【配套K12】江苏省南通市、扬州市、泰州市2016届高三数学第三次调研测试试题
江苏省南通市、扬州市、泰州市高三英语第三次调研测试试题

南通市2016届高三第三次调研测试英语2016.05本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分120分,考试时间120分钟。
第Ⅰ卷(选择题共85分)第一部分:听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
( )1. Where will the woman go?A. A store.B. The school.C. The stadium.( )2. Why is the man excited?A. He bought new clothes.B. He gets a store discount.C. The woman invited him to shop.( )3. What does the woman suggest the man do?A. Do some tests.B. Take exercise.C. Visit her at weekends.( )4. What did the man do before the phone call?A. He looked up a number.B. He asked his sister for a number.C. He did an online search.( )5. How much did the woman pay for the shoes?A. $475.B. $522.5.C. $550.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
江苏省南通市、扬州市、泰州市2016届高三英语第三次调研测试试题

南通市2016届高三第三次调研测试英语2016.05本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分120分,考试时间120分钟。
第Ⅰ卷(选择题共85分)第一部分:听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
( )1. Where will the woman go?A. A store.B. The school.C. The stadium.( )2. Why is the man excited?A. He bought new clothes.B. He gets a store discount.C. The woman invited him to shop.( )3. What does the woman suggest the man do?A. Do some tests.B. Take exercise.C. Visit her at weekends.( )4. What did the man do before the phone call?A. He looked up a number.B. He asked his sister for a number.C. He did an online search.( )5. How much did the woman pay for the shoes?A. $475.B. $522.5.C. $550.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
江苏省南通市2016届高三数学下学期第三次教学情况调研测试试题

南通市2016届高三教学情况调研(三)数 学(满分160分,考试时间120分钟)2016.3 参考公式:棱锥的体积公式:V 棱锥=13Sh ,其中S 为棱锥的底面积,h 为高.(第3题)一、 填空题:本大题共14小题,每小题5分,共70分.1. 设复数z 满足(1+2i )²z =3(i 为虚数单位),则复数z 的实部为____________.2. 设集合A ={-1,0,1},B =⎩⎨⎧⎭⎬⎫a -1,a +1a ,A ∩B ={0},则实数a 的值为____________.3. 右图是一个算法流程图,则输出的k 的值是__________.4. 为了解一批灯泡(共5 000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如下表:5. 电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是__________.(第6题)6. 已知函数f (x )=log a (x +b )(a >0且a ≠1,b ∈R )的图象如图所示,则a +b 的值是________.7. 设函数y =sin ⎝⎛⎭⎫ωx +π3(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为____________.8. 在等比数列{a n }中,a 2=1,公比q ≠±1.若a 1,4a 3,7a 5成等差数列,则a 6的值是________.9. 在体积为32的四面体ABCD 中,AB ⊥平面BCD ,AB =1,BC =2,BD =3,则CD 长度的所有值为____________.10. 在平面直角坐标系xOy 中,过点P (-2,0)的直线与圆x 2+y 2=1相切于点T ,与圆(x -a )2+(y -3)2=3相交于点R ,S ,且PT =RS ,则正数a 的值为____________.(第12题)11. 已知f (x )是定义在R 上的偶函数,且对于任意的x ∈[0,+∞),满足f (x +2)=f (x ).若当x ∈[0,2)时,f (x )=|x 2-x -1|,则函数y =f (x )-1在区间[-2,4]上的零点个数为____________.12. 如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A 到m ,n 的距离分别为1,3.点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →²AC →的最大值是____________.13.设实数x ,y 满足x 24-y 2=1,则3x 2-2xy 的最小值是__________.14.若存在α,β∈R ,使得⎩⎪⎨⎪⎧t =cos 3β+α2cos β,α≤t ≤α-5cos β,则实数t 的取值范围是__________.二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在斜三角形ABC 中,tan A +tan B +tan A tan B =1. (1) 求C 的值;(2) 若A =15°,AB =2,求△ABC 的周长.16. (本小题满分14分)如图,在正方体ABCDA 1B 1C 1D 1中,M ,N ,P 分别为棱AB ,BC ,C 1D 1的中点.求证: (1) AP ∥平面C 1MN ;(2) 平面B 1BDD 1⊥平面C 1MN .17.(本小题满分14分)植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30 m 的围墙.现有两种方案: 方案① 多边形为直角三角形AEB (∠AEB =90°),如图1所示,其中AE +EB =30 m ; 方案② 多边形为等腰梯形AEFB (AB >EF ),如图2所示,其中AE =EF =BF =10 m.请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22.A 为椭圆上异于顶点的一点,点P 满足OP →=2AO →.(1) 若点P 的坐标为(2,2),求椭圆的方程;(2) 设过点P 的一条直线交椭圆于B ,C 两点,且BP →=mBC →,直线OA ,OB 的斜率之积为-12,求实数m 的值.19. (本小题满分16分)设函数f (x )=(x +k +1)x -k ,g (x )=x -k +3,其中k 是实数.(1) 若k =0,解不等式x ²f (x )≥12x +3²g (x );(2) 若k ≥0,求关于x 的方程f (x )=x ²g (x )实根的个数.20. (本小题满分16分)设数列{a n }的各项均为正数,{a n }的前n 项和S n =14(a n +1)2,n ∈N *.(1) 求证:数列{a n }为等差数列;(2) 等比数列{b n }的各项均为正数,b n b n +1≥S 2n ,n ∈N *,且存在整数k ≥2,使得b k b k +1=S 2k . (ⅰ) 求数列{b n }公比q 的最小值(用k 表示);(ⅱ) 当n ≥2时,b n ∈N *,求数列{b n }的通项公式.2016届高三教学情况调研(三)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,AB 是圆O 的直径,C 为圆O 外一点,且AB =AC ,BC 交圆O 于点D ,过D 作圆O 的切线交AC 于点E .求证:DE ⊥AC .B. (选修42:矩阵与变换)在平面直角坐标系xOy 中,设点A (-1,2)在矩阵M =⎣⎢⎡⎦⎥⎤-10 01对应的变换作用下得到点A ′,将点B (3,4)绕点A ′逆时针旋转90°得到点B ′,求点B ′的坐标.C. (选修44:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-1+55t ,y =-1+255t (t 为参数)与曲线⎩⎪⎨⎪⎧x =sin θ,y =cos2θ(θ为参数)相交于A ,B 两点,求线段AB 的长.D. (选修45:不等式选讲)已知a ,b ,c ∈R ,4a 2+b 2+2c 2=4,求2a +b +c 的最大值.【必做题】 第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 一个摸球游戏,规划如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k 倍的奖励(k ∈N *),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X 元.(1) 求概率P (X =0)的值;(2) 为使收益X 的数学期望不小于0元,求k 的最小值. (注:概率学源于赌博,请自觉远离不正当的游戏!)23.设S4k=a1+a2+…+a4k(k∈N*),其中a i∈{0,1}(i=1,2,…,4k).当S4k除以4的余数是b(b=0,1,2,3)时,数列a1,a2,…,a4k的个数记为m(b).(1) 当k=2时,求m(1)的值;(2) 求m(3)关于k的表达式,并化简.2016届高三教学情况调研(三)(南通市)数学参考答案一、 填空题:本大题共14小题,每小题5分,共计70分.1. 352. 13. 174. 1 4005. 256. 92 7. 28. 149 9. 7,19 10. 4 11. 7 12. 21413. 42+6 14. ⎣⎡⎦⎤-23,1二、解答题:本大题共6小题,共计90分. 15. 解:(1) 因为tan A +tan B +tan A tan B =1, 即tan A +tan B =1-tan A tan B ,因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan (A +B )=tan A +tan B1-tan A tan B=1,(4分)即tan (180°-C)=1,亦即tan C =-1, 因为0°<C<180°,所以C =135°.(6分) (2) 在△ABC 中,A =15°,C =135°, 则B =180°-A -C =30°.由正弦定理BC sin A =CA sin B =ABsin C ,得BC sin 15°=CA sin 30°=2sin 135°=2,(9分)故BC =2sin 15°=2sin (45°-30°) =2(sin 45°cos 30°-cos 45°sin 30°)=6-22,(12分) CA =2sin 30°=1.所以△ABC 的周长为AB +BC +CA =2+1+6-22=2+6+22.(14分) 16.证明:(1) 在正方体ABCDA 1B 1C 1D 1中, 因为M ,P 分别为棱AB ,C 1D 1的中点, 所以AM =PC 1.又AM∥CD,PC 1∥CD ,故AM∥PC 1, 所以四边形AMC 1P 为平行四边形. 从而AP∥C 1M.(4分)又AP ⊄平面C 1MN ,C 1M ⊂平面C 1MN , 所以AP∥平面C 1MN ;(6分)(第16题)(2) 连结AC ,在正方形ABCD 中,AC ⊥BD. 又M ,N 分别为棱AB ,BC 的中点,故MN∥AC. 所以MN⊥BD.(8分)在正方体ABCDA 1B 1C 1D 1中,DD 1⊥平面ABCD. 又MN ⊂平面ABCD 所以DD 1⊥MN.而DD 1∩DB =D ,DD 1,DB ⊂平面BDD 1B 1, 所以MN⊥平面BDD 1B 1.(12分) 又MN ⊂平面C 1MN ,所以平面B 1BDD 1⊥平面C 1MN.(14分)17. 解:设方案①,②中多边形苗圃的面积分别为S 1,S 2.方案① 设AE =x ,则S 1=12x(30x -x)(3分)≤12⎣⎡⎦⎤x +(30-x )22=2252(当且仅当x =15时,“=”成立).(5分)方案② 设∠BAE=θ,则S 2=100sin θ(1+cos θ),θ∈⎝⎛⎭⎫0,π2.(8分)由S′2=100(2cos 2θ+cos θ-1)=0得,cos θ=12(cos θ=-1舍去).(10分)因为θ∈⎛⎫0,π2,所以θ=π,列表:所以当θ=3时,(S 2)max =75 3.(12分)因为2252<753,所以建苗圃时用方案②,且∠BAE=π3.答:方案①,②苗圃的最大面积分别为2252 m 2,75 3 m 2,建苗圃时用方案②,且∠BAE=π3.(14分) 18. 解:(1) 因为OP →=2AO →,而P(2,2), 所以A ⎝⎛⎭⎪⎫-1,-22. 代入椭圆方程,得1a 2+12b 2=1, ①(2分)又椭圆的离心率为22,所以1-b 2a 2=22. ②(4分)由①②,得a 2=2,b 2=1,故椭圆的方程为x 22+y 2=1.(6分)(2) 设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3).因为OP →=2AO →,所以P(-2x 1,-2y 1).因为BP →=mBC →,所以(-2x 1-x 2,-2y 1-y 2)=m(x 3-x 2,y 3-y 2), 即⎩⎪⎨⎪⎧-2x 1-x 2=m (x 3-x 2),-2y 1-y 2=m (y 3-y 2),于是⎩⎨⎧x 3=m -1m x 2-2mx 1,y 3=m -1m y 2-2m y 1,(9分)代入椭圆方程,得 ⎝⎛⎭⎫m -1m x 2-2m x 12a 2+⎝⎛⎭⎫m -1my 2-2m y 12b 2=1, 即4m 2⎛⎭⎫x 21a 2+y 21b 2+(m -1)2m 2⎛⎭⎫x 22a 2+y 22b 2-4(m -1)m 2²⎝⎛⎭⎫x 1x 2a2+y 1y 2b 2=1. ③(12分) 因为A ,B 在椭圆上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1. ④因为直线OA ,OB 的斜率之积为-12,即y 1x 1²y 2x 2=-12,结合②知x 1x 2a 2+y 1y 2b2=0. ⑤(14分) 将④⑤代入③,得4m 2+(m -1)2m 2=1,解得m =52.(16分) 19.解:(1) k =0时,f(x)=(x +1)x , g(x)=x +3.由⎩⎪⎨⎪⎧x ≥0,x +3≥0得x≥0.(2分) 此时,原不等式为(x +1)x≥12(x +3),即2x 2+x -3≥0,解得x≤-32或x≥1.所以原不等式的解集为[1,+∞).(5分) (2) 由方程f(x)=x²g(x)得,(x +k +1)x -k =x x -k +3. ① 由⎩⎪⎨⎪⎧x -k≥0,x -k +3≥0得x≥k,所以x≥0,x -k +1>0. 方程①两边平方,整理得(2k -1)x 2-(k 2-1)x -k(k +1)2=0(x≥k). ②(7分)当k =12时,由②得x =32,所以原方程有唯一解.当k≠12时,由②得判别式Δ=(k +1)2(3k -1)2,i ) k =13时,Δ=0,方程②有两个相等的根x =43>13,所以原方程有唯一的解.(10分)ii ) 0≤k<12且k≠13时,方程②整理为[(2k -1)x +k(k +1)](x -k -1)=0,解得x 1=k (k +1)1-2k,x 2=k +1.由于Δ>0,所以x 1≠x 2,其中x 2=k +1>k ,x 1-k =3k21-2k≥0,即x 1≥k.故原方程有两解.(14分)iii ) k>12时,由ii )知x 1-k =3k21-2k<0,即x 1<k ,故x 1不是原方程的解.而x 2=k +1>k ,故原方程有唯一解.综上所述:当k≥12或k =13时,原方程有唯一解;当0≤k<12且k≠13时,原方程有两解.(16分)注:ii )中,法2:⎩⎪⎨⎪⎧Δ>0,2k -1<0,x =k 2-12(2k -1)>k ,h (k )=-3k 2<0,故方程②两实根均大于k ,所以原方程有两解. 20.证明:(1) 因为S n =14(a n +1)2, ①所以S n -1=14(a n -1+1)2,n ≥2. ②①-②,得(a n +a n -1)(a n -a n -1-2)=0,n ≥2,(2分) 因为数列{a n }的各项均为正数, 所以a n +a n -1>0,n ≥2. 从而a n -a n -1=2,n ≥2.所以数列{a n }为等差数列.(4分) (2) (Ⅰ) ①中,令n =1,得a 1=1,所以a n =2n -1,S n =n 2.由b k b k +1=S 2k (k≥2)得,b 1=k 2qk -12,所以b n =b 1qn -1=k 2qn -k -12, ③由b n b n +1≥S 2n 得,k 4q2n -2k≥n 4,即q n -k≥⎝⎛⎭⎫nk 2, ④(6分)当n =k 时,④恒成立.当n≥k+1时,④两边取自然对数,整理得,k ln q2≥lnn k n k-1⎝⎛⎭⎫n k≥1+1k . ⑤ 记f(x)=ln xx -1(x>1),则f′(x)=1-1x +ln 1x (x -1)2,记g(t)=1-t +ln t ,0<t<1,则g′(t)=1-tt>0,故g(t)为(0,1)上增函数,所以g(t)<g(1)=0,从而f′(x)<0,故f(x)为(1,+∞)上减函数,从而lnn kn k-1的最大值为k ln ⎝⎛⎭⎫1+1k .⑤中,k ln q 2≥k ln ⎝⎛⎭⎫1+1k ,解得q≥⎝⎛⎭⎫1+1k 2.(10分)当n≤k-1时,同理有q≤⎝⎛⎭⎫1+1k -12. 所以公比q 的最小值为⎝⎛⎭⎫1+1k 2(整数k≥2).(12分) (Ⅱ) 依题意,q ∈N *.由(2)知,q ∈⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1+1k 2,⎝⎛⎭⎫1+1k -12(整数k ≥2), 所以q ≥⎝⎛⎭⎫1+1k 2>1,q ≤⎝⎛⎭⎫1+1k -12≤4, 从而q ∈{2,3,4},当q =2时,⎝⎛⎭⎫1+1k 2≤2≤⎝⎛⎭⎫1+1k -12,只能k =3,此时b n =9²2n -72,不符;当q =3时,⎝⎛⎭⎫1+1k 2≤3≤⎝⎛⎭⎫1+1k -12,只能k =2,此时b n =4²3n -52,不符;当q =4时,⎝⎛⎭⎫1+1k 2≤4≤⎝⎛⎭⎫1+1k -12,只能k =2,此时b n =22n -3,符合. 综上,b n =22n -3.(16分) 附加题21. A .[选修41:几何证明选讲] 证明:连结OD ,因为AB =AC ,所以∠B =∠C .由圆O 知OB =OD ,所以∠B =∠BDO . 从而∠BDO =∠C ,所以OD ∥AC .(6分) 又因为DE 为圆O 的切线,所以DE ⊥OD , 又因为OD ∥AC ,所以DE ⊥AC .(10分)B .[选修42:矩阵与变换] 解:设B ′(x ,y ),依题意,由⎣⎢⎡⎦⎥⎤-1001⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤12,得A ′(1,2).(4分)则A ′B →=(2,2),A ′B ′→=(x -1,y -2).记旋转矩阵N =⎣⎢⎡⎦⎥⎤0-110(6分)则⎣⎢⎡⎦⎥⎤0-110⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤x -1y -2,即⎣⎢⎡⎦⎥⎤-22=⎣⎢⎡⎦⎥⎤x -1y -2,解得⎩⎪⎨⎪⎧x =-1,y =4, 所以点B ′的坐标为(-1,4).(10分)C .[选修44:坐标系与参数方程]解:将直线的参数方程化为普通方程,得y =2x +1. ①(3分)将曲线的参数方程化为普通方程,得y =1-2x 2(-1≤x ≤1). ②(6分)由①②,得⎩⎪⎨⎪⎧x =-1,y =-1或⎩⎪⎨⎪⎧x =0,y =1,(8分) 所以A (-1,-1),B (0,1),(10分)从而AB =(-1-0)2+(-1-1)2= 5.(10分)D.[选修45:不等式选讲] 解:由柯西不等式,得[(2a )2+b 2+(2c )2]⎣⎢⎡⎦⎥⎤12+12+⎝ ⎛⎭⎪⎫122≥(2a +b +c )2.(6分) 因为4a 2+b 2+2c 2=4,所以(2a +b +c )2≤10.所以-10≤2a +b +c ≤10.所以2a +b +c 的最大值为10.当且仅当a =105,b =2105,c =105时等号成立.(10分)22. 解:(1) 事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,则P(X =0)=3³16³⎝⎛⎭⎫562=2572.(3分) (2) 依题意,X 的可能值为k ,-1,1,0, 且P(X =k)=⎝⎛⎭⎫163=1216, P(X =-1)=⎝⎛⎭⎫563=125216, P(X =1)=3³⎝⎛⎭⎫162³56=572,(6分) 结合(1)知,参加游戏者的收益X 的数学期望为E(X)=k³1216+(-1)³125216+1³572=k -110216(元),(8分) 为使收益X 的数学期望不小于0元,所以k≥110,即k min =110.答:k 的最小值为110.(10分)23. 解:(1) 当k =2时,数列a 1,a 2,a 3,…,a 8中有1个1或5个1,其余为0,所以m =C 18+C 58=64.(3分)(2) 依题意,数列a 1,a 2,…,a 4k 中有3个1,或7个1,或11个1,…,或(4k -1)个1,其余为0,所以m(3)=C 34k +C 74k +C 114k +…+C 4k -14k .(5分)同理,得m(1)=C 14k +C 54k +C 94k +…+C 4k -34k .因为C i 4k =C 4k -i 4k (i =3,7,11,…,4k -1),所以m(1)=m(3).又m(1)+m(3)=C 14k +C 34k +C 54k +C 94k +…+C 4k -34k +C 4k -14k =24k -1,所以m(3)=24k -2=42k -1.(10分)。
2016届江苏省南通市、扬州市、泰州市高三第三次调研考试数学试题

2016届江苏省南通市、扬州市、泰州市高三第三次调研考试数学试题数学Ⅰ一、填空题:本大题共14个小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}{}1,0,1,2,1,1,2=-=-U A ,则U C A = .2.已知复数()22z i =-(i 为虚数单位),则z 的共轭复数为 .3.如图是甲、乙两位同学在5次数学测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为 .4.如图是一个算法流程图,则输出的S 的值为 .5.已知正三棱柱的各条棱长均为a ,圆柱的底面直径和高均为b ,若它们的体积相等,则33:a b 的值为 .6.将一颗骰子连续抛掷2次,向上的点数分别为,m n ,则点(),P m n 在直线12y x =下方的概率为 .7.函数()f x =的定义域为 . 8.在平面直角坐标系xOy 中,双曲线2221x y a-=与抛物线212y x =-有相同的焦点,则双曲线的两条渐近线的方程为 .9.已知两曲线)2,0(,sin 3)(,cos )(π∈==x x x g x x f 相交于点A.若两曲线在点A 处的切线与x 轴分别相交于B ,C 两点,则线段BC 的长为_____.10.如图,已知ABC ∆的边BC 的垂直平分线交AC 于点P ,交BC 于点Q .若3,5AB AC ==,则()()AP AQ AB AC +⋅-的值为.11.设数列{}n a 满足()()()111,111*+=-+=∈n n a a a n N,则()10011k k k a a +=∑的值为 .12.已知函数()()()()()2',0,,0f x x f x x ax a Rg x f x x ≥⎧⎪=+∈=⎨<⎪⎩(()'f x 为()f x 的导函数).若方程()()0g f x =有四个不等的实根,则a 的取值范围是 .13.如图,矩形ABCD 的边AB 在x 轴上,顶点,C D 在函数()10y x x x=+>的图像上.记,AB m BC n ==,则2mn 的最大值为.14.在平面直角坐标系xOy 中,圆()221:12C x y -+=,圆()()2221:C x m y m m -++=,若圆2C 上存在点P 满足:过点P 向圆1C 作两条切线,,PA PB 切点为,A B ,ABP ∆的面积为1,则正数m 的取值范围是 .三、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知ABC ∆是锐角三角形,向量()cos ,sin ,cos ,sin 33m A A n B B ππ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,且m n ⊥ .(1)求A B -的值; (2)若3cos ,85B AC ==,求BC 的长. 16.(本小题满分14分)如图,在四棱锥P ABCD -中,PC ⊥平面PAD ,,22,,AB CD CD AB BC M N == 分别是棱,PA CD 的中点.(1)求证:PC 平面BMN ; (2)求证:平面BMN ⊥平面PAC.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆222x y a +=于相异两点,P Q . (1)若直线l 的斜率为12,求AP AQ 的值;(2)若PQ AP λ=,求实数λ的取值范围.18.(本小题满分14分)某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1m 的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD 为中心在圆心的矩形,现计划将矩形ABCD 区域设计为可推拉的窗口. (1)若窗口ABCD 为正方形,且面积大于214m (木条宽度忽略不计),求四根木条总长的取值范围; (2)若四根木条总长为6m ,求窗口ABCD 面积的最大值.19.(本小题满分16分)已知数列{}n a ,{}n b 均为各项都不相等的数列,n S 为{}n a 的前n 项和,()11*+=+∈n n n a b S n N .(1)若11,2n na b ==,求4a 的值; (2)若{}n a 是公比为q 的等比数列,求证:存在实数λ,使得{}n b λ+为等比数列;(3)若{}n a 的各项都不为零,{}n b 是公差为d 的等差数列,求证:23,,,,n a a a 成等差数列的充要条件是12d =. 20.(本小题满分16分)设函数()sin cos xf x xe a x x =-(a R ∈,其中e 是自然对数的底数).(1)当0a =时,求()f x 的极值; (2)若对于任意的0,2x π⎡⎤∈⎢⎥⎣⎦,()0f x ≥恒成立,求a 的取值范围; (3)是否存在实数a ,使得函数()f x 在区间0,2π⎛⎫⎪⎝⎭上有两个零点?若存在,求出a 的取值范围;若不存在,请说明理由.南通市2016届高三第三次调研测试数学II (附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分,解答时应写出文字说明,证明过程或演算步骤. A.【选修4-1】几何证明选讲(本小题满分10分)在ABC ∆中,2,A B C ∠=∠∠的平分线交AB 于点D ,A ∠的平分线交CD 于点E . 求证:AD BC BD AC ⋅=⋅.B.【选修4-2:矩阵与变换】(本小题满分10分)在平面直角坐标系xOy 中,直线20x y +-=在矩阵112a A ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到直线()0,x y b a b R +-=∈,求a b +的值.C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα⎧=+⎪⎨=⎪⎩α为参数)以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为6πθ=.若直线l 与曲线C 交于,A B ,求线段AB 的长.D.【选修4-5:不等式选讲】(本小题满分10分)已知0,0,0x y z >>>,且1xyz =,求证:333x y z xy yz xz ++≥++.【必做题】第22,23题,每小题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)在平面直角坐标系xOy 中,已知抛物线()220y px p =>上一点3,4P m ⎛⎫⎪⎝⎭到准线的距离与到原点O 的距离相等,抛物线的焦点为F . (1)求抛物线的方程;(2)若A 为抛物线上一点(异于原点O ),点A 处的切线交x 轴于点B ,过A 作准线的垂线,垂足为点E .试判断四边形AEBF 的形状,并证明你的结论. 23.(本小题满分10分)甲,乙两人进行围棋比赛,共比赛()2*∈n n N 局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为12.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为()P n . (1)求()2P 与()3P 的值;(2)试比较()P n 与()1P n +的大小,并证明你的结论.南通市2016届高三第三次调研测试数学学科参考答案一、填空题1.{}02.34i +3. 24. 35.:π6.167.(8.y x =10. -16 11.100101 12.0a <或2a > 13.1414.1,3⎡+⎣ 二、解答题15.(1)因为m n ⊥ ,所以cos cos sin sin cos 0333m n A B A B A B πππ⎛⎫⎛⎫⎛⎫⋅=+++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭431552=+⋅=由正弦定理,得sin 83sin ABC AC B=⋅==+.16.(1)设AC BN O ⋂=,连结,MO AN ,因为1,2AB CD AB CD =,N 为CD 的中点, 所以,AB CN AB CN = ,所以四边形ABCN 为平行四边形,所以O 为AC 的中点,所以MO PC . 又因为MO ⊂平面BMN ,PC ⊄平面BMN ,所以PC 平面BMN . (2)(方法一)因为PC ⊥平面PDA ,AD ⊂平面PDA .所以PC AD ⊥,由(1)同理可得,四边形ABND 为平行四边形,所以AD BN ,所以BN PC ⊥. 因为BC AB =,所以平行四边形ABCN 为菱形,所以BN AC ⊥,因为PC AC C ⋂=,AC ⊂平面PAC ,PC ⊂平面PAC ,所以BN ⊥平面PAC .因为BN ⊂平面BMN ,所以平面BMN ⊥平面PAC .(方法二)连结PN ,因为PC ⊥平面PDA ,PA ⊂平面PDA ,所以PC PA ⊥.因为PC MO ,所以PA MO ⊥,因为PC ⊥平面PDA ,PD ⊂平面PDA ,所以PC PD ⊥. 因为N 为CD 的中点,所以12PN CD =,由(1)12AN BC CD ==,所以AN PN =. 又因为M 为PA 的中点,所以PA MN ⊥.因为MN MO M ⋂=,MN ⊂平面BMN ,MO ⊂平面BMN ,所以PA ⊥平面BMN ,因为PA ⊂平面PAC ,所以平面PAC ⊥平面BMN.17.(1)由条件,22224a c a a b c =⎧⎪⎪=⎨⎪⎪=+⎩,解得2a b =⎧⎪⎨=⎪⎩,所以椭圆的方程为22142x y +=,圆的方程为224x y +=.(方法一)直线l 的方程为()122y x =+,由()2212224y x x y ⎧=+⎪⎨⎪+=⎩得:23440x x +-=.解得22,3A p x x =-=,所以24,33P ⎛⎫ ⎪⎝⎭.所以AP ==O 到直线l的距离d =所以AQ ==56AP AQ ==. (方法二)由222224x y x y =-⎧⎨+=⎩得2340y y -=,所以85P y =. 所以455386AP AQ =⨯=; (2)(方法一)若PQ AP λ= ,则1AQAPλ=-. 设直线():2l y k x =+,由()22242x y y k x ⎧+=⎪⎨=+⎪⎩得,()22221840k x k ++-=.即()()()22221420x k x k ⎡⎤+++-=⎣⎦,所以22242,21A P k x x k -=-=+,得222244,2121k k P k k ⎛⎫- ⎪++⎝⎭. 所以()22222222224416162212121k k k AP k k k ⎛⎫-+⎛⎫=++= ⎪ ⎪++⎝⎭⎝⎭+,即AP =,同理AQ =. 所以,由题意:02>k ,所以10<<λ.(方法二)由方法一知,,由题意:20k >,所以01λ<<.18.(1)设一根木条长为xcm,则正方形的边长为=.因为14ABCD S >四边形,所以2144x ->,即x <又因为四根木条将圆分成9个区域,所以x >.所以x <<;(2)(方法一)设AB 所在木条长为am ,则BC 所在木条长为()3a m -. 因为()()0,2,30,2a a ∈-∈,所以()1,2a ∈.ABCDS ===矩形. 设()43262420f a a a a a =-++-,()()()()'3241822421234fa a a a a a a =-++=+--.令()'0fa =,得32a =,或1a =-(舍去),或4a =(舍去). 列表如下:所以当32a =时,()max 349216f x f ⎛⎫== ⎪⎝⎭,即max 74S = (方法二)设AB 所在木条长为am ,CD 所在木条长为bm . 由条件,2+26a b =,即3a b +=.因为(),0,2a b ∈,所以()30,2b a =-∈,从而(),1,2a b ∈.由于AB BD ==,ABCD S ==矩形.()()2228872224a b a b +--+≤≤=,当且仅当()31,22a b ==∈时,74ABCD S =矩形. 答:窗口ABCD 面积的最大值为274m .19.(1)由11,2n na b ==,知2344,6,8a a a ===.(2)(方法一)因为11n n n a b S +=+,所以()11111n n n a q a q b q-=+-.所以11111n nn q q b q a q =+---,即1111111nn b q a q q⎛⎫⎛⎫=+- ⎪ ⎪--⎝⎭⎝⎭, 所以存在实数11q λ=-,使得11111nn b q a q λ⎛⎫⎛⎫+=+ ⎪ ⎪-⎝⎭⎝⎭,又因为0n b λ+≠(否则{}n b 为常数数列与题意不符),所以当2n ≥,11n n b b qλλ-+=+,此时{}n b λ+为等比数列,所以存在实数11qλ=-,使{}n b λ+为等比数列. (方法二)因为11n n n a b S +=+①, 所以当2n ≥时,111n n n a b S --=+②,①-②得,当2n ≥时,11n n n n n a b a b a +--=③,由③得,当2n ≥时,111111n n n n n n n a a b b b a a q q--++=+=+, 所以111111n n b b q q q -⎛⎫+=+ ⎪--⎝⎭,又因为101n b q +≠-(否则{}n b 为常数数列与题意不符), 所以存在实数11q λ=-,使{}n b λ+为等比数列. (3)因为{}n b 为公差为d 的等差数列,所以由③得,当2n ≥时,()1n n n n n a b a b d a +--=, 即()()11n n n n a a b d a +-=-,因为{}n a ,{}n b 各项均不相等,所以10,10n n a a d +-≠-≠,所以当2n ≥时,11n n n nb a d a a +=--④, 当3n ≥时,1111n n n n b a d a a ---=--⑤, 由④-⑤,得当3n ≥时111111n n n n n n n n a a b b d a a a a d d--+---==----⑥, 先证充分性:即由12d =证明23,,,,n a a a 成等差数列, 因为12d =,由⑥得1111n n n n n n a a a a a a -+--=--, 所以当3n ≥时,1111n n n n n n a a a a a a -+-+=--, 又0n a ≠,所以11n n n n a a a a +--=-即23,,,,n a a a 成等差数列.再证必要性:即由23,,,,n a a a 成等差数列证明12d =. 因为23,,,,n a a a 成等差数列,所以当3n ≥时,11n n n n a a a a +--=-, 所以由⑥得,11111111n n n n n n n n n n n n a a a a d a a a a a a a a d--+----=-==----- 所以12d =,所以23,,,,n a a a 成等差数列的充要条件是12d =. 20.(1)当0a =时,()()(),1'==+x x f x xe f x e x ,令()'0f x =,得1x =-.列表如下:)所以函数()f x 的极小值为()1f e-=-,无极大值. (2)①当0a ≤时,由于对于任意0,2x π⎡⎤∈⎢⎥⎣⎦,有sin cos 0x x ≥, 所以()0f x ≥恒成立,当0a ≤时,符合题意;②当01a <≤时,因为()()()'01cos 201cos 010x fx e x a x e a a ≥+-≥+-=-≥, 所以函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上为增函数,所以()()00f x f ≥=,即当01a <≤,符合题意; ③当1a >时,()'010f a =-<,'41044f e πππ⎛⎫⎛⎫=+> ⎪ ⎪⎝⎭⎝⎭, 所以存在0,4πα⎛⎫∈ ⎪⎝⎭,使得()'0f α=,且在()0,α内,()'0f x <, 所以()f x 在()0,α上为减函数,所以()()00f x f <=, 即当1a >时,不符合题意.综上所述,a 的取值范围是(],1-∞.(3)不存在实数a ,使得函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上有两个零点,由(2)知,当1a ≤时,()f x 在0,2π⎛⎫ ⎪⎝⎭上是增函数,且()00f =,故函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上无零点. 当1a >时,()()'1cos 2x f x e x a x ≥+-,令()()1cos 2x g x e x a x =+-,()()'22sin 2x g x e x a x =++, 当0,2x π⎛⎫∈ ⎪⎝⎭时,恒有()'0g x >,所以()g x 在0,2π⎛⎫ ⎪⎝⎭上是增函数, 由()2010,1022g a g e a πππ⎛⎫⎛⎫=-<=++> ⎪ ⎪⎝⎭⎝⎭, 故()g x 在0,2π⎛⎫ ⎪⎝⎭上存在唯一的零点0x ,即方程()'0fx =在0,2π⎛⎫ ⎪⎝⎭上存在唯一解0x , 且当()00,x x ∈时,()'0f x <,当0,2x x π⎛⎫∈ ⎪⎝⎭,()'0f x >, 即函数()f x 在()00,x 上单调递减,在0,2x π⎛⎫ ⎪⎝⎭上单调递增, 当()00,x x ∈时,()()00f x f <=,即()f x 在()00,x 无零点; 当0,2x x π⎛⎫∈ ⎪⎝⎭时,()()200,022f x f f e πππ⎛⎫<=> ⎪⎝⎭, 所以()f x 在0,2x π⎛⎫ ⎪⎝⎭上有唯一零点, 所以,当1a >时,()f x 在0,2π⎛⎫ ⎪⎝⎭上有一个零点. 综上所述,不存在实数a ,使得函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上有两个零点. 数学II (附加题)21.A.因为2,CAB B AE ∠=∠为CAB ∠的平分线,所以CAE B ∠=∠. 又因为CD 是C ∠的平分线,所以ECA DCB ∠=∠.所以ACD BCD ∆∆ ,所以AE AC BD BC=,即AE BC BD AC ⋅=⋅. 又因为,AED CAE ECA ADE B DCB ∠=∠+∠∠=∠+∠, 所以AED ADE ∠=∠,所以AD AE =.所以AD BC BD AC ⋅=⋅.B.设(),P x y 是直线20x +-=上一点,由1122a x x ay y x y +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,得()20x ay x y b +++-=.即2022a b x y ++-=,由条件得,21,222a b +=-=-. 解得04a b =⎧⎨=⎩,所以4a b +=. C.曲线C的普通方程为(224x y +=,表示以)为圆心,2为半径的圆. 直线l的直角坐标方程为y x =. 所以线段AB的长为=. D.因为0,0,0x y z >>>,所以3333x y z xyz ++≥,3313x y xy ++≥,3313y z yz ++≥,3313x z xz ++≥, 将以上各式相加,得33333333333x y z xyz xy yz xz +++≥+++, 又因为1xyz =,从而333x y z xy yz xz ++≥++.22.(1)由题意点3,4P m ⎛⎫ ⎪⎝⎭到准线的距离为PO , 由抛物线的定义,点P 到准线的距离为PF ,所以PO PF =,即点3,4P m ⎛⎫⎪⎝⎭在线段OF 的中垂线上, 所以3,344p p ==,所以抛物线的方程为26y x =. (2)由抛物线的对称性,设点2001,6A y y ⎛⎫ ⎪⎝⎭在x 轴的上方,所以点A 处切线的斜率为03y , 所以点A 处切线的方程为2000316y y x y y ⎛⎫-=- ⎪⎝⎭, 令上式中0y =,得2016x y =-, 所以点B 的坐标为201,06y ⎛⎫- ⎪⎝⎭,又033,,,022E y F ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,所以2200001313,,,6262FA y y BE y y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以FA BE = ,所以FA BE ,又AE FB ,故四边形AEBF 为平行四边形,再由抛物线的定义,得AF AE =,所以四边形AEBF 为菱形. 23.(1)若甲、乙比赛4局甲获胜,则甲在4局比赛中至少胜3局,所以()44344411522216P C C ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 同理()6664566661115322216P C C C ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)在2n 局比赛中甲获胜,则甲胜的局数至少为1n +局, 故()222122222111222n n n n n n n n n P n C C C ++⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()22122222222211112122222n n n n n n n n n n n n n n C C C C C ++⎛⎫⎛⎫⎛⎫=+++⋅=-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 所以()1222211122n n n C P n +++⎛⎫+=- ⎪⎝⎭. 又因为()()()()()()()()2222112222222!441214!!2122!22212121!1!n n n n n n n n n n n C n n C n n n C C n n n n n +++++++====>++++++, 所以122222222n n n n n n C C +++>,所以()()1P n P n <+.。
江苏省南通、扬州、泰州市高三第三次模拟考试数学试题Word版含答案

江苏省南通、扬州、泰州2017届高三第三次模拟考试数学试题第Ⅰ卷(共70分)一、填空题(每题5分,满分70分,将答案填在答题纸上)1.设复数z a b =+i (,∈a b R,i 为虚数单位),若(43z =+i)i ,则ab 的值是 .2.已知集合{}{}|0,|2U x x A x x =>=≥,则U A =ð .3. 某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是 .4. 如图是一个算法流程图,则输出的k 的值是 .5.为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是 .6.设等差数列{}n a 的前n 项和为n S ,若公差52,10d a ==,则10S 的值是 .7.在锐角ABC ∆中,3,4AB AC ==,若ABC ∆的面积为则BC 的长是 .8.在平面直角坐标系xOy 中,若双曲线()22210x y a a-=>经过抛物线28y x =的焦点,则该双曲线的离心率是 .9. 已知圆锥的侧面展开图是半径为3,圆心角为23π的扇形,则这个圆锥的高为 .10.若直线2y x b =+为曲线xy e x =+的一条切线,则实数b 的值是 . 11.若正实数,x y 满足1x y +=,则4y x y+的最小值是 . 12.如图,在直角梯形ABCD 中,//,90,3,2AB DC ABC AB BC DC ∠====,若,E F 分别是线段DC 和BC 上的动点,则AC EF ⋅的取值范围是 .13. 在平面直角坐标系xOy 中,已知点()0,2A -,点()1,1,B P -为圆222x y +=上一动点,则PBPA的最大值是 . 14.已知函数()3,3,x x a f x x x x a≥⎧=⎨-<⎩若函数()()2g x f x ax =-恰有2个不同的零点,则实数a 的取值范围是 .第Ⅱ卷(共90分)二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. 已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭图象的相邻两条对称轴之间的距离为π,且经过点,32π⎛ ⎝⎭.(1)求函数()f x 的解析式;(2)若角α满足()()1,0,2f παααπ⎛⎫+--∈ ⎪⎝⎭,求角α值. 16. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,平面PAD ⊥平面,,,ABCD AP AD M N =分别为棱,PD PC 的中点.求证:(1)//MN 平面PAB ; (2)AM ⊥平面PCD .17. 在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b+=>>的左焦点为()1,0F -,且经过点31,2⎛⎫⎪⎝⎭.(1)求椭圆的标准方程;(2)已知椭圆的弦AB 过点F ,且与x 轴不垂直.若D 为x 轴上的一点,DA DB =,求ABDF的值.18. 如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C D E F ---,且,,CD DE EF ,均与半圆相切,四边形CDEF 是等腰梯形,设DE t =百米,记修建每1百米参观线路的费用为()f t 万元,经测算()15,03118,23t f t t t ⎧<≤⎪⎪=⎨⎪-<<⎪⎩.(1)用t 表示线段EF 的长; (2)求修建参观线路的最低费用.19. 已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,1q ≠±,正整数组()(),,E m p r m p r =<<.(1)若122331a b a b a b +=+=+,求q 的值;(2)若数组E 中的三个数构成公差大于1的等差数列,且m p p r r m a b a b a b +=+=+,求q 的最大值.(3)若11,02n n m m p p r r b a b a b a b -⎛⎫=-+=+=+= ⎪⎝⎭,试写出满足条件的一个数组E 和对应的通项公式n a .(注:本小问不必写出解答过程)20. 已知函数()2cos (f x ax x a =+∈R ),记()f x 的导函数为()g x .(1) 证明:当12a =时,()g x 在R 上的单调函数; (2)若()f x 在0x =处取得极小值,求a 的取值范围;(3)设函数()h x 的定义域为D ,区间(),m D +∞⊆.若()h x 在(),m +∞上是单调函数,则称()h x 在D 上广义单调.试证明函数()ln y f x x x =-在()0,+∞上广义单调.数学Ⅱ(附加题)21. 【选做题】 本题包括A 、B 、C 、四个小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分. 解答应写出文字说明、证明过程或演算步骤.A. 选修4-1:几何证明选讲如图,已知AB 为圆O 的一条弦,点P 为弧AB 的中点,过点P 任作两条弦,PC PD 分别交AB 于点,E F .求证:PE PC PF PD ⋅=⋅.B. 选修4-2:距阵与变换 已知矩阵11a M b ⎡⎤=⎢⎥-⎣⎦,点()1,1-在M 对应的变换作用下得到点()1,5--,求矩阵M 的特征值.C. 选修4-4:坐标系与参数方程在坐标系中,圆C 的圆心在极轴上,且过极点和点4π⎛⎫⎪⎝⎭,求圆C 的极坐标方程. D. 选修4-5:选修4-5:不等式选讲已知,,,a b c d 是正实数,且1abcd =,求证:5555a b c d a b b d +++≥+++.【必做题】第22、23题,每题10分,共计20分,解答时应写出文字说明、证明过程或演算步骤.22. 如图,在四棱锥S ABCD -中,SD ⊥平面ABCD ,四边形ABCD 是直角梯形,90,2,1ADC DAB SD AD AB DC ∠=∠=====.(1)求二面角S BC A --的余弦值;(2)设P 是棱BC 上一点,E 是SA 的中点,若PE 与平面SAD ,求线段CP 的长. 23. 已知函数()()00,0cx df x a ac bd ax b+=≠-≠+,设()n f x 为()1n f x -的导数,n ∈N *. (1)求()()12,f x f x ;(2)猜想()n f x 的表达式,并证明你的结论.江苏省南通、扬州、泰州2017届高三第三次模拟考试数学试题参考答案一、填空题:1.12- 2.{}|02x x << 3.564.35.75006.1101 11.8 12:[]4,6-13.2 14.3,22⎛⎫-⎪⎝⎭二、解答题:15. 解:(1)由条件,周期2T π=,即22ππω=,所以1ω=,即()sin 3f x A x π⎛⎫=+ ⎪⎝⎭.因为()f x 的图象经过点3π⎛ ⎝,所以()2sin1,sin 323A A f x x ππ⎛⎫=∴=∴=+ ⎪⎝⎭.(2)由()12f παα⎛⎫+-= ⎪⎝⎭,得sin 1332πππαα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,即sin 1,2sin 13333ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+-+=∴+-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,即1sin 2α=.因为()0,,6παπα∈∴=或56π. 16. 解:(1)因为,M N 分别为棱,PD PC 的中点,所以//MN DC ,又因为底面ABCD 是矩形,所以//,//AB DC MN AB ∴.又AB ⊂平面,PAB MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为,AP AD M =为PD 的中点,所以AM PD ⊥.因为平面PAD ⊥平面ABCD ,又平面PAD平面,,ABCD AD CD AD CD =⊥⊂平面ABCD ,所以CD ⊥平面PAD ,又AM ⊂平面PAD ,所以CD AM ⊥.因为,CD PD ⊂平面,,PCD CDPD D AM =∴⊥平面PCD .17. 解:(1)由题意,知24,2a a ==∴=.又2221,,c a b c b ==+∴=22143x y +=.(2)设直线AB 的方程为()1y k x =+.①若0k =时,24,1,4ABAB a FD FO DF====∴=. ②若0k ≠时,()()1122,,,,A x y B x y AB 的中点为()00,M x y ,代入椭圆方程,整理得()22223484120k x k x k +++-=,所以()2221200022224443,134343434k k k k x x x y k x k k k k ---+==∴=-∴=+=++++,所以AB 的垂直平分线方程为2223143434k k y x k k k ⎛⎫-=-+ ⎪++⎝⎭.因为DA DB =,所以点D 为AB 的垂直平分线与x 轴的交点,所以22222233,0,1343434k k k D DF k k k ⎛⎫+-∴=-+= ⎪+++⎝⎭,因为椭圆的左准线的方程为4x =-,离心率为12,由1142AF x =+,得()1142AF x =+,同理()()2212021112124,442234k BF x AB AF BF x x x k +=+∴=+=++=+=+,所以4ABDF=,综上,得ABDF的值为4. 18. 解:设DE 与半圆相切于点Q ,则由四边形CDEF 是等腰梯形知,,OQ l DQ QE ⊥=,以OF 所在直线为x 轴,OQ 所在直线为y 轴,建立平面直角坐标系xOy . (1)设EF 圆切于G ,连结OG 过点E 作EH AB ⊥,垂足为H .因为,,EH OG OFG EFH GOF HEF =∠=∠∠=∠,所以1,2Rt EHF Rt OGF HF FG EF t ∆≅∆∴==-.由()2221111,0224t EF HF EF t EF t t⎛⎫=+=+-∴=+<< ⎪⎝⎭.(2) 设修建该参观线路的费用为y 万元. ①当11320,525342t t y t t t t ⎡⎤⎛⎫⎛⎫<≤=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由232'502y t ⎛⎫=-< ⎪⎝⎭ ,则y 在10,3⎛⎤⎥⎝⎦上单调递减,所以当13t =时,y 取得最小值为32.5. ②当123t <<时, 2111632821242t y t t t t t t ⎡⎤⎛⎫⎛⎫=-++=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()()223316241331'12t t t y t t t-+-=-+=, 212,33103t t t <<∴+->,且当1,13t ⎛⎫∈ ⎪⎝⎭时,'0y <;当()1,2t ∈时,'0y >,所以y在1,13⎛⎫ ⎪⎝⎭上单调递减,在()1,2上单调递增.所以当1t =时,y 取得最小值为24.5. 由 ①②知,y 取得最小值为24.5.答:(1)EF 的长为114t ⎛⎫+⎪⎝⎭百米;(2)修建该参观线路的最低费用为24.5万元. 19. 解:(1)由条件,知21111211112a b q a d b q a d b q a d b ⎧+=++⎪⎨++=++⎪⎩,即()()21221,2101d b q q q q d b q ⎧=-⎪∴--=⎨=-⎪⎩,11,2q q ≠±∴=-.(2)由m p p r a b a b +=+,即p m p r a a b b -=-,所以()()p m r m m p m d b q q ---=-,同理可得,()()1r m m r p d b q --=-,因为,,m p r 成等差数列,所以()12p m r p r m -=-=-.记p m q t -=,则有2210t t --=,1,1q t ≠±∴≠±,故12t =-,即1,102p mq q -=-∴-<<.记p m α-=,则α为奇函数,又公差大于1,所以113113,22q αα⎛⎫⎛⎫≥∴=≥⎪ ⎪⎝⎭⎝⎭,即1312q ⎛⎫≤- ⎪⎝⎭,当3α=时,q 取最大值为1312⎛⎫- ⎪⎝⎭.(3)满足题意的数组(),2,3E m m m =++,此时通项公式为11331,288m n a n m m -⎛⎫⎛⎫=---∈ ⎪⎪⎝⎭⎝⎭N *.例如:()3111,3,4,88==-n E a n . 20. 解:(1)当12a =时,()()21cos ,'sin 2f x x x f x x x =+∴=-,即()()sin ,'1cos 0g x x x g x x =-∴=-≥,()g x ∴在R 上单调递增.(2)()()()'2sin ,'2cos g x f x ax x g x a x ==-∴=-. ①当12a ≥时,()'1cos 0g x x ≥-≥,所以函数()'f x 在R 上单调递增.若0x >,则()()'00f x f >=;若0x <,则()()''00f x f <=,所以函数()f x 的单调增区间是()0,+∞,单调减区间是(),0-∞,所以()f x 在0x =处取得极小值,符合题意.②当12a ≤-时,()'1cos 0g x x ≤--≤,所以函数()'f x 在R 上单调递减.若0x >,则()()''00f x f <=;若0x <,则()()''00f x f >=,所以()f x 的单调减区间是()0,+∞,单调增区间是(),0-∞,所以()f x 在0x =处取得极大值,不符合题意. ③当1122a -<<时,()00,x π∃∈,使得0cos 2x a =,即()0'0g x =,但当()00,x x ∈时,cos 2x a >,即()'0g x <,所以函数()'f x 在()00,x 上单调递减,所以()()''00f x f <=,即函数()f x 在()00,x 单调递减,不符合题意.综上所述,a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(3)记()()2cos ln 0h x ax x x x x =+->. ①若0a >,注意到ln x x <,则1122ln x x <,即ln x < 当212x a ⎛>⎝⎭时,()'2sin 1ln 22h x ax x x ax =--->-112022a a =>⎭.所以2m ∃=,函数()h x 在(),m +∞上单调递增.②若0a ≤,当1x >时,()'2sin 1ln sin 1ln 0h x ax x x x x =---<---<,所以1m ∃=,函数()h x 在(),m +∞上单调递减,综上所述,函数()ln y f x x x =-在区间()0,+∞上广义单调.数学Ⅱ(附加题)21. A. 解:连结,,,PA PB CD BC ,因为PAB PCB ∠=∠,又点P 为弧AB 的中点,所以,PAB PBA PCB PBA ∠=∠∴∠=∠,又DCB DPB ∠=∠,所以PFE PBA DPB PCB DCB PCD ∠=∠+∠=∠+∠=∠,所以,,,E F D C 四点共圆.所以PE PC PF PD ⋅=⋅.B. 解:由题意,111115a b -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即1115a b -=-⎧⎨--=-⎩,解得2,4a b ==,所以矩阵1214M ⎡⎤=⎢⎥-⎣⎦.所以矩阵M 的特征多项式为()11f λλ-= 22564λλλ-=-+-,令()0f λ=,得122,3λλ==,所以M 的特征值为2和3.C. 解:因为圆心C 在极轴上且过极点,所以设圆C 极坐标方程为cos a ρθ=,又因为点4π⎛⎫ ⎪⎝⎭在圆C 上,所以cos 4a π=,解得6a =,所以圆C 极坐标方程为6cos ρθ=.D. 解:因为,,,a b c d 是正实数,且51,4abcd a b c d a =∴+++≥=,① 同理54b b c d b +++≥,② 54c b c d c +++≥, ③ 54d b c d d +++≥,④ 将①②③④式相加并整理,即得5555d b c d a b c d +++≥+++. 22. 解:(1)以D 为坐标原点,建立如图所示空间直角坐标系D xyz -,则()()()()0,0,0,2,2,0,0,1,0,0,0,2D B C S ,所以()()()2,2,2,0,1,2,0,0,2SB SC DS =-=-=,设平面SBC 的法向量为()1,,n x y z =,由110,0n SB n SC ⋅=⋅=,得2220x y z +-=且20y z -=,取1z =,得1,2x y =-=,所以()11,2,1n =-是平面SBC 的一个法向量.因为SD ⊥平面ABC ,取平面ABC 的一个法向量()20,0,1n =,设二面角S BC A --的大小为θ,所以12121cos 6n n n n θ⋅===,由图可知二面角S BC A --为锐二面角,所以二面角S BC A --的余弦值为6. (2)由(1)知()1,0,1E ,则()()2,1,0,1,1,1CB CE ==-.设()01CP CB λλ=≤≤,则()()()2,1,02,,0,12,1,,1CP PE CE CP λλλλλ==∴=-=---,易知CD ⊥平面(),0,1,0SAD CD ∴=是平面SAD 的一个法向量.设PE 与平面SAD 所成的角为α,所以sin cos ,5PE CD PE CDPE CDα⋅===13=,得13λ=或119λ=(舍).所以215,,0,333CP CP ⎛⎫== ⎪⎝⎭,所以线段CP 23. 解:(1)()()()()()()()()'''10212232',+-+--⎡⎤⎡⎤======⎢⎥⎢⎥+⎣⎦+++⎣⎦cx d bc ad cb ad a bc ad f x f x f x f x ax b ax b ax b ax b . (2)猜想()()()()1111!,n n n n a bc ad n f x n N ax b --*+-⋅⋅-⋅=∈+.证明:① 当1n =时,由(1)知结论正确;②假设当,n k k N *=∈时,结论正确,即有()()()()1111!k k k k a bc ad k f x ax b --+-⋅⋅-⋅=+.当1n k =+时,()()()()()'11'111!--++⎡⎤-⋅⋅-⋅==⎢⎥+⎣⎦k k k k k a bc ad k f x f x ax b()()()()'1111!--+-⎡⎤=-⋅⋅-⋅+⎣⎦k k k a bc ad k ax b ()()()()211!+-⋅⋅-⋅+=+k k k a bc ad k ax b ,所以当1n k =+时结论成立,由①②得,对一切n N *∈结论正确.。
江苏省南通市、扬州市、泰州市2016届高三数学第三次调研测试试题

江苏省南通市、扬州市、泰州市2016届高三数学第三次调研测试试题一、填空题:本大题共14个小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}{}1,0,1,2,1,1,2U A =-=-,则U C A = .2.已知复数()22z i =-(i 为虚数单位),则z 的共轭复数为 .3.如图是甲、乙两位同学在5次数学测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为 .4.如图是一个算法流程图,则输出的S 的值为 .5.已知正三棱柱的各条棱长均为a ,圆柱的底面直径和高均为b ,若它们的体积相等,则33:a b 的值为 .6.将一颗骰子连续抛掷2次,向上的点数分别为,m n ,则点(),P m n 在直线12y x =下方的概率为 .7.函数()f x =的定义域为 . 8.在平面直角坐标系xOy 中,双曲线2221x y a-=与抛物线212y x =-有相同的焦点,则双曲线的两条渐近线的方程为.10.如图,已知ABC ∆的边BC 的垂直平分线交AC 于点P ,交BC 于点Q .若3,5AB AC ==,则()()AP AQ AB AC+⋅-的值为 .11.设数列{}n a 满足()()()111,111n n a a a n N++=-+=∈,则()10011k k k a a +=∑的值为 .12.已知函数()()()()()2',0,,0f x x f x x ax a Rg x f x x ≥⎧⎪=+∈=⎨<⎪⎩(()'f x 为()f x 的导函数).若方程()()0g f x =有四个不等的实根,则a 的取值范围是 .13.如图,矩形ABCD 的边AB 在x 轴上,顶点,C D 在函数()10y x x x=+>的图像上.记,AB m BC n ==,则2mn 的最大值为 .14.在平面直角坐标系xOy 中,圆()221:12C x y -+=,圆()()2221:C x m y m m -++=,若圆2C 上存在点P 满足:过点P 向圆1C 作两条切线,,PA PB 切点为,A B ,ABP ∆的面积为1,则正数m 的取值范围是 .三、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)已知ABC ∆是锐角三角形,向量()cos ,sin ,cos ,sin 33m A A n B B ππ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且m n ⊥.(1)求A B -的值; (2)若3cos ,85B AC ==,求BC 的长. 16.(本小题满分14分)如图,在四棱锥P ABCD -中,PC ⊥平面PAD ,,22,,AB CD CD AB BC M N ==分别是棱,PA CD 的中点.(1)求证:PC 平面BMN ; (2)求证:平面BMN ⊥平面PAC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>的离心率为2,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆222x y a +=于相异两点,P Q . (1)若直线l 的斜率为12,求APAQ的值; (2)若PQ AP λ=,求实数λ的取值范围.18.(本小题满分14分)某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1m 的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD 为中心在圆心的矩形,现计划将矩形ABCD 区域设计为可推拉的窗口.(1)若窗口ABCD 为正方形,且面积大于214m (木条宽度忽略不计),求四根木条总长的取值范围; (2)若四根木条总长为6m ,求窗口ABCD 面积的最大值.19.(本小题满分16分)已知数列{}n a ,{}n b 均为各项都不相等的数列,n S 为{}n a 的前n 项和,()11n n n a b S n N ++=+∈.(1)若11,2n na b ==,求4a 的值; (2)若{}n a 是公比为q 的等比数列,求证:存在实数λ,使得{}n b λ+为等比数列; (3)若{}n a 的各项都不为零,{}n b 是公差为d 的等差数列,求证:23,,,,n a a a 成等差数列的充要条件是12d =. 20.(本小题满分16分)设函数()sin cos xf x xe a x x =-(a R ∈,其中e 是自然对数的底数). (1)当0a =时,求()f x 的极值; (2)若对于任意的0,2x π⎡⎤∈⎢⎥⎣⎦,()0f x ≥恒成立,求a 的取值范围; (3)是否存在实数a ,使得函数()f x 在区间0,2π⎛⎫⎪⎝⎭上有两个零点?若存在,求出a 的取值范围;若不存在,请说明理由.南通市2016届高三第三次调研测试数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分,解答时应写出文字说明,证明过程或演算步骤. A.【选修4-1】几何证明选讲(本小题满分10分)在ABC ∆中,2,A B C ∠=∠∠的平分线交AB 于点D ,A ∠的平分线交CD 于点E . 求证:AD BC BD AC ⋅=⋅.B.【选修4-2:矩阵与变换】(本小题满分10分)在平面直角坐标系xOy 中,直线20x y +-=在矩阵1 12a A ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到直线()0,x y b a b R +-=∈,求a b +的值.C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα⎧=+⎪⎨=⎪⎩α为参数)以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为6πθ=.若直线l 与曲线C 交于,A B ,求线段AB 的长.D.【选修4-5:不等式选讲】(本小题满分10分)已知0,0,0x y z >>>,且1xyz =,求证:333x y z xy yz xz ++≥++【必做题】第22,23题,每小题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)在平面直角坐标系xOy 中,已知抛物线()220y px p =>上一点3,4P m ⎛⎫ ⎪⎝⎭到准线的距离与到原点O 的距离相等,抛物线的焦点为F . (1)求抛物线的方程;(2)若A 为抛物线上一点(异于原点O ),点A 处的切线交x 轴于点B ,过A 作准线的垂线,垂足为点E .试判断四边形AEBF 的形状,并证明你的结论. 23.(本小题满分10分)甲,乙两人进行围棋比赛,共比赛()2n n N +∈局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为12.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为()P n . (1)求()2P 与()3P 的值;(2)试比较()P n 与()1P n +的大小,并证明你的结论.南通市2016届高三第三次调研测试数学学科参考答案一、填空题1.{}02.34i +3. 24. 35.π6.167.(8.4y x =±9.3 10. -16 11.100101 12.0a <或2a > 13.14 14.1,3⎡+⎣二、解答题15.(1)因为m n ⊥,所以cos cos sin sin cos 0333m n A B A B A B πππ⎛⎫⎛⎫⎛⎫⋅=+++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又,0,2A B π⎛⎫∈ ⎪⎝⎭,所以5,366A B πππ⎛⎫⎛⎫+-∈- ⎪ ⎪⎝⎭⎝⎭,所以32A B ππ+-=,即6A B π-=; (2)因为3cos 5B =,0,2B π⎛⎫∈ ⎪⎝⎭,所以4sin 5B = 所以sin sin sin cos cos sin 666A B B B πππ⎛⎫=+=+ ⎪⎝⎭4313525210=+⋅=由正弦定理,得sin 10834sin 5ABC AC B=⋅=⨯=.16.(1)设AC BN O ⋂=,连结,MO AN ,因为1,2AB CD AB CD =,N 为CD 的中点, 所以,AB CN AB CN =,所以四边形ABCN 为平行四边形,所以O 为AC 的中点,所以MO PC 又因为MO ⊂平面BMN ,PC ⊄平面BMN ,所以PC 平面BMN . (2)(方法一)因为PC ⊥平面PDA ,AD ⊂平面PDA所以PC AD ⊥,由(1)同理可得,四边形ABND 为平行四边形,所以AD BN ,所以BN PC ⊥ 因为BC AB =,所以平行四边形ABCN 为菱形,所以BN AC ⊥,因为PC AC C ⋂=AC ⊂平面PAC ,PC ⊂平面PAC ,所以BN ⊥平面PAC因为BN ⊂平面BMN ,所以平面BMN ⊥平面PAC .(方法二)连结PN ,因为PC ⊥平面PDA ,PA ⊂平面PDA ,所以PC PA ⊥因为PC MO ,所以PA MO ⊥,因为PC ⊥平面PDA ,PD ⊂平面PDA ,所以PC PD ⊥ 因为N 为CD 的中点,所以12PN CD =,由(1)12AN BC CD ==,所以AN PN = 又因为M 为PA 的中点,所以PA MN ⊥因为MN MO M ⋂=,MN ⊂平面BMN ,MO ⊂平面BMN所以PA ⊥平面BMN ,因为PA ⊂平面PAC ,所以平面PAC ⊥平面BMN .17.(1)由条件,222242a caa b c =⎧⎪⎪=⎨⎪⎪=+⎩,解得2a b =⎧⎪⎨=⎪⎩所以椭圆的方程为22142x y +=,圆的方程为224x y += (方法一)直线l 的方程为()122y x =+,由()2212224y x x y ⎧=+⎪⎨⎪+=⎩得:23440x x +-= 解得22,3A p x x =-=,所以24,33P ⎛⎫ ⎪⎝⎭所以AP ==,又因为原点O 到直线l的距离d =所以AQ ==565AP AQ == (方法二)由222224x y x y =-⎧⎨+=⎩得2340y y -=,所以85P y =所以455386AP AQ =⨯=; (2)(方法一)若PQ AP λ=,则1AQAPλ=- 设直线():2l y k x =+,由()22242x y y k x ⎧+=⎪⎨=+⎪⎩得,()22221840k x k ++-=即()()()22221420x k x k ⎡⎤+++-=⎣⎦,所以22242,21A P k x x k -=-=+,得222244,2121k k P k k ⎛⎫- ⎪++⎝⎭所以()22222222224416162212121k k k AP k k k ⎛⎫-+⎛⎫=++= ⎪ ⎪++⎝⎭⎝⎭+,即AP =,同理AQ =由题意:20k >,所以01λ<<.18.(1)设一根木条长为xcm,则正方形的边长为=因为14ABCD S >四边形,所以2144x ->,即x < 又因为四根木条将圆分成9个区域,所以x >所以x <<;(2)(方法一)设AB 所在木条长为am ,则BC 所在木条长为()3a m - 因为()()0,2,30,2a a ∈-∈,所以()1,2a ∈ABCDS ==矩形设()43262420f a a a a a =-++-,()()()()'3241822421234f a a a a a a a =-++=+--令()'0fa =,得32a =,或1a =-(舍去),或4a =(舍去) 列表如下:所以当32a =时,()max 349216f x f ⎛⎫== ⎪⎝⎭,即max 74S = (方法二)设AB 所在木条长为am ,CD 所在木条长为bm 由条件,2+26a b =,即3a b +=因为(),0,2a b ∈,所以()30,2b a=-∈,从而(),1,2a b ∈由于ABBD ==,ABCD S ==矩形()()2228872224a b a b +--+≤≤=当且仅当()31,22a b ==∈时,74ABCD S =矩形 答:窗口ABCD 面积的最大值为274m19.(1)由11,2n na b ==,知2344,6,8a a a ===(2)(方法一)因为11n n n a b S +=+,所以()11111n n n a q a q b q-=+-所以11111n nn q q b q a q =+---,即1111111nn b q a q q ⎛⎫⎛⎫=+- ⎪ ⎪--⎝⎭⎝⎭ 所以存在实数11q λ=-,使得11111nn b q a q λ⎛⎫⎛⎫+=+⎪ ⎪-⎝⎭⎝⎭ 又因为0n b λ+≠(否则{}n b 为常数数列与题意不符) 所以当2n ≥,11n n b b qλλ-+=+,此时{}n b λ+为等比数列所以存在实数11qλ=-,是{}n b λ+为等比数列; (方法二)因为11n n n a b S +=+①所以当2n ≥时,111n n n a b S --=+② ①-②得,当2n ≥时,11n n n n n a b a b a +--=③ 由③得,当2n ≥时,111111n n n n n n n a a b b b a a q q--++=+=+ 所以111111n n b b q q q -⎛⎫+=+ ⎪--⎝⎭,又因为101n b q +≠-(否则{}n b 为常数数列与题意不符) 所以存在实数11qλ=-,是{}n b λ+为等比数列; (3)因为{}n b 为公差为d 的等差数列,所以由③得,当2n ≥时,()1n n n n n a b a b d a +--= 即()()11n n n n a a b d a +-=-,因为{}n a ,{}n b 各项均不相等,所以10,10n n a a d +-≠-≠ 所以当2n ≥时,11n nn nb a d a a +=--④ 当3n ≥时,1111n n n n b a d a a ---=--⑤ 由④-⑤,得当3n ≥时111111n n n n n n n n a a b b da a a a d d--+---==----⑥ 先证充分性:即由12d =证明23,,,,n a a a 成等差数列因为12d =,由⑥得1111n n n n n n a a a a a a -+--=-- 所以当3n ≥时,1111n n n n n n a a a a a a -+-+=-- 又0n a ≠,所以11n n n n a a a a +--=- 即23,,,,n a a a 成等差数列;再证必要性:即由23,,,,n a a a 成等差数列证明12d =因为23,,,,n a a a 成等差数列,所以当3n ≥时,11n n n n a a a a +--=-所以由⑥得,11111111n n n n n n n n n n n n a a a a da a a a a a a a d--+----=-==-----所以12d =,所以23,,,,n a a a 成等差数列的充要条件是12d =. 20.(1)当0a =时,()()();,1x x f x xe f x e x ==+ 令()'0f x =,得1x =- 列表如下:所以函数()f x 的极小值为()1f e-=-,无极大值; (2)①当0a ≤时,由于对于任意0,2x π⎡⎤∈⎢⎥⎣⎦,有sin cos 0x x ≥ 所以()0f x ≥恒成立,当0a ≤时,符合题意; ②当01a <≤时,因为()()()'01cos201cos010x f x e x a x e a a ≥+-≥+-=-≥所以函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上为增函数,所以()()00f x f ≥=,即当01a <≤,符合题意; ③当1a >时,()'010f a =-<,'41044f e πππ⎛⎫⎛⎫=+> ⎪ ⎪⎝⎭⎝⎭所以存在0,4πα⎛⎫∈ ⎪⎝⎭,使得()'0fα=,且在()0,α内,()'0f x <所以()f x 在()0,α上为减函数,所以()()00f x f <= 即当1a >时,不符合题意综上所述,a 的取值范围是(],1-∞;(3)不存在实数a ,使得函数()f x 在区间0,2π⎛⎫⎪⎝⎭上有两个零点,由(2)知,当1a ≤时,()f x 在0,2π⎛⎫⎪⎝⎭上是增函数,且()00f =,故函数()f x 在区间0,2π⎛⎫⎪⎝⎭上无零点 当1a >时,()()'1cos2x fx e x a x ≥+-令()()1cos2x g x e x a x =+-,()()'22sin2x g x e x a x =++ 当0,2x π⎛⎫∈ ⎪⎝⎭时,恒有()'0g x >,所以()g x 在0,2π⎛⎫⎪⎝⎭上是增函数 由()2010,1022g a g e a πππ⎛⎫⎛⎫=-<=++> ⎪ ⎪⎝⎭⎝⎭故()g x 在0,2π⎛⎫⎪⎝⎭上存在唯一的零点0x ,即方程()'0f x =在0,2π⎛⎫⎪⎝⎭上存在唯一解0x 且当()00,x x ∈时,()'0fx <,当0,2x x π⎛⎫∈ ⎪⎝⎭,()'0fx >即函数()f x 在()00,x 上单调递减,在0,2x π⎛⎫⎪⎝⎭上单调递增, 当()00,x x ∈时,()()00f x f <=,即()f x 在()00,x 无零点;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()()200,022f x f f e πππ⎛⎫<=> ⎪⎝⎭ 所以()f x 在0,2x π⎛⎫⎪⎝⎭上有唯一零点, 所以,当1a >时,()f x 在0,2π⎛⎫⎪⎝⎭上有一个零点 综上所述,不存在实数a ,使得函数()f x 在区间0,2π⎛⎫⎪⎝⎭上有两个零点. 数学II (附加题)21.A.因为2,CAB B AE ∠=∠为CAB ∠的平分线,所以CAE B ∠=∠ 又因为CD 是C ∠的平分线,所以ECA DCB ∠=∠ 所以ACDBCD ∆∆,所以AE ACBD BC=,即AE BC BD AC ⋅=⋅ 又因为,AED CAE ECA ADE B DCB ∠=∠+∠∠=∠+∠ 所以AED ADE ∠=∠,所以AD AE = 所以AD BC BD AC ⋅=⋅B.设(),P x y 是直线20x +-=上一点,由1 122a x x ay y x y +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,得()20x ay x y b +++-= 即2022a b x y ++-=,由条件得,21,222a b+=-=- 解得04a b =⎧⎨=⎩,所以4a b +=C.曲线C的普通方程为(224x y +=,表示以)为圆心,2为半径的圆直线l的直角坐标方程为y x =所以线段AB的长为=.D.因为0,0,0x y z >>> 所以3333x y z xyz ++≥3313x y xy ++≥,3313y z yz ++≥,3313x z xz ++≥将以上各式相加,得33333333333x y z xyz xy yz xz +++≥+++又因为1xyz =,从而333x y z xy yz xz ++≥++22.(1)由题意点3,4P m ⎛⎫ ⎪⎝⎭到准线的距离为PO 由抛物线的定义,点P 到准线的距离为PF所以PO PF =,即点3,4P m ⎛⎫ ⎪⎝⎭在线段OF 的中垂线上, 所以3,344p p ==,所以抛物线的方程为26y x = (2)由抛物线的对称性,设点2001,6A y y ⎛⎫⎪⎝⎭在x 轴的上方,所以点A 的气息的斜率为03y所以点A 处切线的方程为2000316y y x y y ⎛⎫-=- ⎪⎝⎭令上式中0y =,得2016x y =-所以点B 的坐标为201,06y ⎛⎫-⎪⎝⎭,又033,,,022E y F ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,所以2200001313,,,6262FA y y BE y y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以FA BE =,所以FA BE ,又AE FB故四边形AEBF 为平行四边形再由抛物线的定义,得AF AE =,所以四边形AEBF 为菱形. 23.(1)若甲、乙比赛4局甲获胜,则甲在4局比赛中至少胜3局所以()44344411522216P C C ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭ 同理()6664566661115322216P C C C ⎛⎫⎛⎫⎛⎫=++= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)在2n 局比赛中甲获胜,则甲胜的局数至少为1n +局故()222122222111222n nnn n n n n n P n C C C ++⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()22122222222211112122222nnnn n n n n nn n n n nC C C C C ++⎛⎫⎛⎫⎛⎫=+++⋅=-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()1222211122n n n C P n +++⎛⎫+=- ⎪⎝⎭又因为()()()()()()()()2222112222222!441214!!2122!22212121!1!nn n n nn n n n n n C n n C n n n C C n n n n n +++++++====>++++++ 所以122222222n n n n n n C C +++>,所以()()1P n P n <+。
江苏省南通市、扬州市、泰州市2016届高三英语第三次调研测试试题

南通市2016届高三第三次调研测试英语2016.05本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分120分,考试时间120分钟。
第Ⅰ卷(选择题共85分)第一部分:听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
( )1. Where will the woman go?A. A store.B. The school.C. The stadium.( )2. Why is the man excited?A. He bought new clothes.B. He gets a store discount.C. The woman invited him to shop.( )3. What does the woman suggest the man do?A. Do some tests.B. Take exercise.C. Visit her at weekends.( )4. What did the man do before the phone call?A. He looked up a number.B. He asked his sister for a number.C. He did an online search.( )5. How much did the woman pay for the shoes?A. $475.B. $522.5.C. $550.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南通市、扬州市、泰州市2016届高三数学第三次调研测试试题一、填空题:本大题共14个小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}{}1,0,1,2,1,1,2U A =-=-,则U C A = .2.已知复数()22z i =-(i 为虚数单位),则z 的共轭复数为 .3.如图是甲、乙两位同学在5次数学测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为 .4.如图是一个算法流程图,则输出的S 的值为 .5.已知正三棱柱的各条棱长均为a ,圆柱的底面直径和高均为b ,若它们的体积相等,则33:a b 的值为 .6.将一颗骰子连续抛掷2次,向上的点数分别为,m n ,则点(),P m n 在直线12y x =下方的概率为 .7.函数()f x =的定义域为 . 8.在平面直角坐标系xOy 中,双曲线2221x y a-=与抛物线212y x =-有相同的焦点,则双曲线的两条渐近线的方程为.10.如图,已知ABC ∆的边BC 的垂直平分线交AC 于点P ,交BC 于点Q .若3,5AB AC ==,则()()AP AQ AB AC+⋅-的值为 .11.设数列{}n a 满足()()()111,111n n a a a n N++=-+=∈,则()10011k k k a a +=∑的值为 .12.已知函数()()()()()2',0,,0f x x f x x ax a Rg x f x x ≥⎧⎪=+∈=⎨<⎪⎩(()'f x 为()f x 的导函数).若方程()()0g f x =有四个不等的实根,则a 的取值范围是 .13.如图,矩形ABCD 的边AB 在x 轴上,顶点,C D 在函数()10y x x x=+>的图像上.记,AB m BC n ==,则2mn 的最大值为 .14.在平面直角坐标系xOy 中,圆()221:12C x y -+=,圆()()2221:C x m y m m -++=,若圆2C 上存在点P 满足:过点P 向圆1C 作两条切线,,PA PB 切点为,A B ,ABP ∆的面积为1,则正数m 的取值范围是 .三、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)已知ABC ∆是锐角三角形,向量()cos ,sin ,cos ,sin 33m A A n B B ππ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且m n ⊥.(1)求A B -的值; (2)若3cos ,85B AC ==,求BC 的长. 16.(本小题满分14分)如图,在四棱锥P ABCD -中,PC ⊥平面PAD ,,22,,AB CD CD AB BC M N ==分别是棱,PA CD 的中点.(1)求证:PC 平面BMN ; (2)求证:平面BMN ⊥平面PAC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b+=>>,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆222x y a +=于相异两点,P Q . (1)若直线l 的斜率为12,求AP AQ 的值;(2)若PQ AP λ=,求实数λ的取值范围.18.(本小题满分14分)某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1m 的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD 为中心在圆心的矩形,现计划将矩形ABCD 区域设计为可推拉的窗口.(1)若窗口ABCD 为正方形,且面积大于214m (木条宽度忽略不计),求四根木条总长的取值范围; (2)若四根木条总长为6m ,求窗口ABCD 面积的最大值.19.(本小题满分16分)已知数列{}n a ,{}n b 均为各项都不相等的数列,n S 为{}n a 的前n 项和,()11n n n a b S n N ++=+∈.(1)若11,2n na b ==,求4a 的值; (2)若{}n a 是公比为q 的等比数列,求证:存在实数λ,使得{}n b λ+为等比数列; (3)若{}n a 的各项都不为零,{}n b 是公差为d 的等差数列,求证:23,,,,n a a a 成等差数列的充要条件是12d =. 20.(本小题满分16分)设函数()sin cos xf x xe a x x =-(a R ∈,其中e 是自然对数的底数). (1)当0a =时,求()f x 的极值; (2)若对于任意的0,2x π⎡⎤∈⎢⎥⎣⎦,()0f x ≥恒成立,求a 的取值范围; (3)是否存在实数a ,使得函数()f x 在区间0,2π⎛⎫⎪⎝⎭上有两个零点?若存在,求出a 的取值范围;若不存在,请说明理由.南通市2016届高三第三次调研测试数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分,解答时应写出文字说明,证明过程或演算步骤. A.【选修4-1】几何证明选讲(本小题满分10分)在ABC ∆中,2,A B C ∠=∠∠的平分线交AB 于点D ,A ∠的平分线交CD 于点E . 求证:AD BC BD AC ⋅=⋅.B.【选修4-2:矩阵与变换】(本小题满分10分)在平面直角坐标系xOy 中,直线20x y +-=在矩阵1 12a A ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到直线()0,x y b a b R +-=∈,求a b +的值.C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα⎧=⎪⎨=⎪⎩α为参数)以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为6πθ=.若直线l 与曲线C 交于,A B ,求线段AB 的长.D.【选修4-5:不等式选讲】(本小题满分10分)已知0,0,0x y z >>>,且1xyz =,求证:333x y z xy yz xz ++≥++【必做题】第22,23题,每小题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)在平面直角坐标系xOy 中,已知抛物线()220y px p =>上一点3,4P m ⎛⎫⎪⎝⎭到准线的距离与到原点O 的距离相等,抛物线的焦点为F . (1)求抛物线的方程;(2)若A 为抛物线上一点(异于原点O ),点A 处的切线交x 轴于点B ,过A 作准线的垂线,垂足为点E .试判断四边形AEBF 的形状,并证明你的结论. 23.(本小题满分10分)甲,乙两人进行围棋比赛,共比赛()2n n N +∈局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为12.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为()P n . (1)求()2P 与()3P 的值;(2)试比较()P n 与()1P n +的大小,并证明你的结论.南通市2016届高三第三次调研测试数学学科参考答案一、填空题1.{}02.34i +3. 24. 35.π6.167.(8.4y x =±10. -16 11.10010112.0a <或2a > 13.14 14.1,3⎡+⎣二、解答题15.(1)因为m n ⊥,所以cos cos sin sin cos 0333m n A B A B A B πππ⎛⎫⎛⎫⎛⎫⋅=+++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又,0,2A B π⎛⎫∈ ⎪⎝⎭,所以5,366A B πππ⎛⎫⎛⎫+-∈- ⎪ ⎪⎝⎭⎝⎭,所以32A B ππ+-=,即6A B π-=; (2)因为3cos 5B =,0,2B π⎛⎫∈ ⎪⎝⎭,所以4sin 5B = 所以sin sin sin cos cos sin 666A B B B πππ⎛⎫=+=+ ⎪⎝⎭431552=+⋅=由正弦定理,得3sin 10834sin 5ABC AC B=⋅=⨯=. 16.(1)设AC BN O ⋂=,连结,MO AN ,因为1,2AB CD AB CD =,N 为CD 的中点, 所以,AB CN AB CN =,所以四边形ABCN 为平行四边形,所以O 为AC 的中点,所以MO PC 又因为MO ⊂平面BMN ,PC ⊄平面BMN ,所以PC 平面BMN . (2)(方法一)因为PC ⊥平面PDA ,AD ⊂平面PDA所以PC AD ⊥,由(1)同理可得,四边形ABND 为平行四边形,所以AD BN ,所以BN PC ⊥ 因为BC AB =,所以平行四边形ABCN 为菱形,所以BN AC ⊥,因为PC AC C ⋂=AC ⊂平面PAC ,PC ⊂平面PAC ,所以BN ⊥平面PAC因为BN ⊂平面BMN ,所以平面BMN ⊥平面PAC .(方法二)连结PN ,因为PC ⊥平面PDA ,PA ⊂平面PDA ,所以PC PA ⊥因为PC MO ,所以PA MO ⊥,因为PC ⊥平面PDA ,PD ⊂平面PDA ,所以PC PD ⊥ 因为N 为CD 的中点,所以12PN CD =,由(1)12AN BC CD ==,所以AN PN = 又因为M 为PA 的中点,所以PA MN ⊥因为MN MO M ⋂=,MN ⊂平面BMN ,MO ⊂平面BMN所以PA ⊥平面BMN ,因为PA ⊂平面PAC ,所以平面PAC ⊥平面BMN .17.(1)由条件,222242a caa b c =⎧⎪⎪=⎨⎪⎪=+⎩,解得2a b =⎧⎪⎨=⎪⎩所以椭圆的方程为22142x y +=,圆的方程为224x y += (方法一)直线l 的方程为()122y x =+,由()2212224y x x y ⎧=+⎪⎨⎪+=⎩得:23440x x +-= 解得22,3A p x x =-=,所以24,33P ⎛⎫ ⎪⎝⎭所以AP ==O 到直线l的距离d =所以5AQ ==,所以56AP AQ == (方法二)由222224x y x y =-⎧⎨+=⎩得2340y y -=,所以85P y =所以455386AP AQ =⨯=; (2)(方法一)若PQ AP λ=,则1AQAPλ=- 设直线():2l y k x =+,由()22242x y y k x ⎧+=⎪⎨=+⎪⎩得,()22221840k x k ++-=即()()()22221420x k x k ⎡⎤+++-=⎣⎦,所以22242,21A P k x x k -=-=+,得222244,2121k k P k k ⎛⎫- ⎪++⎝⎭所以()22222222224416162212121k k k AP k k k ⎛⎫-+⎛⎫=++= ⎪ ⎪++⎝⎭⎝⎭+,即221AP k =+,同理AQ =由题意:20k >,所以01λ<<.18.(1)设一根木条长为xcm,则正方形的边长为=因为14ABCD S >四边形,所以2144x ->,即x <又因为四根木条将圆分成9个区域,所以x >所以x <<;(2)(方法一)设AB 所在木条长为am ,则BC 所在木条长为()3a m - 因为()()0,2,30,2a a ∈-∈,所以()1,2a ∈ABCDS ===矩形 设()43262420f a a a a a =-++-,()()()()'3241822421234f a a a a a a a =-++=+--令()'0fa =,得32a =,或1a =-(舍去),或4a =(舍去) 列表如下:所以当32a =时,()max 349216f x f ⎛⎫== ⎪⎝⎭,即max 74S = (方法二)设AB所在木条长为am ,CD 所在木条长为bm 由条件,2+26a b =,即3a b +=因为(),0,2a b ∈,所以()30,2b a=-∈,从而(),1,2a b ∈由于ABBD ==,ABCD S ==矩形()()2228872224a b a b +--+≤≤=当且仅当()31,22a b ==∈时,74ABCD S =矩形 答:窗口ABCD 面积的最大值为274m19.(1)由11,2n na b ==,知2344,6,8a a a ===(2)(方法一)因为11n n n a b S +=+,所以()11111n nn a q a q b q-=+-所以11111n nn q q b q a q =+---,即1111111nn b q a q q ⎛⎫⎛⎫=+- ⎪ ⎪--⎝⎭⎝⎭ 所以存在实数11q λ=-,使得11111nn b q a q λ⎛⎫⎛⎫+=+⎪ ⎪-⎝⎭⎝⎭ 又因为0n b λ+≠(否则{}n b 为常数数列与题意不符) 所以当2n ≥,11n n b b qλλ-+=+,此时{}n b λ+为等比数列所以存在实数11qλ=-,是{}n b λ+为等比数列; (方法二)因为11n n n a b S +=+①所以当2n ≥时,111n n n a b S --=+②①-②得,当2n ≥时,11n n n n n a b a b a +--=③由③得,当2n ≥时,111111n n n n n n n a a b b b a a q q--++=+=+ 所以111111n n b b q q q -⎛⎫+=+ ⎪--⎝⎭,又因为101n b q +≠-(否则{}n b 为常数数列与题意不符) 所以存在实数11q λ=-,是{}n b λ+为等比数列; (3)因为{}n b 为公差为d 的等差数列,所以由③得,当2n ≥时,()1n n n n n a b a b d a +--= 即()()11n n n n a a b d a +-=-,因为{}n a ,{}n b 各项均不相等,所以10,10n n a a d +-≠-≠ 所以当2n ≥时,11n n n nb a d a a +=--④ 当3n ≥时,1111n n n n b a d a a ---=--⑤ 由④-⑤,得当3n ≥时111111n n n n n n n n a a b b d a a a a d d --+---==----⑥ 先证充分性:即由12d =证明23,,,,n a a a 成等差数列 因为12d =,由⑥得1111n n n n n n a a a a a a -+--=-- 所以当3n ≥时,1111n n n n n n a a a a a a -+-+=-- 又0n a ≠,所以11n n n n a a a a +--=-即23,,,,n a a a 成等差数列;再证必要性:即由23,,,,n a a a 成等差数列证明12d = 因为23,,,,n a a a 成等差数列,所以当3n ≥时,11n n n n a a a a +--=- 所以由⑥得,11111111n n n n n n n n n n n n a a a a d a a a a a a a a d--+----=-==-----所以12d =,所以23,,,,n a a a 成等差数列的充要条件是12d =. 20.(1)当0a =时,()()();,1x x f x xef x e x ==+令()'0f x =,得1x =-列表如下:所以函数()f x 的极小值为()1f e-=-,无极大值; (2)①当0a ≤时,由于对于任意0,2x π⎡⎤∈⎢⎥⎣⎦,有sin cos 0x x ≥ 所以()0f x ≥恒成立,当0a ≤时,符合题意;②当01a <≤时,因为()()()'01cos201cos010x fx e x a x e a a ≥+-≥+-=-≥ 所以函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上为增函数,所以()()00f x f ≥=,即当01a <≤,符合题意; ③当1a >时,()'010f a =-<,'41044f e πππ⎛⎫⎛⎫=+> ⎪ ⎪⎝⎭⎝⎭ 所以存在0,4πα⎛⎫∈ ⎪⎝⎭,使得()'0f α=,且在()0,α内,()'0f x <所以()f x 在()0,α上为减函数,所以()()00f x f <=即当1a >时,不符合题意综上所述,a 的取值范围是(],1-∞;(3)不存在实数a ,使得函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上有两个零点,由(2)知,当1a ≤时,()f x 在0,2π⎛⎫ ⎪⎝⎭上是增函数,且()00f =,故函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上无零点 当1a >时,()()'1cos2x f x e x a x ≥+-令()()1cos2x g x e x a x =+-,()()'22sin 2x g x e x a x =++ 当0,2x π⎛⎫∈ ⎪⎝⎭时,恒有()'0g x >,所以()g x 在0,2π⎛⎫ ⎪⎝⎭上是增函数 由()2010,1022g a g e a πππ⎛⎫⎛⎫=-<=++> ⎪ ⎪⎝⎭⎝⎭故()g x 在0,2π⎛⎫ ⎪⎝⎭上存在唯一的零点0x ,即方程()'0f x =在0,2π⎛⎫ ⎪⎝⎭上存在唯一解0x 且当()00,x x ∈时,()'0f x <,当0,2x x π⎛⎫∈ ⎪⎝⎭,()'0f x > 即函数()f x 在()00,x 上单调递减,在0,2x π⎛⎫ ⎪⎝⎭上单调递增, 当()00,x x ∈时,()()00f x f <=,即()f x 在()00,x 无零点; 当0,2x x π⎛⎫∈ ⎪⎝⎭时,()()200,022f x f f e πππ⎛⎫<=> ⎪⎝⎭ 所以()f x 在0,2x π⎛⎫ ⎪⎝⎭上有唯一零点, 所以,当1a >时,()f x 在0,2π⎛⎫ ⎪⎝⎭上有一个零点 综上所述,不存在实数a ,使得函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上有两个零点. 数学II (附加题)21.A.因为2,CAB B AE ∠=∠为CAB ∠的平分线,所以CAE B ∠=∠又因为CD 是C ∠的平分线,所以ECA DCB ∠=∠所以ACD BCD ∆∆,所以AE AC BD BC=,即AE BC BD AC ⋅=⋅ 又因为,AED CAE ECA ADE B DCB ∠=∠+∠∠=∠+∠所以AED ADE ∠=∠,所以AD AE =所以AD BC BD AC ⋅=⋅B.设(),P x y 是直线20x +-=上一点,由1 122a x x ay y x y +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,得()20x ay x y b +++-= 即2022a b x y ++-=,由条件得,21,222a b +=-=- 解得04a b =⎧⎨=⎩,所以4a b +=C.曲线C的普通方程为(224x y +=,表示以)为圆心,2为半径的圆 直线l的直角坐标方程为3y x =,所以圆心到直线的距离为2 所以线段AB的长为=D.因为0,0,0x y z >>>所以3333x y z xyz ++≥ 3313x y xy ++≥,3313y z yz ++≥,3313x z xz ++≥将以上各式相加,得33333333333x y z xyz xy yz xz +++≥+++又因为1xyz =,从而333x y z xy yz xz ++≥++22.(1)由题意点3,4P m ⎛⎫ ⎪⎝⎭到准线的距离为PO 由抛物线的定义,点P 到准线的距离为PF所以PO PF =,即点3,4P m ⎛⎫⎪⎝⎭在线段OF 的中垂线上, 所以3,344p p ==,所以抛物线的方程为26y x = (2)由抛物线的对称性,设点2001,6A y y ⎛⎫⎪⎝⎭在x 轴的上方,所以点A 的气息的斜率为03y 所以点A 处切线的方程为2000316y y x y y ⎛⎫-=- ⎪⎝⎭ 令上式中0y =,得2016x y =-所以点B 的坐标为201,06y ⎛⎫- ⎪⎝⎭,又033,,,022E y F ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,所以2200001313,,,6262FA y y BE y y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以FA BE =,所以FA BE ,又AE FB 故四边形AEBF 为平行四边形再由抛物线的定义,得AF AE =,所以四边形AEBF 为菱形.23.(1)若甲、乙比赛4局甲获胜,则甲在4局比赛中至少胜3局所以()44344411522216P C C ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭ 同理()6664566661115322216P C C C ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)在2n 局比赛中甲获胜,则甲胜的局数至少为1n +局故()222122222111222n n nn n n n n n P n C C C ++⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()()22122222222211112122222n n n n n n n n n n n n n n C C C C C ++⎛⎫⎛⎫⎛⎫=+++⋅=-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以()1222211122n n n C P n +++⎛⎫+=- ⎪⎝⎭又因为()()()()()()()()2222112222222!441214!!2122!22212121!1!n n n n n n n n n n n C n n C n n n C C n n n n n +++++++====>++++++ 所以122222222n n n n n n C C +++>,所以()()1P n P n <+。