同底数幂的除法试题精选附答案

合集下载

2020-2021学年人教版八年级数学上:同底数幂的除法(含答案解析)

2020-2021学年人教版八年级数学上:同底数幂的除法(含答案解析)
7.若3a=5,3b=2,则32a﹣3b等于( )
A. B. C.17D.
8.若3x=5,3y=2,则3x﹣y的值为( )
A. B. C.3D.﹣3
9.下列各式运算正确的是( )
A.x2•x3=x6B.(x2)4=x6C.x6÷x5=xD.x2+x3=x5
10.下列运算中正确的是( )
A.(2ab)3=2a3b3B.a3•a2=a6
17.下列运算正确的是( )
A.a•a6=a6B.(﹣a4)2=a8C.a10÷a2=a5D.a2+a2=a4
二.填空题(共26小题)
18.a7÷a4=.
19.已知am=4,an ,则a2m﹣2n=.
20.x10÷=x4.
21.化简:(x2)3÷x=.
22.已知3x﹣2y﹣3=0,求23x÷22y=.
4.下列各运算中,计算正确的是( )
A.x3+2x3=3x6B.(x3)3=x6C.x3•x9=x12D.x3÷x=x4
5.下列计算正确的是( )
A.a3•a4=a7B.a3+a4=a7C.(a4)3=a7D.a4÷a3=1
6.下列运算正确的是( )
A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a3
【解答】解:A、x3+2x3=3x3,故此选项错误;
B、(x3)3=x9,故此选项错误;
C、x3•x9=x12,正确;
D、x3÷x=x2,故此选项错误;
故选:C.
5.下列计算正确的是( )
A.a3•a4=a7B.a3+a4=a7C.(a4)3=a7D.a4÷a3=1
【解答】解:A.a3•a4=a3+4=a7,故此选项正确;

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习题(有答案)1.计算:$(-2m^2)^3+m^7/m$。

2.计算:$3(x^2)^3x^3-(x^3)^3+(-x)^2x^9/x^2$。

3.已知 $a_m=3$,$a_n=4$,求 $a_{2m-n}$ 的值。

4.已知 $3^m=6$,$3^n=-3$,求 $3^{2m-3n}$ 的值。

5.已知 $2a=3$,$4b=5$,$8c=7$,求 $8a+c-2b$ 的值。

6.如果 $x^m=5$,$x^n=25$,求 $x^{5m-2n}$ 的值。

7.计算:$a^{n+5}/a^7$($n$ 是整数)。

8.计算:(1) $-m^9/m^3$;(2) $(-a)^6/(-a)^3$;(3) $(-8)^6/(-8)^5$;(4) $6^{2m+3}/6^m$。

9.计算:$33\times36/(-3)^8$。

10.把下式化成 $(a-b)^p$ 的形式:$15(a-b)^3[-6(a-b)^p+5](b-a)^2/45(b-a)^5$。

11.计算:(1) $(a^8)^2/a^8$;(2) $(a-b)^2(b-a)^{2n}/(a-b)^{2n-1}$。

12.$(a^2)^3(a^2)^4/(-a^2)^5$。

13.计算:$x^3(2x^3)^2/(x^4)^2$。

14.若 $[(x^m/x^{2n})^3]/x^{m-n}$ 与 $4x^2$ 为同类项,且 $2m+5n=7$,求 $4m^2-25n^2$ 的值。

15.计算:(1) $m^9/m^7$;(2) $(-a)^6/(-a)^2$;(3) $(x-y)^6/(y-x)/(x-y)$。

16.已知 $2^m=8$,$2^n=4$,求:(1) $2^{m-n}$ 的值;(2) $2^{m+2n}$ 的值。

17.(1) 已知 $x^m=8$,$x^n=5$,求 $x^{m-n}$ 的值;(2) 已知 $10^m=3$,$10^n=2$,求 $10^{3m-2n}$ 的值。

同底数幂的除法 重难点专项练习【九大题型】-七年级数学下册同步精品课堂(苏科版)(解析版)

同底数幂的除法 重难点专项练习【九大题型】-七年级数学下册同步精品课堂(苏科版)(解析版)

8.3同底数幂的除法重难点题型专项练习考查题型一利用运算性质直接计算典例1.下列运算正确的是()A .87a a a -=B .842a a a ÷=C .236a a a ⋅=D .2242(2)4a b a b -=【详解】解:A .8a 与7a 不是同类项,所以不能合并,故A 不合题意;B .原式4a =,故B 不合题意;C .原式5a =,故C 不合题意;D .原式424a b =,故D 符合题意.故本题选:D .变式1-1.210x y --=,求:248x y ÷⨯的值.【详解】解:210x y --= ,21x y ∴-=,2248228x y x y ∴÷⨯=÷⨯228x y -=⨯28=⨯16=.变式1-2.计算:982()()()m n n m m n -⋅-÷-.【详解】解:原式98298215()()()()()m n m n m n m n m n +-=-⋅-÷-=-=-.变式1-3.探究应用:用“⋃”、“⋂”定义两种新运算:对于两数a 、b ,规定1010a b a b =⨯ ,1010a b a b =÷ ,例如:32532101010=⨯= ,3232101010=÷= .(1)求:(1039983) 的值;(2)求:(20222020) 的值;(3)当x 为何值时,(5)x 的值与(2317) 的值相等.【详解】解:(1)(1039983) 10399831010=⨯202210=;(2)(20222020) 202220201010=÷210=100=;(3)由题意得:(5)(2317)x = ,则5231710101010x ⨯=÷,561010x +∴=,即56x +=,解得:1x =.考查题型二利用运算性质求解/参典例2.已知262555a b = ,444b c ÷=,则代数式23a ab c ++值是.【详解】解:262555a b = ,444b c ÷=,22655a b +∴=,44b c -=,3a b ∴+=,1b c -=,两式相减,可得:2a c +=,23()333326a ab c a a b c a c ∴++=++=+=⨯=.故本题答案为:6.变式2-1.已知6()x y a a =,23()x y a a a ÷=(1)求xy 和2x y -的值;(2)求224x y +的值.【详解】解:(1)6()x y a a = ,23()x y a a a ÷=6xy a a ∴=,223x y x y a a a a -÷==,6xy ∴=,23x y -=;(2)22224(2)434692433x y x y xy +=-+=+⨯=+=.变式2-2.已知常数a 、b 满足23327a b ⨯=,且2223(5)(5)(5)1a b a b ⨯÷=,求224a b +的值.【详解】解:23327a b ⨯= ,2333a b +∴=,故23a b +=,2223(5)(5)(5)1a b a b ⨯÷= ,243551a b ab +∴÷=,2430a b ab ∴+-=,23a b += ,630ab ∴-=,则2ab =,2224(2)4a b a b ab ∴+=+-2342=-⨯1=.考查题型三运算性质的逆用典例3.已知4m a =,8n b =,用含a ,b 的式子表示下列代数式:(1)求:232m n +的值(2)求:462m n -的值.变式3.已知36=,32=.(1)求3m n +的值.(2)求3m n -的值.(3)求233m n -的值.考查题型四零指数幂使用的条件典例4.等式0(3)1x -=成立的条件是()A .3x ≠-B .3x -C .3x -D .3x ≠【详解】解:等式0(3)1x -=成立的条件是:3x ≠.故本题选:D .变式4.若0(12)1x -=,则()A .0x ≠B .2x ≠C .12x ≠D .x 为任意有理数考查题型五利用零指数幂直接计算典例5.计算:220200(2)1( 3.14)π--+-.【详解】解:原式411=-+4=.变式5.计算:2202130(2)4(1)|2|(5)π-+⨯---+-.【详解】解:原式44(1)81=+⨯--+4481=--+7=-.考查题型六利用零指数幂求解/求参典例6.若2022(23)1x x ++=,则x =.【详解】解:当20200x +=时,2020x ∴=-,230x ∴+≠,符合题意;当231x +=时,20222021x ∴+=,符合题意;当231x +=-时,2x ∴=-,20222020x ∴+=,符合题意.故本题答案为:1-或2-或2022-.变式6-1.若13(1)1x x --=,则满足条件的x 值为.变式6-2.若-=-,求x 的值.【详解】解:①10x +=,且250x -≠,40x -≠,解得:1x =-;②254x x -=-,解得:1x =;③当指数是偶数时,25x -和4x -互为相反数,2540x x -+-=,解得:3x =,指数14x +=,符合题意.综上,1x =或1-或3.考查题型七负整数指数幂的计算与应用典例7-1.若20.3a =-,23b -=-,21(3c -=-,01()5d =-,则()A .a b c d <<<B .b a d c <<<C .a d c b <<<D .c a d b<<<变式7-1-1.已知222011(0.2),2,(),(22a b c d --=-=-=-=-,则比较a 、b 、c 、d 的大小结A .b a d c <<<B .a b d c <<<C .b a c d <<<D .b d a c<<<变式7-1-2.计算:(1)2301()(48)2-÷⨯.(2)201820114((5)3π--⨯+-+-.典例7-2.已知=,=,=,=,则这四个数从小到大排列顺序是()A .a b c d<<<B .d a c b<<<C .a d c b<<<D .b c a d<<<变式7-2.已知-=,-=,-=,请用“<”把它们按从小到大的顺序连接起来,说明理由.考查题型八科学记数法——表示较小的数典例8.飞沫一般认为是直径大于5微米(5微米0.000005=米)的含水颗粒.飞沫传播是新型冠状病毒的主要传播途径之一,日常面对面说话、咳嗽、打喷嚏都可能造成飞沫传播.因此有效的预防措施是戴口罩并尽量与他人保持1米以上社交距离.将0.000005用科学记数法表示应为()A .50.510-⨯B .60.510-⨯C .5510-⨯D .6510-⨯【详解】解:60.000005510-=⨯.故本题选:D .变式8-1.中芯国际集成电路制造有限公司,是世界领先的集成电路晶圆代工企业之一,也是中国内地技术最先进、配套最完善、规模最大、跨国经营的集成电路制造企业集团,中芯国际第一代14纳米FinFET 技术取得了突破性进展,并于2019年第四季度进入量产,代表了中国大陆自主研发集成电路的最先进水平,14纳米0.000000014=米,0.000000014用科学记数法表示为()A .71.410-⨯B .71410-⨯C .81.410-⨯D .91.410-⨯【详解】解:80.000000014 1.410-=⨯.故本题选:C .变式8-2.每到四月,许多地方的杨絮、柳絮如雪花漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000115m ,把0.0000115写成10(110n a a ⨯<,n 为整数)的形式,则n 为()A .7-B .5-C .4-D .5【详解】解:50.0000115 1.1510-=⨯,5n ∴=-,故本题选:B .变式8-3.某种分子的直径约为19000mm ,将19000用科学记数法表示为10n a ⨯的形式,下列说法正确的是()A .a ,n 都是负数B .a 是负数,n 是正数C .a ,n 都是正数D .a 是正数,n 是负数考查题型九科学记数法——原数典例9.已知一种细胞的直径约为42.1310cm -⨯,请问42.1310-⨯这个数原来的数是()A .21300B .2130000C .0.0213D .0.000213【详解】解:42.13100.000213-⨯=.故本题选:D .变式9.将53.0510-⨯用小数表示为.【详解】解:53.05100.0000305-⨯=.故本题答案为:0.0000305.。

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习30题1.计算:(﹣2 m2)3+m7÷m.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x23.已知a m=3,a n=4,求a2m﹣n的值.4.已知3m=6,3n=﹣3,求32m﹣3n的值.5.已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.6.如果x m=5,x n=25,求x5m﹣2n的值.7.计算:a n•a n+5÷a7(n是整数).8.计算:(1)﹣m9÷m3;(2)(﹣a)6÷(﹣a)3;(3)(﹣8)6÷(﹣8)5;(4)62m+3÷6m.9.33×36÷(﹣3)810.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5 11.计算:(1)(a8)2÷a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1.12.(a2)3•(a2)4÷(﹣a2)513.计算:x3•(2x3)2÷(x4)214.若(x m÷x2n)3÷x m﹣n与4x2为同类项,且2m+5n=7,求4m2﹣25n2的值.15.计算:(1)m9÷m7=_________;(2)(﹣a)6÷(﹣a)2=_________;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=_________.16.已知2m=8,2n=4求(1)2m﹣n的值.(2)2m+2n的值.17.(1)已知x m=8,x n=5,求x m﹣n的值;(2)已知10m=3,10n=2,求103m﹣2n的值.18.已知a m=4,a n=3,a k=2,求a m﹣3k+2n的值._________19.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n同底数幂的除法---- 120.已知:a n=2,a m=3,a k=4,试求a2n+m﹣2k的值.21.已知5x﹣3y﹣2=0,求1010x÷106y的值.22.已知10a=2,10b=9,求:的值.23.已知,求n的值.24.计算:(a2n)2÷a3n+2•a2.25.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.26.计算:(﹣2)3•(﹣2)2÷(﹣2)8.27.(﹣a)5•(﹣a3)4÷(﹣a)2.28.已知a x=4,a y=9,求a3x﹣2y的值.29.计算(1)a7÷a4 (2)(﹣m)8÷(﹣m)3 (3)(xy)7÷(xy)4(4)x2m+2÷x m+2(5)(x﹣y)5÷(y﹣x)3(6)x6÷x2•x30.若32•92a+1÷27a+1=81,求a的值.同底数幂的除法--- 2参考答案:1.(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m62.3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9.3.∵a m=3,a n=4,∴a2m﹣n=a2m÷a n=(a m)2÷a n=32÷4=.4.∵3m=6,3n=﹣3,∴32m﹣3n=32m÷33n=(3m)2÷(3n)3=62÷(﹣3)3=﹣.5.∵2a=3,4b=5,8c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•(23)c÷(22b)3=27×7÷125=6.∵x m=5,x n=25,∴x5m﹣2n=(x m)5÷(x n)2=55÷(25)2=55÷54=5.7.a n•a n+5÷a7=a2n+5﹣7=a2n﹣28.(1)﹣m9÷m3=﹣1×m9﹣3=﹣m6;(2)(﹣a)6÷(﹣a)3=(﹣a)6﹣3=(﹣a)3=﹣a3;(3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8;(4)62m+3÷6m=6(2m+3)﹣m=6m+39.33×36÷(﹣3)8=39÷38=310. 15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5=15(a﹣b)3×[﹣6(a﹣b)p+5](a﹣b)2÷45[﹣(a﹣b)5]=[15×(﹣6)]÷(﹣45)×(a﹣b)3+p+2+5﹣5=2(a﹣b)p+511.(1)(a8)2÷a8=a16÷a8=a16﹣8=a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1=(a﹣b)2(a﹣b)2n÷(a﹣b)2n﹣1=(a﹣b)2+2n﹣(2n﹣1)=(a﹣b)3.12.(a2)3•(a2)4÷(﹣a2)5=a6•a8÷(﹣a10)=﹣a14÷a10=﹣a4.13.x3•(2x3)2÷(x4)2=4x9÷x8=4x.14.(x m÷x2n)3÷x m﹣n=(x m﹣2n)3÷x m﹣n=x3m﹣6n÷x m﹣n=x2m﹣5n,因它与4x2为同类项,所以2m﹣5n=2,又2m+5n=7,所以4m2﹣25n2=(2m)2﹣(5n)2=(2m+5n)(2m﹣5n)=7×2=14.15. (1)m9÷m7=m9﹣7=m2;(2)(﹣a)6÷(﹣a)2=(﹣a)6﹣2=a4;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=(x﹣y)6÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣y)6﹣3﹣1=﹣(x﹣y)2.16.∵2m=8=23,2n=4=22,∴m=3,n=2,(1)2m﹣n=23﹣2=2;(2)2m+2n=23+4=27=128.17.(1)∵x m=8,x n=5,∴x m﹣n=x m÷x n,=8÷5=;(2)∵10m=3,10n=2,∴103m=(10m)3=33=27,102n=(10n)2=22=4,∴103m﹣2n=103m÷102n=27÷4=18.∵a m=4,a n=3,∴a m﹣3k+2n=a m÷a3k•a2n=a m÷(a k)3•(a n)2=4÷23×32=19.(﹣3x2n+2y n)3÷[(﹣x3y)2]n=﹣27x6n+6y3n÷(﹣x3y)2n=﹣27x6n+6y3n÷x6n y2n=﹣27x6y n20.∵a n=2,a m=3,a k=4,∴a2n+m﹣2k=a2n•a m÷a2k=(a n)2•a m÷(a k)2=4×3÷16=.21.由5x﹣3y﹣2=0,得5x﹣3y=2.∴1010x÷106y=1010x﹣6y=102(5x﹣3y)=102×2=104.故1010x÷106y的值是10422.=10 2a﹣b ==.23.∵32m+2=(32)m+1=9m+1,∴9m÷3m+2=9m÷9m+1=9﹣1==()2,∴n=224.(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n.25.∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=26.(﹣2)3•(﹣2)2÷(﹣2)8=(﹣2)5÷(﹣2)8=(﹣2)5﹣8=(﹣2)﹣3=同底数幂的除法--- 327.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.故答案为:﹣a15.28.a3x﹣2y=(a x)3÷(a y)2=43÷92=29.(1)a7÷a4=a3;(2)(﹣m)8÷(﹣m)3=(﹣m)5=﹣m5;(3)(xy)7÷(xy)4=(xy)3=x3y3;(4)x2m+2÷x m+2=x m;(5)(x﹣y)5÷(y﹣x)3=﹣(y﹣x)5÷(y﹣x)3=﹣(y﹣x)2;(6)x6÷x2•x=x4•x=x5.30.原式可化为:32•32(2a+1)÷33(a+1)=34,即2+2(2a+1)﹣3(a+1)=4,解得a=3.故答案为:3.同底数幂的除法--- 4。

初中数学同底数幂除法基础习题含答案

初中数学同底数幂除法基础习题含答案

同底数幂除法一.选择题(共30小题)1.若2x=8,4y=16,则2x﹣2y的值为()A.B.﹣2C.D.2.若a=﹣3﹣2,b=(﹣)﹣2,c=(﹣)0,则a,b,c大小关系正确的是()A.a<b<c B.c<a<b C.b<c<a D.a<c<b3.下列计算正确的是()A.m2+m3=m5B.m2•m3=m6C.m2÷m2=0D.m4÷m2=m2 4.下列各式运算不正确的是()A.a3•a4=a7B.(a4)4=a16C.a5÷a3=a2D.(﹣2a2)2=﹣4a45.下列运算正确的是()A.(a3)2=a5B.a3×a2=a6C.(ab)4=a4b4D.a6÷a3=a2 6.计算3﹣2的结果是()A.﹣6B.C.9D.﹣97.若(a﹣1)0=1,则()A.a=1B.a≠1C.a=0D.a≥18.a11÷(﹣a2)3•a5的值为()A.1B.﹣1C.﹣a10D.a99.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3或x≠2D.x≠3且x≠2 10.已知a m=2,a n=4,则a3m﹣2n=()A.﹣B.C.1D.211.若等式(a﹣2)3﹣2a=1成立,则a的值可能为()A.3或1或1.5B.3或1.5C.3或1D.1或1.5 12.计算:=()A.2B.﹣2C.D.13.已知a=(﹣5)2,b=(﹣5)﹣1,c=(﹣5)0,那么a,b,c之间的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.c>a>b14.74÷72的值是()A.49B.14C.2D.15.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x616.已知a m=9,a n=3,则a m﹣n的值是()A.﹣3B.3C.D.117.如果3a=5,3b=10,那么3a﹣b的值为()A.B.﹣5C.9D.18.计算:x5÷x2等于()A.x2B.x3C.2x D.2x19.已知5x=2,5y=3,则53x﹣2y的值为()A.1B.C.D.﹣120.已知a m=3,a n=5,则a2m﹣n的值为()A.4B.C.D.21.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.922.计算a5÷a﹣2÷a3的结果是()A.a4B.a﹣4C.a7D.a1423.若代数式(x﹣1)﹣1有意义,则x应满足()A.x=0B.x≠0C.x≠1D.x=124.(﹣)0=()A.﹣B.1C.0D.﹣25.下列运算正确的是()A.x6÷x=x6B.x3+x5=x8C.x2•x2=2x4D.(﹣x2y)3=﹣x6y326.计算的结果是()A.6B.C.8D.27.若3m=5,3n=2,则3m﹣2n等于()A.B.9C.D.28.若a m=6,a n=2,则a m﹣n的值为()A.8B.4C.12D.329.若a=,b=﹣0.32,c=﹣3﹣2,d=,则它们的大小关系是()A.a<b<c<d B.b<c<d<a C.a<d<c<b D.c<b<d<a 30.当代数式2(x+1)﹣1与3(x﹣2)﹣1的值相等时,x=()A.7B.﹣7C.8D.﹣8二.填空题(共19小题)31.计算:5﹣2+(﹣2019)0=______.32.满足等式(3x+2)x+5=1的x的值为______.33.当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是______.34.计算:()0×10﹣1=______.35.计算:(﹣8)0+(﹣2)2=______.36.计算:(﹣2)0+|﹣3|=______.37.已知:5x=6,5y=3.则5x+2y﹣1=______.38.计算:=______.39.已知3a=5,9b=10,则3a﹣b=______.40.若a x÷a3×a5=a6,则x=______.41.若(x+3)x﹣3=1,则x=______.42.计算:(﹣2)﹣2+(﹣2)﹣1﹣(﹣)0=______.43.若代数式(m+2)0+(m﹣2)﹣2有意义,则m的取值范围是______.44.已知a5=6,a2=2,则a3=______.45.计算:(π﹣2019)0+(﹣)3=______.46.若(a﹣3)0=1,则a的取值范围是______.47.已知10m=20,10n=,则10m﹣n=______;9m÷32n=______ 48.若x m=6,x n=9,则x2m﹣n=______.49.已知:2m=12,2n=48,试计算:(﹣3)m﹣n=______.三.解答题(共1小题)50.计算:(﹣)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0同底数幂除法参考答案与试题解析一.选择题(共30小题)1.若2x=8,4y=16,则2x﹣2y的值为()A.B.﹣2C.D.解:∵2x=8,4y=16,∴2x﹣2y=2x÷22y=2x÷4y=8÷16=.故选:A.2.若a=﹣3﹣2,b=(﹣)﹣2,c=(﹣)0,则a,b,c大小关系正确的是()A.a<b<c B.c<a<b C.b<c<a D.a<c<b解:∵a=﹣3﹣2=﹣,b=(﹣)﹣2=9,c=(﹣)0=1,∴a<c<b.故选:D.3.下列计算正确的是()A.m2+m3=m5B.m2•m3=m6C.m2÷m2=0D.m4÷m2=m2解:A.m2与m3不是同类项,所以不能合并,故本选项不合题意;B.m2•m3=m5,故本选项不合题意;C.m2÷m2=1,故本选项不合题意;D.m4÷m2=m2,正确,故本选项符合题意.故选:D.4.下列各式运算不正确的是()A.a3•a4=a7B.(a4)4=a16C.a5÷a3=a2D.(﹣2a2)2=﹣4a4解:A.a3•a4=a7,故本选项不合题意;B.(a4)4=a16,故本选项不合题意;C.a5÷a3=a2,故本选项不合题意;D.(﹣2a2)2=4a4,故本选项符合题意.故选:D.5.下列运算正确的是()A.(a3)2=a5B.a3×a2=a6C.(ab)4=a4b4D.a6÷a3=a2解:A、应为(a3)2=a6,故本选项错误;B、应为a3×a2=a5,故本选项错误;C、(ab)4=a4b4,故本选项正确;D、应为a6÷a3=a3,故本选项错误.故选:C.6.计算3﹣2的结果是()A.﹣6B.C.9D.﹣9解:3﹣2=.故选:B.7.若(a﹣1)0=1,则()A.a=1B.a≠1C.a=0D.a≥1解:由题意知,a﹣1≠0.解得a≠1.故选:B.8.a11÷(﹣a2)3•a5的值为()A.1B.﹣1C.﹣a10D.a9解:a11÷(﹣a2)3•a5=a11÷(﹣a6)•a5=﹣a11﹣6+5=﹣a10.故选:C.9.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3或x≠2D.x≠3且x≠2解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.10.已知a m=2,a n=4,则a3m﹣2n=()A.﹣B.C.1D.2解:∵a m=2,a n=4,∴a3m﹣2n=(a m)3÷(a n)2=23÷42=.故选:B.11.若等式(a﹣2)3﹣2a=1成立,则a的值可能为()A.3或1或1.5B.3或1.5C.3或1D.1或1.5解:当3﹣2a=0,即a=1.5时,等式(a﹣2)3﹣2a=1成立;当a﹣2=1,即a=3时,等式(a﹣2)3﹣2a=1成立;综上所述,当等式(a﹣2)3﹣2a=1成立,则a的值可能为3或1.5,故选:B.12.计算:=()A.2B.﹣2C.D.解:=2,故选:A.13.已知a=(﹣5)2,b=(﹣5)﹣1,c=(﹣5)0,那么a,b,c之间的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.c>a>b解:a=25,b=,c=1,∴b<c<a,故选:B.14.74÷72的值是()A.49B.14C.2D.解:74÷72=74﹣2=72=49.故选:A.15.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x6解:(﹣x3)2÷(﹣x)=x6÷(﹣x)=﹣x5,故选:B.16.已知a m=9,a n=3,则a m﹣n的值是()A.﹣3B.3C.D.1解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3,故选:B.17.如果3a=5,3b=10,那么3a﹣b的值为()A.B.﹣5C.9D.解:∵3a=5,3b=10,∴3a﹣b=.故选:A.18.计算:x5÷x2等于()A.x2B.x3C.2x D.2x 解:x5÷x2=x5﹣2=x3.故选:B.19.已知5x=2,5y=3,则53x﹣2y的值为()A.1B.C.D.﹣1解:∵5x=2,5y=3,∴53x﹣2y=(5x)3÷(5y)2=23÷32=.故选:B.20.已知a m=3,a n=5,则a2m﹣n的值为()A.4B.C.D.解:∵a m=3,a n=5,∴.故选:B.21.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.9解:原式=1××(﹣)=﹣,故选:B.22.计算a5÷a﹣2÷a3的结果是()A.a4B.a﹣4C.a7D.a14解:原式=a7÷a3=a4,故选:A.23.若代数式(x﹣1)﹣1有意义,则x应满足()A.x=0B.x≠0C.x≠1D.x=1解:若代数式(x﹣1)﹣1有意义,则x﹣1≠0,解得:x≠1.故选:C.24.(﹣)0=()A.﹣B.1C.0D.﹣解:(﹣)0=1.故选:B.25.下列运算正确的是()A.x6÷x=x6B.x3+x5=x8C.x2•x2=2x4D.(﹣x2y)3=﹣x6y3解:x6÷x=x5,故选项A错误;x3与x5不是同类型,故不能合并,故选项B错误;x2•x2=x4,故选项C错误;(﹣x2y)3=﹣x6y3.故选项D正确.故选:D.26.计算的结果是()A.6B.C.8D.解:原式=23=8,故选:C.27.若3m=5,3n=2,则3m﹣2n等于()A.B.9C.D.解:∵3m=5,3n=2,∴3m﹣2n=3m÷(3n)2=5÷22=.故选:C.28.若a m=6,a n=2,则a m﹣n的值为()A.8B.4C.12D.3解:∵a m=6,a n=2,∴原式=a m÷a n=3,故选:D.29.若a=,b=﹣0.32,c=﹣3﹣2,d=,则它们的大小关系是()A.a<b<c<d B.b<c<d<a C.a<d<c<b D.c<b<d<a解:∵a==9,b=﹣0.32=﹣0.09,c=﹣3﹣2=﹣,d==1,∴c<b<d<a.故选:D.30.当代数式2(x+1)﹣1与3(x﹣2)﹣1的值相等时,x=()A.7B.﹣7C.8D.﹣8解:∵代数式2(x+1)﹣1与3(x﹣2)﹣1的值相等,∴=,则3(x+1)=2(x﹣2),故3x+3=2x﹣4,解得:x=﹣7,检验:当x=﹣7时,(x+1)(x﹣2)≠0,故x=﹣7是方程的解.故选:B.二.填空题(共19小题)31.计算:5﹣2+(﹣2019)0=1.解:原式=+1=1.故答案为:1.32.满足等式(3x+2)x+5=1的x的值为﹣,﹣1或﹣5.解:(1)当3x+2=1时,x=﹣,此时(﹣1+2)=1,等式成立;(2)当3x+2=﹣1时,x=﹣1,此时(﹣3+2)﹣1+5=1,等式成立;(3)当x+5=0时,x=﹣5,此时(﹣15+2)0=1,等式成立.综上所述,x的值为:﹣,﹣1或﹣5.故答案为:﹣,﹣1或﹣5.33.当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是﹣7.解:∵2(x+1)﹣1与3(x﹣2)﹣1的值相等,∴=,则2x﹣4=3x+3,解得:x=﹣7,检验:x=﹣7时,(x+1)(x﹣2)≠0,故x=﹣7是原方程的根.故答案为:﹣7.34.计算:()0×10﹣1=.解:原式=1×=,故答案为:.35.计算:(﹣8)0+(﹣2)2=5.解:原式=1+4=5.故答案为:5.36.计算:(﹣2)0+|﹣3|=4.解:原式=1+3=4.故答案为:4.37.已知:5x=6,5y=3.则5x+2y﹣1=.解:∵5x=6,5y=3,∴5x+2y﹣1=5x•(5y)2÷5=6×32÷5=6×9÷5=.故答案为:38.计算:=2.解:原式=1﹣3+4=2,故答案为:239.已知3a=5,9b=10,则3a﹣b=.解:∵9b=32b=10,∴3b=,∵3a=5,∴3a﹣b=3a÷3b=5=,故答案为:40.若a x÷a3×a5=a6,则x=4.解:∵a x÷a3×a5=a6,∴x﹣3+5=6x=4.故答案为4.41.若(x+3)x﹣3=1,则x=3或﹣2.解:由题意得:①x﹣3=0,解得:x=3,②x+3=1,解得:x=﹣2,③x+3=﹣1,且x﹣3为偶数,解得:无解,故答案为:3或﹣2.42.计算:(﹣2)﹣2+(﹣2)﹣1﹣(﹣)0=﹣.解:原式=﹣﹣1=﹣.故答案为:.43.若代数式(m+2)0+(m﹣2)﹣2有意义,则m的取值范围是m≠±2.解:∵(m+2)0+(m﹣2)﹣2有意义,∴m+2≠0且m﹣2≠0,解得:m≠±2.故答案为:m≠±2.44.已知a5=6,a2=2,则a3=3.解:∵a5=6,a2=2,∴a3=6÷2=3.故答案为:3.45.计算:(π﹣2019)0+(﹣)3=.解:(π﹣2019)0+(﹣)3=1﹣=.故答案为:.46.若(a﹣3)0=1,则a的取值范围是a≠3.解:∵(a﹣3)0=1,∴a﹣3≠0,故a≠3.故答案为:a≠3.47.已知10m=20,10n=,则10m﹣n=100;9m÷32n=81解:∵10m=20,10n=,∴10m﹣n=10m÷10n==100;∴m﹣n=2,9m÷32n=32m÷32n=32m﹣2n=32(m﹣n)=34=81.故答案为:100;81.48.若x m=6,x n=9,则x2m﹣n=4.解:∵x m=6,∴x2m=62=36,∴x2m﹣n=36÷9=4.故答案为:4.49.已知:2m=12,2n=48,试计算:(﹣3)m﹣n=.解:∵2m=12,2n=48,∴2m﹣n=12÷48==2﹣2,∴m﹣n=﹣2,∴(﹣3)m﹣n=(﹣3)﹣2=.故答案为:.三.解答题(共1小题)50.计算:(﹣)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0解:原式=(﹣3)2+4×(﹣1)﹣8+1=9﹣4﹣8+1=﹣2。

同底数幂的除法练习题含答案

同底数幂的除法练习题含答案

同底数幂的除法练习题含答案1.选择题下列算式中正确的是.A.0=0B.-2=0.01C.0=1D.10-4=0.0001下列计算正确的是.A.a3m-5÷a5-m=a4m+10B.x4÷x3÷x2=x3C.5÷3=-yD.ma+2b÷mb-a=m2a+b若x2m+nyn÷x2y2=x5y,则m、n的值分别为.A.m=3,n=B.m=2,n=C.m=2,n=D.m=3,n=12.填空题3÷a3.108÷104.y10÷4÷2.若32x-1=1,则x;若3x=127,则x= .用科学记数法表示0.0001234×1083.用整数或小数表示下列各数9.932×107.21×10-5-4.21×10-3.021×10-34.用科学记数法表示下列各数732400 -66439190000.0000000600-0.000002175.计算2÷x2÷x+x3÷2·28÷[3×2]m÷2m÷bm÷4c5÷3[123-3+33]÷1.已知252m÷52m-1=125,求m的值.2.已知[2]3÷4=0,求x、y的值.3.已知xa=24,xb=16,求xa-b的值.121212填空:∵am÷am=a mam=1,又∵am÷am=am-m=a0,∴a0a.已知a=11?66?12?67?13?68?14?69?15?7011?65?12?66?13?67?14?68?15?69·100,问 a的整数部分是多少?参考答案1.选择题DDC2.填空题-a3104=10000y225x2-20xy+4y1,-21.234×1043.用整数或小数表示下列各数 99320.0000721-42100000-0.0030214.用科学记数法表示下列各数7.324×105-6.643919×1096.005×10-8-2.17×10-65.计算2x3-11-x2-y2-z2-2xy+2xz+2yz-10x2-20xy-10y21.m=12.x=0,y=03.21,≠100,提示:设68=m同底数幂的除法专项练习30题2371.计算:+m÷m.2.计算:3?x﹣+?x÷x3.已知a=3,a=4,求amnmn2m﹣n23333292的值.4.已知3=6,3=﹣3,求3abc2m﹣3n的值.5.已知2=3,4=5,8=7,求8 6.如果x=5,x=25,求x7.计算:a?an7mna+c﹣2b的值.5m﹣2n的值.÷a.8.计算:﹣m÷m;÷;÷;69.3×3÷10.把下式化成的形式:3p+52515[﹣6]÷4511.计算:÷a;÷12.?÷13.计算:x?÷14.若÷x与4x为同类项,且2m+5n=7,求4m﹣25n 的值.15.计算:97m÷m=;÷=; m2n 3m﹣n 222332422324258222n2n﹣1p3689363652m+3÷6.m.63÷÷=16.已知2=8,2=4求2 mnmnm﹣n的值.2m+2n的值.17.已知x=8,x=5,求xmnkm﹣n的值;已知10=3,10=2,求10mn3m﹣2n的值.18.已知a=4,a=3,a=2,求a19.计算:÷[]k2n+m﹣2k32n20.已知:a=2,a=3,a=4,试求a 21.已知5x﹣3y﹣2=0,求10ab10x6ym的值.÷10的值.22.已知10=2,10=9,求:23.已知 24.计算:÷amn2n23n+2的值.,求n的值.a.225.已知a=2,a=7,求a33m+2n﹣a2n﹣3m的值.26.计算:?÷.27.?÷.28.已知a=4,a=9,求a29.计算7483÷74÷2m+2m+2x÷x53÷xy3x﹣2y534228的值.62x÷x?x30.若3?9 22a+1a+1=81,求a的值.参考答案:1.+m÷m,=×+m,=﹣8m+m,=﹣7m2333329263929299992.3?x﹣+?x÷x=3x?x﹣x+x?x÷x=3x﹣x+x=3x..∵a=3,a=4,∴amnmn2m﹣n237323666=a÷a=÷a=3÷4=.=3÷3=÷=6÷=﹣.=23a+3c﹣6b5n2m3nm2n3232mnm2n24.∵3=6,3=﹣3,∴3abc2m﹣3n5.∵2=3,4=5,8=7,∴8 ma+c﹣2b=?÷=27×7÷125=25254a33c2b36.∵x=5,x=25,∴x=÷=5÷=5÷5=5. nn+572n+5﹣72n﹣27.a?a÷a=a=a939﹣36636﹣3338.﹣m÷m=﹣1×m=﹣m;÷===﹣a; 656﹣512m+3m﹣mm+3÷===﹣8;÷6=6=6368989.3×3÷=3÷3=33p+52510. 15[﹣6]÷4p+525=15×[﹣6]÷45[﹣]3+p+2+5﹣5p+5=[15×]÷×=211.÷a=a÷a=a=a;22n2n﹣122n2n﹣12+2n﹣3÷=÷==.232425*********12.?÷=a?a÷=﹣a÷a=﹣a.332429813.x?÷=4x÷x=4x.m2n3m﹣nm﹣2n3m﹣n3m﹣6nm﹣n2m﹣5n214.÷x=÷x=x÷x=x,因它与4x为同类项,所以2m ﹣5n=2,又2m+5n=7,2222所以4m﹣25n=﹣==7×2=14.979﹣72626﹣2415. m÷m=m=m;÷==a;63636﹣3﹣12÷÷=÷[﹣]÷=﹣=﹣.m3n2m﹣n3﹣2m+2n3+4716.∵2=8=2,2=4=2,∴m=3,n=2,2=2=2;2=2=2=128. 17.∵x=8,x=5,∴xmnmnm﹣n5m﹣2nm82816816﹣88=x÷x,=8÷5=;m332nn223m﹣2nmn∵10=3,10=2,∴10==3=27,10==2=4,∴1018.∵a=4,a=3,∴a19.?=4÷2×3=2n6n+63nm3k2nmk3n232y)÷[]=﹣27xmk2n+m﹣2k3y÷=﹣27x2kn2mk32n6n+63n6n2n6ny÷xy=﹣27xy20.∵a=2,a=3,a=4,∴a=a?a÷a=?a÷=4×3÷16=. 10x6y10x﹣6ym221.由5x﹣3y﹣2=0,得5x﹣3y=2.∴10÷10=1010x6y4故10÷10的值是102.23.∵32m+22=10=102×2=10.4=1022a﹣b=m+1m=.,∴9÷3?a=a 2m+2=3n+2nm+1=9=9÷92mm+1=9==,∴n=?a=an﹣2+2n﹣1224.÷am2n?a=a÷a24n3n+24n﹣3n﹣2a=a3n﹣2n=a.2m3n25.∵a=2,a=7,∴a 3m+2n﹣a2n﹣3m=?﹣÷=8×49﹣49÷8=26.?÷=÷=27.原式=?a÷=﹣a28.a 3x﹣2y51225+122172328585﹣8==15﹣315÷=﹣a÷a=﹣a.故答案为:﹣a.=÷=4÷9=43x3y23229.a÷a=a;8355÷==﹣m;74333÷==xy;2m+2m+2mx÷x=x;53532÷=﹣÷=﹣;6245x÷x?x=x?x=x.223430.原式可化为:3?3÷3=3,即2+2﹣3=4,解得a=3.故答案为:3.7同底数幂的除法专项训练一、填空题1.计算:a6?a25?2.2.在横线上填入适当的代数式:x6?_____?x14,x6?_____?x2.3.计算:x9?x5?x= x5?4.计算:9?85.计算:3?2=___________.二、选择题6.下列计算正确的是A.7÷4=y; B.5÷=x4+y4;C.6÷2=; D.-x5÷=x2.7.下列各式计算结果不正确的是A.ab2=a3b3;B.a3b2÷2ab=1a2b;C.3=8a3b6;D.a3÷a3·a3=a2.8.计算:??a?5?a2a?34的结果,正确的是A.a7;B.?a6;C.?a;D.a6.9. 对于非零实数m,下列式子运算正确的是A.2?m; B.m3?m2?m6;C.m2?m3?m; D.m6?m2?m4.10.若3x?5,3y?4,则32x?y等于25;B.; C.21;D.20.三、解答题11.计算: A.⑴4?2;⑵5?2;444⑶4?2;⑷7?4?3.3312.计算:⑴a9?a5?3;⑵7?4?3;432332⑶83?43?25;⑷. ??13.地球上的所有植物每年能提供人类大约6.6?1016大卡的能量,若每人每年要消耗8?105大卡的植物能量,试问地球能养活多少人?14.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是A.; B.4;C.8; D.6.15.如果xm?8,xn?5,则xm?n16. 解方程:28?x?215;7x?5.17. 已知am?3,an?9,求a3m?2n的值.18.已知32m?5,3n?10,求9m?n;92m?n.参考答案1.a4,?a3;2.x8,x4;3.x9, x;4.a?1;5. m?n.6.D;7.D;8.C;9.D;10.A.11.⑴x2y2;⑵?a3b;⑶2;⑷.1.12.⑴a2;⑵a6;⑶83?43?25=29?26?25=210;⑷?x.13.解:÷=0.825?1011=8.25?1010答:略.14.C.15..716. 解:x?215?28?27;x??74.17.解:因为am?3,an?9,1所以a3m?2n=a3m?a2n=3?2=33?92=.18.解:因为32m?5,3n?10,所以9m?n?32m?2n?32m?32n=32m?2?5?100? 92m?n=34m?2n=2?2=25?100=1.120,。

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。

专题1-7 同底数幂的除法(基础检测)(解析版)

专题1-7 同底数幂的除法(基础检测)(解析版)

专题1.7 同底数幂的除法(基础检测)一、单选题1.计算()322a a -⋅的结果是( )A .8aB .-8aC .7aD .-7a 【答案】B【分析】先根据幂的乘方运算法则化简,再根据同底数幂的乘法法则计算即可.【详解】解:-a 2•(a 2)3=-a 2•a 6=-a 8.故选:B .【点睛】本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键. 2.下列运算正确的是( )A .236a a a ⋅=B .236a a a +=C .32a a a ÷=D .()328a a = 【答案】C【分析】利用合并同类项法则、同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则分别计算得出即可.【详解】解:A 、235a a a +=,不是同类项无法合并,故此选项错误;B 、236+a a a ≠,故此选项错误;C 、32a a a ÷=,故此选项正确;D 、236()a a =,故此选项错误;故选:C .【点睛】本题考查了合并同类项法则、同底数幂的除法、同底数幂的乘法、幂的乘方,解题的关键是掌握相关运算的法则.3.已知2,5a b x x ==,则a b x -等于( )A .52B .3-C .25D .10【答案】C【分析】根据同底数幂的除法将原式变形为b a x x ÷,然后代入计算即可.【详解】解:a b x -=2=25=5b a x x ÷÷ 故选:C .【点睛】本题考查同底数幂的除法逆用,题目比较简单,掌握同底数幂的除法法则正确计算是解题关键. 4.若a x =3,a y =2,则a 2x-y 等于( )A .3B .11C .92D .7 【答案】C【分析】根据同底数幂的除法法则求解.【详解】解:∵a x =3,a y =2, ∴22()x x y y a a a-==92. 故选:C .【点睛】本题考查了同底数幂的除法,解答本题的关键是掌握同底数幂的除法法则:底数不变,指数相减.5.给出下列四个计算式子:①325x x x ;②422()a b a b ⋅=;③624x x x ÷=;④()326x y xy ⋅=其中计算正确的序号是( )A .①②B .①③C .②③D .②④ 【答案】B【分析】根据同底数幂的乘法法则,积的乘方法则,同底数幂的除法法则,幂的乘法法则分别求解即可得出答案.【详解】解:①33225x x x x ,∴①正确②444()a b a b ⋅=,∴②错误③()62624x x x x -÷==,∴③正确④()3236x y x y ⋅=,∴④错误∴正确的序号是①③故选:B .【点睛】本题考查了同底数幂的乘法,除法,同底数幂的乘方,幂的乘方,解题的关键是熟练掌握同底数幂的乘法法则,积的乘方法则,同底数幂的除法法则,幂的乘法法则.6.北京时间4月22日20时40分,天空迎来“天琴座流星雨”,每小时有一二十颗流星划过天空,让人叹为观止.已知地球的质量约为21610⨯吨,而在46亿年的时间内大约有20万吨的流星体下落,那么地球的质量大约是这些流星体的( )倍A .14310⨯B .15310⨯C .16310⨯D .17310⨯【答案】C【分析】先把20万用科学计数法表示,然后用地球的质量除以流星体的质量即可.【详解】解:20万5=200000=2.010⨯()()21516610 2.010310⨯÷⨯=⨯故选C .【点睛】本题考查了科学计数法,整数指数幂的除法,正确的计算是解题的关键.二、填空题7.计算:(1)(a 2)4•(﹣a )3=_____(2)(﹣a )4÷(﹣a )=____(3)0.1252018×(﹣8)2019=____.【答案】-a 11 -a 3 -8【分析】(1)根据幂的乘方和同底数幂的乘法计算即可;(2)根据同底数幂的除法计算即可;(3)根据积的乘方的逆用计算即可.【详解】解:(1)(a 2)4•(-a )3= a 2×4•(-a 3)= a 8•(-a 3)=-a 8+3=-a 11故答案为:-a 11(2)(-a )4÷(-a )=(-a )4-1=(-a )3=-a 3故答案为:-a 3(3)()()()()()201820192018201820180.12580.125880.125888⨯-=⨯-⨯-=⨯-⨯-=-⎡⎤⎣⎦故答案为:-8.【点睛】此题考查的是幂的运算性质,掌握幂的乘方、同底数幂的乘法、同底数幂的除法和积的乘方的逆用是解决此题的关键.8.8x ÷______2x =.【答案】6x【分析】根据同底数幂的除法法则即可得.【详解】解:862x x x ÷=,故答案为:6x .【点睛】本题考查了同底数幂的除法,熟练掌握运算法则是解题关键.9.255m m ÷的计算结果为__________.【答案】5m【分析】利用幂的乘方和同底数幂的除法法则计算.【详解】解:255m m ÷=()255mm ÷ =()255m m ÷ =5m故答案为:5m .【点睛】本题考查了幂的乘方和同底数幂的除法,解题的关键是掌握运算法则的灵活运用.10.3m =12,3n =6,3m ﹣n =___.【答案】2【分析】逆向运用同底数幂的除法法则计算即可.【详解】解:∵3m =12,3n =6,∴3m -n =3m ÷3n =12÷6=2.故答案为:2.【点睛】本题考查了同底数幂的除法,熟记幂的运算法则是解答本题的关键.11.若5x =18,5y =3,则5x -2y =________【答案】2【分析】先把5x -2y 化成5x ÷(5y )2,再代值计算即可得出答案.【详解】解:∵5x =18,5y =3,∴5x -2y =5x ÷52y =5x ÷(5y )2=18÷32=2. 故答案为:2.【点睛】此题考查了同底数幂的除法和幂的乘方,熟练掌握运算性质和法则是解题的关键.12.已知20x y --=,则1010x y ÷= _________.【答案】100【分析】利用同底数的除法将1010x y ÷转化成10x y -,再将已知变形整体代入计算即可.【详解】∵20x y --=,∴2x y -=,∵210101010100x y x y -÷===.故答案为:100.【点睛】本题考查了同底数幂的除法运算,正确将原式变形是解题关键.13.已知22139273m ⨯÷=,则m =___________.【分析】首先将已知等式化为同底数幂,再根据幂的运算法则,列出等式,即可求得m 的值.【详解】解:原式可转化为223213333m ⨯÷=,∴22321m +-=解得11m =故答案为11.【点睛】此题主要考查幂的运算,关键是转化为同底数幂,即可得解.14.纳米是非常小的长度单位,已知 1 纳米=106-毫米,某种病毒的直径为 1000 纳米,用科学记数法可表示为_____毫米.【答案】1×10−3 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】1000纳米=1000×10−6=1×10−3毫米, 故答案为:1×10−3. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题15.(1)()()22y x y x y --+(2)()32248222a a a a a -+⋅-÷【答案】(1)222x y --;(2)67a -【分析】(1)根据单项式和多项式的乘法计算,完全平方公式的计算,最后进行合并同类项的计算即可. (2)根据同底数幂的乘法,同底数幂的除法的运算法则,以及幂的乘方的运算法则进行计算,然后再合并同类项即可.【详解】解:(1)原式22222xy y x xy y =----,222x y =--,故答案为:222x y --;(2)原式66682a a a =-+-,故答案为:67a -.【点睛】本题考查了单项式与多项式的乘法法则,完全平方公式的运算法则,同底数幂的乘法,同底数幂的除法以及乘方的运算法则,合并同类项的运算法则,掌握整式的运算法则是解题的关键.16.已知8,2m n a a ==,求m n a -【答案】4【分析】根据“同底数幂相除,底数不变,指数相减”解答即可.【详解】∵8,2m n a a ==∴824m n m n a a a -=÷=÷=【点睛】本题考查的是同底数幂相除,掌握其运算法则是关键.17.已知642m-1÷16m+1÷23m-3=8,求m 的值.【答案】m=2【分析】将等式中的每一项都化成同底数的项,再根据同底数幂的除法法则计算.【详解】∵642m-1÷16m+1÷23m-3=8 ∴, , ,,∴5m-7=3, m=2.故答案为:m=2.【点睛】本题考查同底数幂的除法,解本题的关键是将等式中的每一项都化成同底数的项.18.已知a x =2,a y =3,求下列各式的值:(1)a 2x +y ;(2)a 2x -y .【答案】(1)a 2x +y =12;(2)a 2x -y =43. 【分析】把原式化为关于,x y a a 的式子,再代入求解即可.【详解】(1)a 2x +y =a 2x ·a y =(a x )2·a y =4×3=12. (2)a 2x -y =a 2x ÷a y =(a x )2÷a y =22÷3=43. 【点睛】本题主要考查了同底数幂的乘法、除法的逆运算以及幂的乘方,解题关键是熟练掌握同底数幂的乘法、除法以及幂的乘方法则.19.已知常数a 、b 满足3a ×32b =27,且(5a )2×(52b )2÷(53a )b =1,求a 2+4b 2的值.【答案】1.【分析】直接利用同底数幂的乘除运算法则将原式变形进而得出答案.【详解】解:∵3a ×32b =27, ∴3a+2b =33,故a+2b =3,∵(5a )2×(52b )2÷(53a )b =1,∴52a+4b ÷53ab =1,∴2a+4b ﹣3ab =0,∵a+2b =3,∴2a+4b=6,∴6﹣3ab =0,则ab =2,∴a 2+4b 2=(a+2b )2﹣4ab=32﹣4×2 =1.【点睛】本题考查同底数幂的乘除运算,正确将原式变形是解题关键.20.若m n a a =(0a >且1a ≠,m 、n 为整数),则m n =,利用这一结论解决下列问题:(1)若982m =,则m =__________;(2)已知1727393x x +÷⋅=,求x 的值.【答案】(1)3;(2)2【分析】(1)根据幂的乘方运算法则得到3m =9,可得m 值;(2)根据幂的乘方运算法则以及同底数幂的乘除法法则将已知等式变形,得到3227x x -++=,解之即可.【详解】解:(1)()3398222mm m ===, 则有39m =,∴3m =; (2)1727393x x +÷⋅=, 32273333x x +÷⋅=, ()322733x x -++=, ∴3227x x -++=, ∴2x =.【点睛】本题主要考查了幂的乘方,同底数幂的乘除法,熟记幂的运算法则是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同底数幂的除法试题精选(二)一.选择题(共16小题)1.已知a m=6,a n=3,则a2m﹣3n的值为()A.9B.C.2D.2.下列计算:①x6÷x2=x3,②(x2)6=x8,③(3xy)3=9x3y3.其中正确的计算有()A.0个B.1个C.2个D.3个3.已知x m=2,x n=3,则x2m﹣3n的值为()A.﹣5 B.C.D.﹣234.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15 D.105.(﹣2)2014÷(﹣2)2013等于()A.﹣2 B.2C.(﹣2)2012D.﹣220116.下面是某同学在一次测验中的计算摘录,其中正确的是()A.b3•b3=2b3B.(a5)2=a7C.(ab2)3=a3b6D.(﹣a)10÷(﹣a)7=a37.若a m=2,a n=3,则a2m﹣n的值是()A.1B.12 C.D.8.x15÷x3等于()A.x5B.x45C.x12D.x189.已知(2a m b4)÷(4ab n)=,则m、n的值分别为()A.m=1,n=4 B.m=2,n=3 C.m=3,n=4 D.m=4,n=510.若m、n都是正整数,a mn÷a n的结果是()D.a mn﹣mA.a m B.a mn﹣n C.a11.若x﹣2y+1=0,则2x÷4y×8等于()A.1B.4C.8D.﹣1612.如果a m=3,a n=6,则a n﹣m等于()A.18 B.12 C.9D.213.下列计算正确的是()A.2a﹣a=2 B.m6÷m2=m3C.x2014+x2014=2x2014D.t2•t3=t614.已知3m=4,3n=5,3m﹣2n+1的值为()A.B.C.D.15.计算a n+1•a n﹣1÷(a n)2的结果是()A.1B.0C.﹣1 D.±116.在①﹣a5•(﹣a),②(﹣a6)÷(﹣a3),③(﹣a2)3•(a3)2,④[﹣(﹣a)2]5中,计算结果为﹣a10的有()A.①②B.③④C.②④D.④二.填空题(共14小题)17.(2014•闸北区二模)计算:x4n÷x n=_________.18.(2014•红桥区二模)计算(﹣a)10÷(﹣a)3的结果等于_________.19.已知52x+1=75,则52x﹣3的值=_________.20.已知a m=2,a n=3,则a2m﹣3n=_________.21.已知:x a=4,x b=3,则x a﹣2b=_________.22.计算:(a2)3÷a4•a2=_________.23.计算:(a4)3÷a8•a4=_________.24.若2m=4,2n=3,则22m﹣n=_________.25.计算a2÷a﹣4•a﹣8_________.26.若5x=18,5y=3,则5x﹣2y的算术平方根是_________.27.已知x m=6,x n=3,则x m﹣n=_________,(﹣x m)2÷x﹣n=_________.28.已知:162×43=4x+y,9x÷3y=9,则x=_________,y=_________.29.化简:x3÷(﹣x)3×(﹣x)2=_________.30.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是_________.同底数幂的除法试题精选(二)参考答案与试题解析一.选择题(共16小题)1.已知a m=6,a n=3,则a2m﹣3n的值为()A.9B.C.2D.考点:同底数幂的除法.分析:根据同底数幂的除法和幂的乘方的性质的逆用先整理成已知条件的形式,然后代入数据计算即可.解答:解:a2m﹣3n=a2m÷a3n=(a m)2÷(a n)3,∵a m=6,a n=3,∴原式=(a m)2÷(a n)3,=62÷33=.故选D.点评:本题考查了同底数幂的除法,幂的乘方,逆用性质构造成a m、a n的形式是解题的关键.2.下列计算:①x6÷x2=x3,②(x2)6=x8,③(3xy)3=9x3y3.其中正确的计算有()A.0个B.1个C.2个D.3个考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相除,底数不变,指数相减;幂的乘方,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.解答:解:①x6÷x2=x4,②(x2)6=x12,③(3xy)3=27x3y3.所以都不正确.故选A.点评:本题考查同底数幂的除法,幂的乘方,积的乘方,熟练掌握运算性质是解题的关键.3.已知x m=2,x n=3,则x2m﹣3n的值为()A.﹣5 B.C.D.﹣23考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可得x2m,x3n,根据同底数幂的除法,可得答案.解答:解:x2m﹣3n=x2m÷x3n=(x m)2÷(x n)3=22÷33=,故B正确,故选:B.点评:本题考查了同底数幂的除法,先算幂的乘方,再算同底数幂的除法.4.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15 D.10考点:同底数幂的除法.分析:根据同底数幂的除法,底数不变,指数相减,可得答案.解答:解:3x﹣y=3x÷3y=15÷5=3,故选:B.点评:本题考查了同底数幂的除法,底数不变,指数相减.5.(﹣2)2014÷(﹣2)2013等于()A.﹣2 B.2C.(﹣2)2012D.﹣22011考点:同底数幂的除法.分析:运用同底数幂的除法法则计算即可.解答:解:(﹣2)2014÷(﹣2)2013=(﹣2)2014﹣2013=﹣2,故选:A.点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键.6.下面是某同学在一次测验中的计算摘录,其中正确的是()A.b3•b3=2b3B.(a5)2=a7C.(ab2)3=a3b6D.(﹣a)10÷(﹣a)7=a3考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘,可得答案.解答:解:(ab2)3=a3b6,故C正确,故选:C.点评:本题考查了同底数幂的除法,注意同底数幂的除法,底数不变指数相减.7.若a m=2,a n=3,则a2m﹣n的值是()A.1B.12 C.D.考点:同底数幂的除法;幂的乘方与积的乘方.分析:首先应用含a m、a n的代数式表示a2m﹣n,然后将a m、a n的值代入即可求解.解答:解:∵a m=2,a n=3,∴a2m﹣n=a2m÷a n,=(a m)2÷3,=4÷3,=,故选:D.点评:本题主要考查同底数幂的除法,幂的乘方,熟练掌握运算性质并灵活运用是解题的关键.8.x15÷x3等于()A.x5B.x45C.x12D.x18考点:同底数幂的除法.分析:根据同底数幂相除,底数不变,指数相减解答.解答:解:x15÷x3=x15﹣3=x12.故选C.点评:本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.9.已知(2a m b4)÷(4ab n)=,则m、n的值分别为()A.m=1,n=4 B.m=2,n=3 C.m=3,n=4 D.m=4,n=5考点:同底数幂的除法.专题:计算题.分析:根据同底数幂的除法法则列出关于mn的方程,求出nm的值即可.解答:解:由题意可知,m﹣1=1,解得m=2;4﹣n=1,解得,n=3.故选B.点评:本题考查的是同底数幂的除法法则,能根据题意得出关于mn的方程是解答此题的关键.10.若m、n都是正整数,a mn÷a n的结果是()D.a mn﹣mA.a m B.a mn﹣n C.a考点:同底数幂的除法.分析:运用同底数幂的除法法则计算即可.解答:解:a mn÷a n=a mn﹣n,故选:B.点评:此题考查了同底数幂的除法,解题的关键是熟记法则.11.若x﹣2y+1=0,则2x÷4y×8等于()A.1C.8D.﹣16考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:推理填空题.分析:先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.解答:解:原式=2x÷22y×23,=2x﹣2y+3,=22,=4.故选B.点评:本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.12.如果a m=3,a n=6,则a n﹣m等于()A.18 B.12 C.9D.2考点:同底数幂的除法.分析:把a n﹣m化成a n÷a m,代入求出即可.解答:解:∵a m=3,a n=6,∴a n﹣m=a n÷a m6÷3=2,故选D.点评:本题考查了同底数幂的除法的应用,关键是把a n﹣m化成a n÷a m的形式,用了整体代入思想.13.下列计算正确的是()A.2a﹣a=2 B.m6÷m2=m3C.x2014+x2014=2x2014D.t2•t3=t6考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则,同底数幂的乘法与除法的知识求解即可求得答案.解答:解:A、2a﹣a=a,故A选项错误;B、m6÷m2=m4,故B选项错误;C、x2014+x2014=2x2014,故C选项正确;D、t2•t3=t5,故D选项错误.故选:C.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法等知识,解题要注意细心.14.已知3m=4,3n=5,3m﹣2n+1的值为()A.B.C.D.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:先根据同底数幂的乘法及除法,幂的乘方与积的乘方法则把原式化为3m÷(3n)2×3的形式,再把3m=4,3n=5代入进行计算即可.解答:解:原式=3m÷(3n)2×3=4÷52×3=×3=.故选A.点评:本题考查的是同底数幂的乘法及除法,幂的乘方与积的乘方法则,能逆用此法则把原式化为3m÷(3n)2×3的形式是解答此题的关键.15.计算a n+1•a n﹣1÷(a n)2的结果是()A.1B.0C.﹣1 D.±1考点:同底数幂的乘法;同底数幂的除法.分析:本题是同底数幂的乘法、除法以及幂的乘方的混合运算,计算时根据各自法则计算即可,特别注意的是运算的顺序.解答:解:a n+1•a n﹣1÷(a n)2,=a2n÷a2n,=1.故选A.点评:做此类混合运算时首先是要记准法则,其次是要注意运算的顺序.16.在①﹣a5•(﹣a),②(﹣a6)÷(﹣a3),③(﹣a2)3•(a3)2,④[﹣(﹣a)2]5中,计算结果为﹣a10的有()A.①②B.③④C.②④D.④考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;对各选项计算后即可选取答案.解答:解:①﹣a5•(﹣a)=﹣a6,②(﹣a6)÷(﹣a3)=﹣a3,③(﹣a2)3•(a3)2=(﹣a6)•(a6)=a12,④[﹣(﹣a)2]5=﹣a10,所以计算结果为﹣a10的有④.故选D.点评:本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质是解题的关键,运算时要注意符号的变化.二.填空题(共14小题)17.(2014•闸北区二模)计算:x4n÷x n=x3n.考点:同底数幂的除法.分析:运用同底数幂的除法法则计算.解答:解:x4n÷x n=x3n.故答案为:x3n.点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键.18.(2014•红桥区二模)计算(﹣a)10÷(﹣a)3的结果等于﹣a7.考点:同底数幂的除法;幂的乘方与积的乘方.分析:运用同底数幂的除法,底数不变,指数相减.解答:解:(﹣a)10÷(﹣a)3=﹣a7故答案为:﹣a7.点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键.19.已知52x+1=75,则52x﹣3的值=.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把52x﹣3化为52x+1﹣4求解即可.解答:解:∵52x+1=75,∴52x﹣3=52x+1﹣4=52x+1÷54=75÷625=,故答案为:.点评:本题主要考查了同底数幂的除法,同底数幂的乘法,解题的关键是把52x﹣3化为52x+1﹣4求解.20.已知a m=2,a n=3,则a2m﹣3n=.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,逆运用性质计算即可.解答:解:∵a m=2,a n=3,∴a2m﹣3n=a2m÷a3n,=(a m)2÷(a n)3,=22÷33,=.故填.点评:本题考查同底数幂的除法法则的逆运算,幂的乘方的性质的逆运算,熟练掌握性质是解题的关键.21.已知:x a=4,x b=3,则x a﹣2b=.考点:同底数幂的除法;幂的乘方与积的乘方.专题:推理填空题.分析:根据同底数幂的除法及乘法进行计算即可.解答:解:x a﹣2b=x a÷(x b•x b),=4÷(3×3),=.故答案为:.点评:本题考查的是同底数幂的除法及乘法,解答此题的关键是逆用同底数幂的除法及乘法的运算法则进行计算.22.计算:(a2)3÷a4•a2=a4.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加计算.解答:解:(a2)3÷a4•a2,=a6÷a4•a2,=a2•a2,=a4.点评:本题考查了同底数幂的除法,幂的乘方的性质,正确运用幂的运算性质,分清运算顺序是解题的关键.23.计算:(a4)3÷a8•a4=a8.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加,计算即可.解答:解:(a4)3÷a8•a4,=a12÷a8•a4,=a4•a4,=a8.点评:本题考查了幂的乘方的性质,同底数幂的除法,熟练掌握运算性质是解题的关键.24.若2m=4,2n=3,则22m﹣n=.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法,幂的乘方的性质的逆运用先表示成已知条件的形式,然后代入数据计算即可.解答:解:∵2m=4,2n=3,∴22m﹣n=(2m)2÷2n,=16÷3,=.故答案为:.点评:本题考查了同底数幂的除法,幂的乘方的性质,逆用运算性质,将22m﹣n化为(2m)2÷2n是求值的关键,逆用幂的运算法则巧求代数式的值是中考的重要题型,由此可见,我们既要熟练地正向使用法则,又要熟练地逆向使用法则.25.计算a2÷a﹣4•a﹣8a﹣2.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加计算.解答:解:a2÷a﹣4•a﹣8=a2+4﹣8=a﹣2故答案为:a﹣2.点评:本题考查了同底数幂的除法及乘法的性质,正确运用幂的运算性质是解题的关键.26.若5x=18,5y=3,则5x﹣2y的算术平方根是.考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方.专题:计算题.分析:先根据幂的乘法法则求出52y的值,再根据同底数幂的除法法则进计算出5x﹣2y的值,再根据算术平方根的定义进行解答.解答:解:∵5y=3,∴(5y)2=52y=9,∴5x﹣2y===2,∴5x﹣2y的算术平方根是.故答案为:.点评:本题考查的是同底数幂的除法、算术平方根、幂的乘方与积的乘方法则,熟练掌握以上知识是解答此题的关键.27.已知x m=6,x n=3,则x m﹣n=2,(﹣x m)2÷x﹣n=108.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则及幂的乘方法则计算即可.解答:解:x m﹣n=x m÷x n=6÷3=2.(﹣x m)2÷x﹣n=(x m)2÷x﹣n=36÷=108,故答案为:2,108.点评:本题考查了同底数幂的乘法和幂的乘方,属于基础题,解答本题的关键是掌握同底数幂的乘法和幂的乘方法则.28.已知:162×43=4x+y,9x÷3y=9,则x=3,y=4.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方得出x+y=7,根据同底数幂的除法得出2x﹣y=2,求出组成的方程组的解即可.解答:解:∵162×43=4x+y,∴(42)2×43=44+3=4x+y,∴x+y=7,∵9x÷3y=9,∴32x÷3y=32,∴2x﹣y=2,即,①+②得:3x=9,x=3,把x=3代入①y=4,故答案为:3,4.点评:本题考查了幂的乘方和积的乘方,同底数幂的乘法和除法的应用,题目比较典型,但有一定的难度.29.化简:x3÷(﹣x)3×(﹣x)2=﹣x2.考点:同底数幂的除法.分析:先转化为同底数幂的运算,再根据同底数幂的除法和同底数幂的乘法的运算性质进行计算.解答:解:x3÷(﹣x)3×(﹣x)2,=﹣x3÷x3×x2,=﹣x2.点评:本题主要考查同底数幂的乘法,同底数幂的除法,先运算符号是利用性质的关键.30.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是18.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方把原式化为含有4x,3y的式子求解.解答:解:∵4x=3,3y=2,∴6x+y•23x﹣y÷3x=6x•6y•23x÷2y÷3x=2x•3x•2y•3y(2x)3÷2y÷3x=2x•3y•(2x)3=(4x)2•3y=9×2=18,故答案为:18.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是运用法则把6x+y•23x﹣y÷3x化为6x•6y•23x÷2y÷3x.。

相关文档
最新文档