统计与概率高考题(文科)

合集下载

2011年统计概率高考题精选(文科)

2011年统计概率高考题精选(文科)

2011年统计概率高考题精选(文科)(11江苏)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s(11新课标6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B . 12C .23D .34(11辽宁14)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:321.0254.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元. (11江西7)为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( )A.e o m m x ==B.e o m m x =<C.e o m m x <<D.o e m m x <<(11江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为A .1y x =-B .1y x =+C .1882y x =+D .176y =(11上海10)课题组进行城市农空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8。

若用分层抽样抽取6个城市,则丙组中应抽取的城市数为 。

(11四川2)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,大于或等于31.5的数据约占(A )211(B )13(C )12(D )23(11湖南10)已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是.(11湖南15)已知圆22:12,C x y+=直线:4325.l x y+=(1)圆C的圆心到直线l的距离为.(2) 圆C上任意一点A到直线l的距离小于2的概率为.(11湖北)有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间)10,12⎡⎣内的频数为A.18 B.36C.54 D.72(11湖北11)某市有大型超市200家、中型超市400家、小型超市1400家。

统计概率高考文科复习专题

统计概率高考文科复习专题

高考文科复习专题——概率知识点梳理1.随机抽样1简单随机抽样特点为从总体中逐个抽取,适用范围:总体中的个体较少.2系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取,适用范围:总体中的个体数较多.3分层抽样特点是将总体分成几层,分层进行抽取,适用范围:总体由差异明显的几部分组成.2.常用的统计图表1频率分布直方图①小长方形的面积=组距×错误!=频率;②各小长方形的面积之和等于1;③小长方形的高=错误!,所有小长方形的高的和为错误!.2茎叶图在样本数据较少时,用茎叶图表示数据的效果较好.3.用样本的数字特征估计总体的数字特征1众数、中位数、平均数12n标准差:s=错误!.4.变量的相关性与最小二乘法1相关关系的概念、正相关和负相关、相关系数.2最小二乘法:对于给定的一组样本数据x1,y1,x2,y2,…,x n,y n,通过求Q=错误!y i -a-bx i2最小时,得到线性回归方程错误!=错误!x+错误!的方法叫做最小二乘法.5.独立性检验对于取值分别是{x1,x2}和{y1,y2}的分类变量X和Y,其样本频数列联表是:则K2=错误!其中n1.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率.2.一支田径运动队有男运动员56人,女运动员42人;现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有______人;3.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.4.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.Ⅰ从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;Ⅱ现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.5.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换;每次发球,胜方得1分,负方得0分;设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立;甲、乙的一局比赛中,甲先发球;Ⅰ求开始第4次发球时,甲、乙的比分为1比2的概率;Ⅱ求开始第5次发球时,甲得分领先的概率.6.甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直每人都已投球3次时投篮结束,设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.Ⅰ求乙获胜的概率;Ⅱ求投篮结束时乙只投了2个球的概率.7.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查;I求应从小学、中学、大学中分别抽取的学校数目;II若从抽取的6所学校中随机抽取2所学校做进一步数据分析,1列出所有可能的抽取结果;2求抽取的2所学校均为小学的概率;8.若某产品的直径长与标准值的差的绝对值不超过...1mm 时,则视为合格品,否则视为不合格品;在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品;计算这50件不合格品的直径长与标准值的差单位:mm, 将所得数据分组,得到如下频率分布表:Ⅰ将上面表格中缺少的数据填完整;Ⅱ估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间1,3内的概率;Ⅲ现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品;据此估算这批产品中的合格品的件数.9.2012·辽宁电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.1根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关2,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:10.甲、乙两位运动员在,记甲、乙两人的平均得分分别为错误!甲,错误!乙,则下列判断正确的是甲>错误!乙;甲比乙成绩稳定甲>错误!乙;乙比甲成绩稳定甲<错误!乙;甲比乙成绩稳定甲<错误!乙;乙比甲成绩稳定11. 15年广东文科某城市100户居民的月平均用电量单位:度,以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.()1求直方图中x的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户。

高考文科概率统计大题

高考文科概率统计大题

高考文科概率统计大题高考文科概率统计大题一、引言高考作为中国教育体系的重要组成部分,对于学生来说意义重大。

其中,文科概率统计是一道常见的考题,对学生的数学思维能力和概率统计知识的掌握程度提出了挑战。

本文将从基本概念、计算方法和实际应用三个方面来探讨高考文科概率统计大题。

二、基本概念在开始解答概率统计大题之前,首先需要了解一些基本概念。

概率是指某一事件发生的可能性或者程度大小,而统计学则是利用样本数据推断总体的特征。

在解答概率题时,常见的概念包括样本空间、事件、频率和概率等。

理解这些基本概念,能够为我们后续的计算和分析打下基础。

三、计算方法在文科概率统计大题中,计算方法是解决问题的关键。

常见的计算方法包括排列、组合、加法原理、乘法原理等。

通过正确运用这些方法,我们可以快速准确地计算出答案。

此外,还需要掌握条件概率、贝叶斯定理等进阶计算方法,以应对更复杂的问题。

不同的计算方法适用于不同的场景,学生们需要掌握并善于选择合适的方法。

四、实际应用概率统计在实际生活中有着广泛的应用。

在文科概率统计大题中,常涉及到投资、风险评估、信用评分、调查统计等实际问题。

学生们需要通过解答这些实际应用题,了解并应用概率统计在现实生活中的重要性和实用性。

此外,还需要培养对问题分析和解决的能力,将概率统计知识与实际应用相结合。

五、答题技巧解答概率统计大题不仅要掌握基本概念和计算方法,还需要具备一定的答题技巧。

首先,学生们要仔细审题,理解问题要求和限制条件;其次,要对题目进行归类,将抽象问题具象化;还要善于利用已知条件,简化计算过程。

另外,还要注意答题过程中的合理化推测和合理性判断,确保答案的准确性。

六、总结综上所述,高考文科概率统计大题是一道考察学生数学思维和概率统计知识的重要题目。

通过理解基本概念、熟练掌握计算方法、应用实际问题和灵活应用答题技巧,学生们便能够在高考中应对这一考题。

希望本文的内容能够对广大考生在备战高考中有所帮助,实现更好的成绩。

文科数学20XX-20XX高考真题分类训练专题十,,概率与统计第三十讲,,概率—后附解析答案

文科数学20XX-20XX高考真题分类训练专题十,,概率与统计第三十讲,,概率—后附解析答案

文科数学20XX-20XX高考真题分类训练专题十,,概率与统计第三十讲,,概率—后附解析答案专题十概率与统计第三十讲概率 20XX年 1.(20XX全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A. B. C. D. 2.(20XX全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A. B. C. D. 20XX-20XX年一、选择题 1.(20XX全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D. 2.(20XX全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3 B.0.4 C.0.6 D.0.7 3.(20XX新课标Ⅰ)如图,正方形内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. B. C. D. 4.(20XX 新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A. B. C. D. 5.(20XX天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A. B. C. D. 6.(20XX年天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为A. B. C. D. 7.(20XX全国I卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A. B. C. D. 8.(20XX全国II 卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A. B. C. D. 9.(20XX年北京)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为A. B. C. D. 10.(20XX全国III卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 A. B. C. D. 11.(20XX新课标1)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为A. B. C. D. 12.(20XX山东)在区间上随机地取一个数,则事件“”发生的概率为A. B. C. D. 13.(20XX江西)掷两颗均匀的骰子,则点数之和为5的概率等于 A. B. C. D. 14.(20XX 湖南)在区间上随机选取一个数,则的概率为A. B. C. D. 15.(20XX新课标1)从中任取个不同的数,则取出的个数之差的绝对值为的概率是A. B. C. D. 16.(20XX安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 A. B. C. D. 17.(20XX辽宁)在长为12cm的线段上任取一点。

文科数学概率高考题(含答案)

文科数学概率高考题(含答案)

文科数学概率高考题(含答案)概率是历年高考数学文科考试经常出现的题型。

为了帮助考生掌握数学中概率知识点,下面是店铺为大家整理的数学概率高考题,希望对大家有所帮助!文科数学概率高考题(一)1.[2014•新课标全国卷Ⅱ] 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.1.132.[2014•全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.2.233.[2014•浙江卷] 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.3.134.[2014•陕西卷] 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元) 0 1000 2000 3000 4000车辆数(辆) 500 130 100 150 120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.4.解:(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,所以赔付金额大于投保金额的概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,得样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24.由频率估计概率得P(C)=0.24.5.、[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.5.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.K2 古典概型6.[2014•福建卷] 根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035~4085美元为中等偏下收入国家;人均GDP为4085~12 616美元为中等偏上收入国家;人均GDP不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10 000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.6.解:(1)设该城市人口总数为a,则该城市人均GDP为8000×0.25a+4000×0.30a+6000×0.15a+3000×0.10a+10 000×0.20aa=6400(美元).因为6400∈[4085,12 616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10个.设事件M为“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个.所以所求概率为P(M)=310.7.[2014•广东卷] 从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.7.258.[2014•湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( )A.p1C.p18.C9.[2014•湖南卷] 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b).其中a,a分别表示甲组研发成功和失败;b,b分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平.(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.9.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x甲=1015=23,方差为s2甲=1151-232×10+0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x乙=915=35,方差为s2乙=1151-352×9+0-352×6=625.因为x甲>x乙,s2甲(2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个,故事件E发生的频率为715.将频率视为概率,即得所求概率为P(E)=715.文科数学概率高考题(二)10.[2014•江苏卷] 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.10.1311.[2014•江西卷] 掷两颗均匀的骰子,则点数之和为5的概率等于( )A.118B.19C.16D.11211.B12.[2014•江西卷] 将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数123…n,F(n)为这个数的位数(如n=12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤2014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.12.解:(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=11192.(2)F(n)=n,1≤n≤9,2n-9,10≤n≤99,3n-108,100≤n≤999,4n-1107,1000≤n≤2014.(3)当n=b(1≤b≤9,b∈N*),g(n)=0;当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,b∈N)时,g(n)=k;当n=100时,g(n)=11,即g(n)=0,1≤n≤9,k,n=10k+b,11,n=100.1≤k≤9,0≤b≤9,k∈N*,b∈N,同理有f(n)=0,1≤n≤8,k,n=10k+b-1,1≤k≤8,0≤b≤9,k∈N*,b∈N,n-80,89≤n≤98,20,n=99,100.由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90,所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}.当n=9时,p(9)=0.当n=90时,p(90)=g(90)F(90)=9171=119.当n=10k+9(1≤k≤8,k∈N*)时,p(n)=g(n)F(n)=k2n-9=k20k+9,由y=k20k+9关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p(n)的最大值为p(89)=8169.又8169<119,所以当n∈S时,p(n)的最大值为119.13.[2014•辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生 60 20 80北方学生 10 10 20合计 70 30 100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n(n11n22-n12n21)2n1+n2+n+1n+2,P(χ2≥k) 0.100 0.050 0.010k 2.706 3.841 6.63513.解:(1)将2×2列联表中的数据代入公式计算,得χ2=n(n11n22-n12n21)2n1+n2+n+1n+2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)},其中ai表示喜欢甜品的学生,i=1,2,bj表示不喜欢甜品的学生,j=1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.事件A由7个基本事件组成,因而P(A)=710.14.[2014•山东卷] 海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量 50 150 100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.14.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3}{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D为“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.15.[2014•陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.4515.B16.[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.16.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.17.[2014•天津卷] 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学 A B C女同学 X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.17.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.18.[2014•重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图13所示.(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.18.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A1,A2,成绩落在[60,70)中的3人为B1,B2,B3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中2人的成绩都在[60,70)中的基本事件有3个,即(B1,B2),(B1,B3),(B2,B3).故所求概率为P=310.文科数学概率高考题(三)19.[2014•福建卷] 如图15所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.19.1820.[2014•湖南卷] 在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.1520.B21.[2014•辽宁卷] 若将一个质点随机投入如图11所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π821.B22.[2014•重庆卷] 某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)22.932K4 互斥事件有一个发生的概率K5 相互对立事件同时发生的概率23.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.23.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.K6 离散型随机变量及其分布列24.[2014•江苏卷] 盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X 的概率分布和数学期望E(X).24.解:(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P=C24+C23+C22C29=6+3+136=518.(2)随机变量X所有可能的取值为2,3,4.{X=4}表示的随机事件是“取到的4个球是4个红球”,故P(X=4)=C44C49=1126;{X=3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P(X=3)=C34C15+C33C16C49=20+6126=1363;于是P(X=2)=1-P(X=3)-P(X=4)=1-1363-1126=1114.所以随机变量X的概率分布如下表:X 2 3 4P 111413631126因此随机变量X的数学期望E(X)=2×1114+3×1363+4×1126=209.K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布25.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.25.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.。

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。

概率统计(文科)

概率统计(文科)

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率P(A)e(0,1)(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1•某校高一年级有900名学生,其中女生400名•按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.2•某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取名学生.3.某校老年、中年和青年教师的人数见右表,米用分层抽样的方法调查教类另U人数师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年老年教师900教师人数为中年教师1800 4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是青年教师1600 5•若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为•合计4300 6•重庆市2013年各月的平均气温(°C)数据的茎叶图如右图:o吕9则这组数据的中位数是•1252003127•某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国豕,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图的频率分布直方图.(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(III)估计居民月均用水量的中位数.0Q.511622.533.544.6月满意度评分低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意A 地区用户满意度评分的频率分布直方司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.(II) 根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(I) 应收集多少位女生的样本数据?(II) 根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(&10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100] 频数 2 8 14 10 6B 地区用户满意度评分的频数分布表 (I)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分 的平均值及分散程度(不要求计算出具 体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(III)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体 育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间 与性别有关”.n (ad 一bc\附:尺2步畝+d 儿+枫+d )P (2>k)0.10 0.05 0.01 0.005 k2.7063.8416.6357.8799.(2015全国II 文)某公03511.(2014全国I文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(I)在下表中作出这些数据的频率分布直方图: 12.(2014广东文)某车间20名工人年龄数据如下表: 年皤7舁工人執7人1912日329330531斗323401昔讦20(I)求这20名工人年龄的众数与极差;(II)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(III)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.14.___________________________________________________ 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(II)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是.(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是.的产品至少要占全部产品80%”的规定?17. (2016天津文)甲、乙两人下棋,两人下成和棋的概率为1,甲获胜的概率是-,则甲不23输的概率为.18. 已知5件产品中有2件次品,其余为合格品•现从这5件产品中任选2件,恰有一件次品 的概率为.24. 如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴19.某单位N 名员工参加“社区低碳你我他”活动•他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间 [25,30) [30,35) [35,40) [40,45) [45,50] 人数25 ab5丰25. 为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )17517517617717722. ____________________________________________ 在区间[-2,3]上随机选取一个数x ,则x <1的概率为23. ___________________________________ 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是.(I )求y 关于t 的回归方程y =bt+a ;(II )利用(I )中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情4550年龄/驴(I )求正整数a ,b ,N 的值;(II )现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(III )在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. 20.(2016全国丨文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( A.1B.1C.-D.- 21.(2016全国II 文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒•若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()10 B.5D.—10 则y 对X 的线性回归方程为()A .y =x 一1B .y =x +1C .y =88+-x广告费用x (万元)4 2 35 销售额y (万元)4926395426.某产品的广告费用x 与销售额y 的统计数据如下:D .y =176根据上表可得回归方程y =bx+a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长•设某地区城乡居民人民币储蓄存款(年 底余额)如下表:年份 2011 2012 2013 2014 2015 时间代号t1 2 3 4 5 储蓄存款y (千亿兀)567810年(1=6)的人民币储蓄存款.V--‘’ty-nty _‘附:回归方程$=几+<2中,,a=y-bt.乙/2-nt 2i=l28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:乙校:(1)计算兀y 的值;况,并 预测 该地 区 2016P^Ki>k)0.10 0.05 0.010 k2.7063.8416.635参考数据与(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2X2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.公式:由列联表中数(a+b)(?+d)C+c)a+d),临界值表:29.—次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩兀(分) 89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90 分的概率;(2 )性回归100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.0.08°1—r---—r方程(系数精确到0.01).''''(1)求频率分布表中a、b的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标II)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:附:回归直线的方程是:y=bx+a上年度出险次数0 1 2 3 4 >5保费0.85a a 1.25a 1.5a 1.75a2a其中b=㈠(j——,a=y-b x;设该险种一续保人一年内出险次数与相应概率如下:ii=130•为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取一年内出险次数0 1 2 3 4 >5 概率0.30 0.15 0.20 0.20 0.10 0.05(I)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答•试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.34.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(I)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B帥反4567S9。

2022年数学文高考真题分类汇编专题07概率与统计

2022年数学文高考真题分类汇编专题07概率与统计

2022年数学文高考真题分类汇编专题07概率与统计1.【2022高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.1125B.C.D.3236【答案】A【解析】考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.2.【2022高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.7533B.C.D.108810【答案】B【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为故选B.考点:几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3.[2022高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是()40155,408A.各月的平均最低气温都在0C以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.学优高考网4.[2022高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.8111B.C.D.1581530【答案】C【解析】试题分析:开机密码的可能有(M,1),M(,2)M,(,3)M,(,M,4),(I,5)I,(,1)I,((,,4I2)),,((,I,53)(N,1),(N,2),(N,3),(N,4),(N, 5),共15种可能,所以小敏输入一次密码能够成功开机的概率是选C.考点:古典概型.1,故15【解题反思】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n必须是有限个;②出现的各个不同的试验结果数m其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)m得出的结果才是正确的.n5.【2022高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【答案】D【解析】考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.6.【2022高考天津文数】甲、乙两人下棋,两人下成和棋的概率是率为()(A)11,甲获胜的概率是,则甲不输的概2356(B)25(C)16(D)13【答案】A【解析】试题分析:甲不输概率为115.选A.236考点:概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法.对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.7.【2022高考北京文数】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.1289B.C.D.552525【答案】B考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m,n,再运用公式P(A)m求出事件A的概率,这是一个形象直观的好方法,nm求概率.学优高考网n8.【2022高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【2022高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】考点:统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.学优高考网10.【2022高考四川文科】从2、3、8、9任取两个不同的数值,分别记为a、b,则oglab为整数的概率=.【答案】【解析】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,4因此所有对数的个数就相当于4个数中任取两个的全排列,个数为A4,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.11.【2022高考上海文科】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】161.6【解析】试题分析:将4种水果每两种分为一组,有C246种方法,则甲、乙两位同学各自所选的两种水果相同的概率为考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.【2022高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.13.【2022高考新课标1文数】(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数2420221060161718192022更换的易损零件数记某表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与某的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】(I)y【解析】,某19,3800(某N)(II)19(III)19,某19,500某5700(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.学优高考网14.【2022高考新课标2文数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数保费0123452a0.85aa1.25a1.5a1.75a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数频数060150230330420510(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.【答案】(Ⅰ)由公式求解.【解析】60503030求P(A)的估计值;(Ⅱ)由求P(B)的估计值;(III)根据平均值得计算200200(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3,200故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费频率0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.05调查200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.302a0.101.1925a,因此,续保人本年度平均保费估计值为 1.1925a.考点:样本的频率、平均值的计算.【名师点睛】样本的数字特征常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.15.[2022高考新课标Ⅲ文数]下图是我国2022年至2022年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(II)建立y关于t的回归方程(系数精确到0.01),预测2022年我国生活垃圾无害化处理量.附注:参考数据:yi9.32,tiyi40.17,i1i1772(yy)0.55,7≈2.646.ii17参考公式:相关系数r(tt)(yy)iii1n(tt)(y2ii1i1nn,iy)2b中斜率和截距的最小二乘估计公式分别为:回归方程yab(ti1nit)(yiy)i(ti1nybt.,at)2【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.【解析】考点:线性相关与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数r公式求出r,然后根据r的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.学优高考网16.【2022高考北京文数】(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【答案】(Ⅰ)3;(Ⅱ)10.5元.【解析】所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.考点:频率分布直方图求频率,频率分布直方图求平均数的估计值.【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.17.【2022高考山东文数】(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为某,y.奖励规则如下:①若某y3,则奖励玩具一个;②若某y8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】()【解析】5.()小亮获得水杯的概率大于获得饮料的概率.16所以,PB63.168则事件C包含的基本事件共有5个,即1,4,2,2,2,3,3,2,4,1,所以,PC因为5.1635,816所以,小亮获得水杯的概率大于获得饮料的概率.考点:古典概型学优高考网【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题较易,能较好的考查考生数学应用意识、基本运算求解能力等.18.【2022高考四川文科】(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【答案】(Ⅰ)a0.30;(Ⅱ)36000;(Ⅲ)2.04.【解析】试题分析:(Ⅰ)由高某组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;(Ⅱ)利用高某组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率某样本总数=频数,计算所求人数;(Ⅲ)将前5组的频率之和与前4组的频率之和进行比较,得出2≤某<2.5,再进行计算.试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08某0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5某a+0.5某a,解得a=0.30.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【小题训练】1.(2018全国卷I, T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村 的经济收入构成比例.得到如下饼图:则下面结论中不正确的是D.新农村建设后,2.(2018全国卷n, T5)从 2名男同学和3名女同学中任选 2人参加社区服务,则选中的2人都是女同学的概率为(2018全国卷川,T5)某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为(2017新课标I, T2)为评估一种农作物的种植效果,选了n 块地作试验田.这 n 块地的亩产量(单位:kg )分别为Xj , x 2,…,x n , 物亩产量稳定程度的是切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点, 则此点取自黑色部分的概率是统计与概率%1英地收入养抽收人A .新农村建设后, 种植收入减少B .新农村建设后, 其他收入增加了一倍以上C .新农村建设后, 养殖收入增加了一倍养殖收入与第三产业收入的总和超过了经济收入的一半A . 0.6B. 0.5C. 0.4 D . 0.3A .B. C. D .F 面给出的指标中可以用来评估这种农作 A . Xi , X2 ,…,Xn 的平均数 B . Xi , X2,…,Xn 的标准差 C. Xi , X2 ,…,Xn 的最大值D . Xi , X2 ,…,Xn 的中位数(2017新课标I , T4)如图,正方形 ABCD 内的图形来自中国古代的太极图,正方形内种tW 收建设血红济救入椅戒比例第-产业收入2S%30%种植收入10 8 8107A.—5B.-3C.-3D.—再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为7.(2017新课标川,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的 折线图.A. 月接待游客逐月增加B. 年接待游客量逐年增加D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳& (2016全国I 卷,T3)为美化环境,从红、黄、白、紫4种颜色的花中任选 2种花种在一个花坛中,余下的 2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概 率是9. (2016全国II 卷,T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待6. (2017新课标n.B.-8C . 12T11)从分别写有1, 2, 3, 4,1A.——10 1B.-5 3C.—10 2D.-5 C.各年的月接待游客量高峰期大致在7,8月1A.—3 1B.—2 2C.-3 5D.-6 15秒才出现绿灯的概率根据该折线图,下列结论错误的是10 5 10 203A . 一B .1C.—1D.——赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊学生序号12345678910立定跳远(单位:米)30秒跳绳(单位:次) 63 a 75 60 63 72 70 a1 b 65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和 30秒跳绳决赛的有6人,则10.(2016年全国III 卷,T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月 平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C,B 点表示四月的平均最低气温约为 5 C.下面叙述不正确的是A .各月的平均最低气温都在 0 C 以上B .七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 11. 12. 13. D .平均最高气温高于 20C 的月份有5个(2016全国III 卷,T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M , I , N 中的一个字母,第二位是 1 , 2, 3, 4, 5中的一个数字,则小敏输入一 次密码能够成功开机的概率是8A.—15 B .1C.—15 1D.—30(2016年北京, T6) B .从甲、乙等 5名学生中随机选出 2人,则甲被选中的概率为(2016年北京, C .色25D. 225T8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决A . 2号学生进入 30秒跳绳决赛B . 5号学生进入30秒跳绳决赛 C. 8号学生进入 30秒跳绳决赛D. 9号学生进入30秒跳绳决赛14. (2015 新课标 1, T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这个数为一组勾股数, 从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概 率为-fl+■1—fln+-fl丸fl■■ ----- 帕■中■15. (2015新课标2, T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是;wwrr joj :i£E 200CJC Q'JTJ OOS 性 xiR»r 】oii T joutt ioisirA .逐年比较,2008年减少二氧化硫排放量的效果最显着B . 2007年我国治理二氧化硫排放显现成效 C. 2006年以来我国二氧化硫年排放量呈减少趋势 D. 2006年以来我国二氧化硫年排放量与年份正相关16. (2015北京,T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查17. (2018全国卷川,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、 层抽样和系统抽样,则最合适的抽样方法是18、为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区 5户家庭,得到如下统计数据表:根据上表可得回归直线方程 』=a + 0.762-,据此估计,该社区一户收入为 15万元家庭年支出为()C. 180B. 100D . 3002-00 2600曲帕 2咖Jfl-OQJ100 20001900 教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为 A . 90A.1L4万元B IL8万元c l2”0万元D12.2万元大题题型题型一:回归分析1、社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年_2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设20山年为第一年).A 貝貝(1)试求人数y关于年份鼻的回归直线方程# =加+日;(2)在满足(1)的前提之下估计201技年该中学被清华北大录取的人数(精确到个位);(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.参考公* 工(兀- Z 兀儿_h = ----------- =旦 -------------- 皿=v-ix/! _ Id _十•工(兀-对' D; -X41 J=11?.基商场营销人员进行某商品市场H销调奁发现,每回M消费者一定的点数,该商品当天的销*就会发生一定的交化,经过试点统计得到以下表:(1)经分析发现,可用线性叵归模型拟合当地该商品一天销量」气百件)与该天返还点数X之间的相关关系•淸用最小二乘法求丿•关于^的线性叵归方程丿二如〒r并预测若返叵6个点时该直品当天链董;(2)若节日期问营销韶对及品逍行新一轮调已知某坦拟购头该商品的消费群体+分庞大,经过营销部诡研机构对其中的200名消费者的返点敖R的心理预期S进行了一个抽样谓査, 得到如下一份频数表:“欲望彫胆ST消费者,现采月分旻抽样的方法从位于这两个区间的30名消费者中随机抱申6冬,再从这6人中随机抽取3名进行聚踪调查,求抽出的3人中至少有1名“歌望彫胀消费者的槪率.{掺考公式及数输①回归方程y-zFyxM・nxy ________ b- --------- .a^-bx yx:£・题型二统计图1、某服装店对过去10°天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如A►下: (1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50件的概率为0-24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50件的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为顶元,门市成本为1200元,每售出一件利润为50元,求该门市一天获利不低于800元的概率;(3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到001).2、某工厂有工人500名,记35岁以上(含35岁)的为4类工人,不足5岁的为C 类 工人,为调查该厂工人的个人文化素质状况, 人中分别抽取了 4()人、60人进行测试. (1)求该工厂A fl w 类工人各有多少人 (2)经过测试,得到以下三个数据图表:士组裁救站塞1 [56 . &3)50 052 [60 f &5) 200.203 [&5, 71)1 [Fr 75)0,55S[T5.⑼[801. 8刃IDO图一:75分以上两类工人成绩的茎叶图(茎、叶分别是十位和个位上的数字) ①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二) 补充完整;②该厂拟定从参加考试的79分以上(含79分)的耳类工人中随机抽 取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.现用分层抽样的方法从人,B 两类工 A 类B 类73= 1S 1.3,4图一=75分urn 、B 两类工人成绩的S 叶图囹二:LM 名遂加则试工人成篇狗频奉 分布旨方图题型三独立性分析201G 年全国两会,即中华人民共和国第十二届全国人民代表大会第四次会议和中国人民政治协商会议第十二届全国委员会第四次会议,分别于 201G 年3月5日和3月3日在北京开幕。

为了解哪些人更关注两会,某机构随抽取了年龄在 15〜75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如下图所示,其分组区间为:[45,阴),[5& 65), [65,75].把年龄落在区间卩乂 35)和[35,75]内的人分别称为 青少年人”和中老年人”,经统计 青少年人”和中老年人”的人数之比为9 : 11.(1)求图中O 、b 的值根;(2)若青少年人”中有15人关注两会,根据已知条件完成下面的2x2列联表,根据此统计 结果能否有99%的把握认为 中老年人”比青少年人”更加关注两会关注不关注 合计青少年人15中老年人1合计50 1 50100(tt + ^)(a + c)(b + rf)(c-|- d),其中 + c+d .P (屮 > 辎) 0.05 0.01 0.0013.841 C.635 10.828[15,25)^35)^45),3.某班50名学生进行不记名问卷调查,内容为本周使用手机的时间长,如⑴求这刃名学生本周使用手机的平均时间长.(2)从时间长为的7名学生中随机抽取2名学生,求其中恰有1名女生的概率.(3)若时间长为°)被认定 不依 赖手机”时间长为卩仏药)被认定 依赖手机”根据以上数据完成2x2列联 表:能否在犯错概率不超过61 5的前提下,认为学生的性别与依赖手机有关系K'=(参考公式: S +对«' +沖)(柑+ c ){h+ #),打=灯+ 6 + £• + /)疏曲-be f。

相关文档
最新文档