上单调递减,在区间(ln(22),1]a -内单调递增. 记()f x 的两个零点为1x ,2x 12()x x <,因此1(0,ln(22)]x a ∈-,2(ln(22),1)x a ∈-,必有(0)10f b =->,(1)220f e a b =-+->. 由(1)0g =,得a b e +=,所以1()1()102f a b e =-+=-<,又(0)10f a e =-+>,(1)20f a =->,所以12e a -<<.综上所述,实数a 的取值范围为(1,2)e -.22.解:(1)圆1C :1cos ,1sin x a y a θθ=-+⎧⎨=-+⎩(θ是参数)消去参数θ,得其普通方程为222(1)(1)x y a +++=,将cos x ρθ=,sin y ρθ=代入上式并化简,得圆1C 的极坐标方程为22sin()204a πρθ++-+=.由圆2C 的极坐标方程)4πρθ=-,得22cos 2sin ρρθρθ=+. 将cos x ρθ=,sin y ρθ=,222x y ρ+=代入上式,得圆2C 的直角坐标方程为22(1)(1)2x y -+-=.(2)由(1)知圆1C 的圆心1C (1,1)--,半径1r a =;圆2C 的圆心2(1,1)C,半径2r =12||C C =, ∵圆1C 与圆2C 外切,a =a =即圆1C 的极坐标方程为)4πρθ=-+, 将12πθ=代入1C ,得sin()124ππρ=-+,得ρ= 将12πθ=代入2C ,得cos()124ππρ=-,得ρ=, 故12||||AB ρρ=-=.23.解:(1)此不等式等价于1,221(3)10,x x x ⎧<-⎪⎨⎪--+-≤⎩或13,221(3)10,x x x ⎧-≤≤⎪⎨⎪++-≤⎩或3,21310.x x x >⎧⎨++-≤⎩ 解得8132x -≤<-或132x -≤≤,或34x <≤, 即不等式的解集为8,43⎡⎤-⎢⎥⎣⎦. (2)∵0m >,0n >,2m n mn +=, 21(2)2(2)28m n m n m n ++=⋅≤,即28m n +≥, 当且仅当2,2,m n m n mn =⎧⎨+=⎩即4,2m n =⎧⎨=⎩时取等号. ∴()(2)|21||41|f m f n m n +-=++-+|(21)(41)|m n ≥+--+|24|m n =+2(2)16m n =+≥, 当且仅当410n -+≤,即14n ≥时取等号, ∴()(2)16f m f n +-≥.。