(新)高一数学函数的基本性质单元试题及答案

合集下载

高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析1.若函数是偶函数,则的增区间是.【答案】或【解析】由条件,得,即,所以原函数为,所以函数的增区间为.【考点】函数的奇偶性与单调性.2.(12分)已知是定义在R上的奇函数,当时,,其中且. (1)求的值;(2)求的解析式;【答案】(1)0(2)【解析】(1)因是奇函数,所以有,所以=0.……4分(2)当时,,,由是奇函数有,,……12分【考点】本小题主要考查利用函数的奇偶性求函数值和函数解析式的求取,考查学生对函数性质的应用能力.点评:对于分段函数,当已知一段函数的表达式要求另一段时,要利用函数的性质,并且要注意“求谁设谁”的原则.3.已知函数是定义在实数集R上的不恒为零的偶函数,且对任意实数都有,则的值是A.B.C.D.【答案】A【解析】令,可得,令,得所以,令,得,同理令可得,所以【考点】本小题主要考查函数的奇偶性和抽象函数的求值问题,考查学生的运算求解能力.点评:解决抽象函数问题,常用的方法是“赋值法”.4.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.5.(本小题12分)已知函数,(1)判断函数在区间上的单调性;(2)求函数在区间是区间[2,6]上的最大值和最小值.【答案】(1)函数是区间上的减函数;(2),【解析】(1)设是区间上的任意两个实数,且,则-==.由得,,于是,即.所以函数是区间上的减函数. ……6分(2)由(1)知函数函数在区间的两个端点上分别取得最大值与最小值,即当时,;当时,. ……12分【考点】本小题主要考查利用定义判断函数的单调性和利用函数的单调性求函数的最值,考查学生对定义的掌握和利用能力以及数形结合思想的应用.点评:利用单调性的定义判断或证明函数的单调性时,要把结果划到最简,尽量不要用已知函数的单调性判断未知函数的单调性.6.设偶函数的定义域为,当时是增函数,则的大小关系是()A.B.C.D.【答案】A【解析】因为是偶函数,所以,而当时是增函数,所以.【考点】本小题主要考查函数奇偶性和单调性的综合应用,考查学生的逻辑推理能力.点评:函数的奇偶性和单调性经常结合考查,要熟练准确应用.7.已知是偶函数,且当时,,则当时,【答案】【解析】由题意知,当时,,所以,又因为是偶函数,所以,所以当时,.【考点】本小题主要考查利用函数的奇偶性求函数的解析式,考查学生的运算求解能力.点评:此类问题要注意求谁设谁.8.(本小题满分13分)已知定义域为的函数是奇函数。

高一数学函数试题及答案

高一数学函数试题及答案

(数学1必修)函数及其表示一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。

2.函数422--=x x y 的定义域 。

3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。

新课标高一数学函数的基本性质试题及答案

新课标高一数学函数的基本性质试题及答案

新课标高一数学函数的基本性质试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】新课标高一数学同步测试(4)—第一单元(函数的基本性质)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.下面说法正确的选项()A.函数的单调区间可以是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是()A.B.C.D.3.函数是单调函数时,的取值范围()A.B. C .D.4.如果偶函数在具有最大值,那么该函数在有()A.最大值 B.最小值 C .没有最大值 D.没有最小值5.函数,是()A.偶函数 B.奇函数 C.不具有奇偶函数 D.与有关6.函数在和都是增函数,若,且那么()A. B.C.D.无法确定7.函数在区间是增函数,则的递增区间是()A.B. C.D.8.函数在实数集上是增函数,则()A.B. C. D.9.定义在R上的偶函数,满足,且在区间上为递增,则()A. B.C. D.10.已知在实数集上是减函数,若,则下列正确的是()A. B.C. D.二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.函数在R上为奇函数,且,则当,.12.函数,单调递减区间为,最大值和最小值的情况为.13.定义在R上的函数(已知)可用的=和来表示,且为奇函数,为偶函数,则=.14.构造一个满足下面三个条件的函数实例,①函数在上递减;②函数具有奇偶性;③函数有最小值为;.三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知,求函数得单调递减区间. 16.(12分)判断下列函数的奇偶性①;②;③;④。

17.(12分)已知,,求.18.(12分))函数在区间上都有意义,且在此区间上①为增函数,;②为减函数,.判断在的单调性,并给出证明.19.(14分)在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。

高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析1.下列幂函数中过点(0,0),(1,1)的偶函数是()A.B.C.D.【答案】B【解析】A中函数的定义域是,不关于原点对称,不具有奇偶性;B中函数经验证过这两个点,又定义域为,且;C中函数不过(0,0);D中函数,∵,∴是奇函数,故选B.【考点】幂函数的性质与函数的奇偶性.2.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.3.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.4.函数的单调增区间是_______.【答案】【解析】由,所以此函数的定义域为,根据复合函数的单调性,所以此函数的单调增区间为.5.(本小题满分12分)已知函数 (为常数)在上的最小值为,试将用表示出来,并求出的最大值.【答案】【解析】(1)因为抛物线y=x2-2ax+1的对称轴方程是,本题属于轴动区间定的问题,然后分轴在区间左侧,在区间内,在区间右侧三种情况分别得到其最小值,得到最小值h(a),然后再求出h(a)的最大值.∵y=(x-a)2+1-a2,∴抛物线y=x2-2ax+1的对称轴方程是.(1)当时,,当时,该函数取最小值;(2) 当时, , 当时,该函数取最小值;(3) 当a>1时, , 当时,该函数取最小值综上,函数的最小值为6.证明:函数是偶函数,且在上是减少的。

(本小题满分12分)【答案】见解析。

【解析】本试题主要是考查了函数的奇偶性的定义以及单调性的性质。

高一数学函数的性质单元测试题课标 必修一 试题

高一数学函数的性质单元测试题课标 必修一 试题

高一数学函数的性质单元测试题.1.知f(x)是实数集上的偶函数,且在区间[0,+)∞上是增函数,那么f(-2),f(-),f(3)π的大小关系是〔 〕A.f(-)>f(-2)>f(3)π B.f(3)>f(-)>f(-2)πC.f(-2)>f(3)>f(-)πD.f(-)>f(3)>f(-2)π 2. 定义在区间〔-∞,+∞〕上的奇函数f〔x〕为增函数,偶函数g〔x〕在[0,+∞)上图象与f(x)的图象重合.设a>b>0,给出以下不等式,其中成立的是( )①f〔b〕-f〔-a〕>g〔a〕-g〔-b〕②f〔b〕-f〔-a〕<g〔a〕-g〔-b〕③f〔a〕-f〔-b〕>g〔b〕-g〔-a〕④f〔a〕-f〔-b〕<g〔b〕-g〔-a〕A.①④ B.②③ C.①③ D.②④3. 函数f(x)=x 2-2ax-3在区间[1,2]上是单调函数的条件是 〔 〕A. (,1]a ∈-∞B.[2,)a ∈+∞C.[1,2]a ∈D.(,1][2,)a ∈-∞⋃+∞4. 假设函数是奇函数,当x<0时,f(x)的解析式是f(x)=x(1-x),那么当x>0时,f(x)的解析式是〔 〕.A.-x(1-x)B.x(1-x)C.-x(1+x)D.x(1+x)5. 定义在〔-1,1〕上的函数f〔x〕是奇函数,并且在〔-1,1〕上f〔x〕是减函数,求满足条件f〔1-a〕+f〔1-a2〕<0的a取值范围. 〔 〕 A.〔0,1〕 B.〔-2,1〕 C.[0,1] D.[-2,1]6. 函数f〔x)是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,f(x)是减函数,假如不等式f〔1-m〕<f〔m〕成立,务实数m的取值范围.〔 〕 A.1[1,)2- B.[1,2] C.[-1,0] D.〔11,2-〕 .7.假设f〔x〕是偶函数,其定义域为R,且在[0,+)∞上是减函数,那么f〔2a 2+a+1〕<f(3a 2-2a+1)的a 的取值集合为________________. 8.f(x)是奇函数,定义域为{x|x ∈R 且x ≠0},又f(x)在〔0,+∞〕上是增函数,且f(-1)=0,那么满足f(x)>0的x 取值范围是________.9.假设f(x)是定义在R 上的偶函数,且当x ≥0时为增函数,那么使f(π)<f(a)的实数a 的取值范围是_______.10.(),()x g x ϕ都是奇函数,f(x)=()()a x bg x ϕ++2在〔0,+∞〕上有最大值5,那么f(x)在〔-∞,0〕上有最_______值________..11.设函数f〔x〕在〔-∞,0〕∪〔0,+∞〕上是奇函数,又f〔x〕在〔0,+∞〕上是减函数,并且f〔x〕<0,指出F(x〕=)(1x f 在〔-∞,0〕上的增减性?并证明.12.设f(x)是定义在〔0,+∞〕上的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)+f(y),f(2)=1,求使不等式f(x)+f(x-3)≤2成立的取值范围.[参考答案]一.1.D2.C3.D.4.D5. A6. A二.7. 〔0,3〕 8.(-1,0)(1,+∞)9.a π>或者a π<-10.小,-1.三.11.证明:F 〔x 〕在〔-∞,0〕上是增函数.证明过程如下: 设121212122112120,0,11()()()()()(),()()()0()()()x x x x F x F x f x f x f x f x f x f x f x f x f x f x <<->->-=--=+∞∴-<-在(,)上是减函数,又是奇函数,1221121122121212()(),()()0,()0,(0,),0,()()0.()()0.()()0,()()0,()().f x f x f x f x f x x x x f x f x f x f x f x f x F x F x F x F x ∴-<-∴-><∈+∞->->∴=-->=-->∴>∴-<∴<∴ F〔x〕在〔-∞,0〕上是增函数.3,4.12.(]励志赠言经典语录精选句;挥动**,放飞梦想。

函数的基本性质(单调性、奇偶性、周期性)(含答案)

函数的基本性质(单调性、奇偶性、周期性)(含答案)

函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2) 一些单调性的判断规则:①若f (x)与g(x)在定义域内都是增函数(减函数),那么f (x) + g(x)在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。

②复合函数的单调性规则是“同增异减”。

2.函数的奇偶性的定义:(1)对于函数f (x)的定义域内任意一个x,都有f (-x) = —f (x),则称f (x)为.奇函数的图象关于对称。

(2)对于函数f (x)的定义域内任意一个x,都有f (-x) = f (x),则称f (x)为.偶函数的图象关于对称。

(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。

3.奇偶函数图象的对称性(1)若y = f (a + x)是偶函数,则 f (a + x) = f (a - x) o f (2a - x) = f (x) o f (x)的图象关于直线x= a对称;(2)若y = f (b + x)是偶函数,则 f (b - x) = - f (b + x) o f (2b - x) = - f (x) o f (x)的图象关于点(b,0)中心对称;4.若函数满足f Q + a)= f Q),则函数的周期为T=a。

二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+ 8)上单调递减的函数是()A. y = 2|x|B. y = x3C. y = -x2+1D. y=cosx【答案】C【解析】试题分析:偶函数需满足f (-x) = f (x),由此验证可知A,C,D都是偶函数,但要满足在区间(0,+ 8) 上单调递减,验证可知只有C符合.考点:偶函数的判断,函数的单调性.2. f (x) = x2-2x + 4的单调减区间是.【答案】(fl) 【解析】试题分析:将函数进行配方得/(,) =,2—2x + 4 = (x —1)2+3,又称轴为x = l,函数图象开口向上,所 以函数的单调减区间为(-8,1) . 考点:二次函数的单调性.3 .函数y = log (%2 +2% —3)的单调递减区间为()2A. (— °°, —3)B. (— °°, — 1)C. (1, +°°)D. ( — 3, — 1) 【答案】A 【解析】试题分析:由x2 + 2x —3>0,得%<—3或x>l, .♦./(%)的定义域为(―8,—3)U(L+8).y = log (%2 + 2% —3)可看作由 y = log 沈和 M = %2 + 2% — 3 复合而成的,u - X2 +2x-3 = (x +1)2 -4 2 2在(—8,—3)上递减,在(1,+8)上递增,又y = log "在定义域内单调递增,.・.y = log (%2+2%-3)在2 2(—8,—3)上递减,在(1,+8)上递增,所以y = log (%2+ 2% —3)的单调递减区间是(―叫—3),故选A.2考点:复合函数的单调性.4 .已知丁 = %2+2(〃 — 2)% + 5在区间(4,+8)上是增函数,则a 的范围是( )【答案】B 【解析】试题分析:函数y = %2+2(〃-2)% + 5的图像是开口向上以x = 2-a 为对称轴的抛物线,因为函数在区 间(4,+8)上是增函数,所以2 —a V 4,解得“之―2 ,故A 正确。

函数的基本性质练习题及答案

函数的基本性质练习题及答案

高中数学必修一1.3函数的基本性质练习题及答案一:单项选择题:(共10题,每小题5分,共50分)1. 已知函数为偶函数,则的值是()A. B. C. D.2. 若偶函数在上是增函数,则下列关系式中成立的是()A. B.C. D.3. 如果奇函数在区间上是增函数且最大值为,那么在区间上是()A.增函数且最小值是B.增函数且最大值是C.减函数且最大值是D.减函数且最小值是4. 设是定义在上的一个函数,则函数在上一定是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数5. 函数是()A.是奇函数又是减函数B.是奇函数但不是减函数C.是减函数但不是奇函数D.不是奇函数也不是减函数6. 下列函数既是奇函数,又在区间上单调递减的是()A. B. C. D.7. 设函数|| + b+ c 给出下列四个命题:①c = 0时,y是奇函数②b0 , c >0时,方程0 只有一个实根③y的图象关于(0 , c)对称④方程0至多两个实根其中正确的命题是()A.①、④B.①、③C.①、②、③D.①、②、④8. 已知函数f(x)=3-2|x|,g(x)=x2-2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x).那么F(x) ( )A.有最大值7-2,无最小值B.有最大值3,最小值-1 C.有最大值3,无最小值D.无最大值,也无最小值9. 已知函数是定义在上的奇函数,当时,的图象如图所示,则不等式的解集是()A.B.C.D.10. 设定义域为R的函数f(x)满足,且f(-1)=,则f(2006)的值为()A.1 B.1 C.2006 D.二:填空题:(共2题,每小题10分,共20分)1. 设奇函数的定义域为,若当时,的图象如右图,则不等式的解是.2. 若函数是偶函数,则的递减区间是____________三:解答题:(共2题,每小题10分,共20分)1. 判断y=1-2x3 在(-)上的单调性,并用定义证明。

高一数学函数的基本性质试题

高一数学函数的基本性质试题

高一数学函数的基本性质试题1.对a,b R,记,函数f(x)=的最小值是 .【答案】【解析】,所以当时,f(x)取得最小值,最小值为.2.已知函数,若,则的值为()A.-13B.13C.-7D.7【答案】A【解析】因为函数,若,则=-13,选A.3.若奇函数在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上( )A.是减函数,有最小值-7B.是增函数,有最小值-7C.是减函数,有最大值-7D.是增函数,有最大值-7【答案】D【解析】解:由奇函数的性质,∵奇函数f(x)在[1,3]上为增函数∴奇函数f(x)在[-3,-1]上为增函数,又奇函数f(x)在[1,3]上有最小值7,∴奇函数f(x)在[-3,-1]上有最大值-7,故选D4.已知偶函数在区间上单调递增,则满足不等式的的取值范围是()A.B.C.D.【答案】A【解析】因为解:根据函数在区间[0,+∞)单调递增,得当2x-1≥0,即x≥时,不等式f(2x-1)<f()等价于2x-1<,解之得x<而当2x-1<0,即x<时,由于函数是偶函数,所以f(2x-1)>f()等价于f(1-2x)<f()再根据单调性,得1-2x<,解之得x>综上所述,不等式f(2x-1)<f()的解集为{x|x>}故选A5.函数y=是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数【答案】A【解析】函数定义域为R,故选A6.已知函数f(x)=(a-a)(a>0且a1)在(-, +)上是增函数, 求实数a的取值范围【答案】a(0, 1)(3, +)【解析】解: 由于f(x)递增,若设x<x,则f(x)-f(x)=[(a-a)-(a-a)]=(a-a)(1+a·a)<0, 故(a-9)( (a -a)<0.(1), 解得a>3; (2) , 解得0<a<1.综合(1)、(2)得a(0, 1)(3, +)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学同步测试:第一单元(函数的基本性质)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.下面说法正确的选项
()
A.函数的单调区间可以是函数的定义域
B.函数的多个单调增区间的并集也是其单调增区间
C.具有奇偶性的函数的定义域定关于原点对称
D.关于原点对称的图象一定是奇函数的图象
2.在区间上为增函数的

()
A.B.
C.D.
3.函数是单调函数时,的取值范围
()
A. B.
C . D.
4.如果偶函数在具有最大值,那么该函数在
有()
A.最大值 B.最小值
C .没有最大值 D.没有最小值
5.函数,是
()
A.偶函数 B.奇函数
C.不具有奇偶函数 D.与有关
6.函数在和都是增函数,若,且那么()
A.B.
C.D.无法确定
7.函数在区间是增函数,则的递增区间是
()
A. B.
C. D.
8.函数在实数集上是增函数,
则()
A. B.
C. D.
9.定义在R上的偶函数,满足,且在区间上为递增,则()
A.B.
C.D.
10.已知在实数集上是减函数,若,则下列正确的是
()
A. B.
C. D.
二、填空题:请把答案填在题中横线上(每小题6分,共24分).
11.函数在R上为奇函数,且,则当,
.
12.函数,单调递减区间为,最大值和最小值的情况为 .
13.定义在R上的函数(已知)可用的=和来表示,且为奇函数,为偶函数,则= .
14.构造一个满足下面三个条件的函数实例,
①函数在上递减;②函数具有奇偶性;③函数有最小值
为; .
三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知,求函数得单调递减区间.
16.(12分)判断下列函数的奇偶性
①;②;
③;④。

17.(12分)已知,,求.
18.(12分))函数在区间上都有意义,且在此区间上
①为增函数,;
②为减函数,.
判断在的单调性,并给出证明.
19.(14分)在经济学中,函数的边际函数为,定义为
,某公司每月最多生产100台报警系统装置。

生产台的
收入函数为(单位元),其成本函数为(单位元),利润的等于收入与成本之差.
①求出利润函数及其边际利润函数;
②求出的利润函数及其边际利润函数是否具有相同的最大值;
③你认为本题中边际利润函数最大值的实际意义.
20.(14分)已知函数,且,,试问,是否存在实数,使得在上为减函数,并且在上为增函数.
参考答案
一、CBAAB DBAAD
二、11.;12.和,; 13.;14.;
三、15.解:函数,,
故函数的单调递减区间为.
16.解①定义域关于原点对称,且,奇函数.
②定义域为不关于原点对称。

该函数不具有奇偶性.
③定义域为R,关于原点对称,且,,
故其不具有奇偶性.
④定义域为R,关于原点对称,
当时,;
当时,;
当时,;故该函数为奇函数.
17.解:已知中为奇函数,即=中
,也即,,得,.
18.解:减函数令,则有,即可得;同理有,即可得;
从而有
*
显然,从而*式,
故函数为减函数.
19.解:.

,故当62或63时,74120(元)。

因为为减函数,当时有最大值2440。

故不具有相等的最大
值.
边际利润函数区最大值时,说明生产第二台机器与生产第一台的利润差最大. 20.解:.
有题设
当时,
,,则当时,
,,则故.。

相关文档
最新文档