平面的法向量
高中数学-平面的法向量

14
例:(试用向量方法证明直线与平面垂直的判定定理)
已知直线m ,n是平面 内的两条相交直线,
如果 l⊥m, l ⊥n,求证: l ⊥ .
l
分析:要证明一条直线与一个平面
垂直,由直线与平面垂直的定义可 知,就是要证明这条直线与平面内 的任意一条直线都垂直.
gl
m
m n mg
取已知平面内的任一条直线 g ,拿相关直线的方 向向量来分析,看条件可以转化为向量的什么条件?要 证的目标可以转化为向量的什么目标?怎样建立向量 的条件与向量的目标的联系?
l m 0, l n 0 ,
gl
m
l g 0,即l g.
m n ng
l g,即l垂直于平面内任一直线.l .
16
6.有关平面的斜线概念, 三垂线定理及其逆定理 P104
17
什么叫平面的斜线、垂线、射影?
P
oa
α
A
PO是平面α的斜线,
O为斜足; PA是平面α 的垂线, A为垂足; AO
12
(1, 2,2)或 ( 1,2, 2).
3 33
33 3
练习 1:已知 AB (2, 2,1), AC (4, 5, 3), 求平面 ABC 的
单位法向量.
解:设平面 ABC 的一个法向量为 n ( x, y, z)
则 n AB ,n AC .
∴
( (
x, x,
3 33
33 3
13
例 如图,已知矩形 ABCD和矩形 ADEF所在平面互相垂直,点
M , N 分别在对角线 BD, AE上,且 BM 1 BD, AN 1 AE,
求证:MN // 平面CDEபைடு நூலகம்
平面的法向量定义

平面的法向量定义平面的法向量是指垂直于该平面的矢量。
在数学和物理学中,法向量是研究平面性质和解决与平面相关问题的重要工具。
本文将介绍平面的法向量的概念、性质和应用。
一、概念平面的法向量是指与该平面垂直的矢量,它垂直于平面的每一个点。
平面上的每个点都有一个唯一的法向量。
法向量可以用有序数对或坐标表示,也可以用矢量符号表示。
通过法向量,我们可以确定平面的方向和倾斜程度。
二、性质1. 平面的法向量与平面上的任意两个不重合的向量都垂直。
2. 平面的法向量与平面上的任意两个平行的向量也平行。
3. 平面的法向量的模长等于平面上任意两个不重合向量的模长的乘积再乘以它们的夹角的正弦值。
三、求法向量的方法1. 已知平面上的三个点A、B、C,可以通过向量运算求出平面的法向量。
设向量AB=a,向量AC=b,则平面的法向量n=a×b,其中“×”表示向量的叉乘。
2. 已知平面的一般方程Ax+By+Cz+D=0,可以用系数A、B、C构成的向量作为平面的法向量。
四、应用1. 判断平面的位置关系:通过比较两个平面的法向量可以判断它们的位置关系,如平行、垂直或相交。
2. 求直线与平面的交点:直线与平面相交时,可以使用平面的法向量和直线的方向向量求解交点的坐标。
3. 求平面的方程:已知平面上的一点和法向量,可以利用点法式或一般方程求解平面的方程。
4. 求平面的倾斜度:平面的法向量可以用来表示平面的倾斜程度,根据法向量的大小可以判断平面的倾斜程度。
总结:平面的法向量是垂直于该平面的矢量,它可以用来描述平面的方向和倾斜程度。
通过法向量,我们可以判断平面的位置关系、求解直线与平面的交点、求解平面的方程以及判断平面的倾斜程度。
熟练掌握平面的法向量的概念、性质和应用,对于解决与平面相关的问题具有重要意义。
平面法向量公式

平面法向量公式
平面法向量是指平面上一组向量,也称平面方向向量,它指向平面正方向。
平面法向量公式指出三个不同的点之间的关系。
如果A,B,C是三个点,则平面法向量公式为: N= (B-
A)X(C-A)
算法法向量是根据空间几何学中夹角的定义引入的,它由夹角旁的对边构成,表示该夹角的正方向,也就是平面的正方向。
平面法向量的计算依赖于向量的知识,具体来说,要确定任意三点组成平面的法向量,首先需要确定三点坐标,例如三点 A,B,C的坐标分别为(A1,B1,C1)、(A2,B2,C2)、(A3,B3,C3)。
法
向量表示为N,可以采用叉乘公式计算:N= (A2-A1)X(A3-
A1) 。
法向量表示多维物体旋转或平移的方向,在计算机图形学、力学、热力学中都广泛应用。
在计算机图形学中,法向量用于求解光照系统,确定视角变换,确定Bézier曲面等。
力学中,
可以利用法向量来计算滑动及接触方向,以及单位磁场和单位耗散磁场,确定磁力线分布等。
热力学中,可以利用法向量求解相变平衡的条件,确定温度、流量及压力等变量的关系。
总之,平面法向量公式被广泛应用于多个领域,有助于计算几何学中相当复杂的问题,可以用于碰撞检测,模拟对象的重力行为,以及物理系统的仿真等。
以上就是对平面法向量公式的介绍,从定义它的基本原理,到它在各领域的重要作用,都有了更深入的认识。
可以看出,平面法向量公式是一个有效的工具,可以用于重要的研究与实践,相信它会带给我们更多新的应用。
平面的法向量和方向向量

平面的法向量和方向向量平面的法向量和方向向量是平面几何中的重要概念,它们在描述平面的性质和运动方向时起到了关键作用。
本文将分别介绍平面的法向量和方向向量,并探讨它们的应用和相关性质。
一、平面的法向量平面的法向量是指垂直于该平面的向量。
设平面P上有一条直线L,经过L上的两点A和B可以确定一条向量AB。
如果向量AB垂直于平面P,那么向量AB就是平面P的法向量。
平面的法向量有以下性质:1. 法向量与平面上任意两个垂直向量的内积为零。
设向量a和向量b是平面P上的两个垂直向量,向量n是平面P的法向量,则有a·n=0,b·n=0。
2. 平面上的两个垂直向量的内积为零时,它们是平面的法向量的倍数关系。
设向量a和向量b是平面P上的两个垂直向量,向量n是平面P的法向量,则有a·n=0,b·n=0,因此存在实数k,使得a=k·n,b=k·n。
3. 平面上的两个非零向量的叉积是平面的法向量的倍数。
设向量a 和向量b是平面P上的两个非零向量,向量n是平面P的法向量,则有向量a×b=k·n,其中k为实数。
平面的法向量在几何和物理学中有广泛的应用。
例如,在计算平面上的点到另一平面的距离时,可以利用平面的法向量来求解。
同时,在力学中,平面的法向量也被用来描述平面上的压力和力的作用方向。
二、平面的方向向量平面的方向向量是指平面上的一个非零向量,它表示了平面上的一个方向。
设平面P上有一条直线L,经过L上的两点A和B可以确定一条向量AB。
如果向量AB不是平面P的法向量,那么向量AB 就是平面P的方向向量。
平面的方向向量有以下性质:1. 平面上的两个非零向量的线性组合是平面的方向向量。
设向量a 和向量b是平面P上的两个非零向量,向量c=k1·a+k2·b,其中k1和k2为实数,则向量c是平面P的方向向量。
2. 平面上的两个方向向量的叉积是平面的法向量。
(完整版)平面的法向量

∴平面 ABC 的单位法向量为(1, 2,2)或( 1,2, 2).
3 33
33 3
例 如图,已知矩形 ABCD和矩形 ADEF所在平面互相垂直,点
M , N 分别在对角线 BD, AE上,且 BM 1 BD, AN 1 AE,
求证:MN // 平面CDE
3
3
简证:因为矩形ABCD和矩形ADEF 所在平面互相垂直u,uur所uuu以r uAuuBr,AD,
解: 在 内作不r与urm r,nu重r 合的任一直线g,在l, m, n, g
上取非零向量 l, m, n, g,因m与n相交,故向量m ,n
不平行,由共面向量定理,存在唯一实数(x, y),使
ur ur r r ur r ur r r
g xm yn , l g xl m yl n , l
3.
平面的向量表示:
AMgn
r
0
给定一点rA和一个向量 n,那么过点
l
r
A,以向量n 为法向量的平面是完全
确定的.
n
M
A
因为方向向量与法向量可以确定直线和 平面的位置,上节我们用直线的方向向量表 示了空间直线、平面间的平行
如何用平面的法向量表示空间两平面平 行、垂直的位置关系呢?
4. 两平面平行或重合、垂直的充要条件
则 n AB ,n AC .∵ AB (3, 4, 0) , AC (3, 0, 2)
∴
( x, ( x,
∴
yห้องสมุดไป่ตู้
z
y, z)
y, z)
3x 4
3x 2
(3, (3,
4, 0,
0) 2)
平面向量的法向量和单位向量

平面向量的法向量和单位向量平面向量是二维空间中的线段,它具有方向和大小。
在平面向量中,存在着一些特殊的向量,比如法向量和单位向量。
本文将从法向量和单位向量两个方面进行探讨。
一、法向量在平面向量中,法向量是与给定向量垂直的向量,通常用n表示。
对于平面向量a=(a1,a2),其法向量可以表示为n=(-a2,a1),或者n=(a2,-a1)。
法向量的方向垂直于给定向量,并且具有相同的大小。
法向量在几何学中有着重要的应用,比如在计算两个向量的夹角时,常常使用法向量来进行计算。
法向量还可以用来表示平面的法线方向,从而帮助求解平面几何中的问题。
二、单位向量单位向量是指长度为1的向量,表示为u。
在二维空间中,单位向量通常表示为u=(cosθ,sinθ),其中θ为向量与x轴的夹角。
单位向量的大小为1,表示方向而不表示大小。
单位向量在向量运算中起着非常重要的作用。
在计算两个向量的夹角时,可以使用单位向量来表示向量的方向,从而简化计算。
单位向量还常用于表示力的方向,以及在物理学中描述物体的位移和速度方向。
结论平面向量中的法向量和单位向量是非常重要的概念,它们在几何学和向量运算中都具有重要的应用价值。
法向量可以帮助我们求解向量的垂直方向,单位向量则可以帮助我们统一向量的方向,并简化向量运算的复杂度。
深入理解和应用法向量和单位向量,有助于提升数学和物理学等相关学科的学习成绩,同时也为解决实际问题提供了便利。
愿本文对读者有所启发,帮助大家更好地理解平面向量的法向量和单位向量。
课件4:3.2.2平面的法向量与平面的向量表示

①证明两直线的
方向向量的数量
积为0.
②证明两直线所
成角为直角.
线面垂直
①证明直线的
方向向量与平
面的法向量是
平行向量.
②证明直线与
平面内的相交
直线互相垂直.
面面垂直
①证明两个平
面的法向量垂
直.
②证明二面角
的平面角为直
角.
例题解析
例1
已知点A(a,0,0),B(0,b,0),C(0,0,c),其中
间的平行、垂直问题.(重点、难点)
自学导引
1.平面的法向量
已知平面α,如果向量n的基线与平面α垂直,则
法向量 或 说 向 量 n 与 平 面
向 量 n 叫 做 平 面 α 的 _______
正交
α_____.
自学导引
1.平面的法向量
平面法向量的性质:
(1)平面α的一个法向量垂直于平面α内的所有向量.
(2)条件m⊂α并非可有可无.把m⊂α,改为m∥α,
其他条件不变,三垂线定理仍然成立.
(3) 三 垂 线 定 理 是 证 明 空 间 两 条 直 线 垂 直 的 依
据.应用定理的关键是:要证线线垂直,转化为
证明m与l在α内的射影l′垂直.
2.三垂线定理及逆定理的理解
(4)三垂线定理及其逆定理合起来可表述为:设l是
求证:l⊥AC.
证明:取向量v∥l,则v∥ α,且v ⊥ .
因为AB⊥ α ,l ⊂ α,所以
v⊥.
又因为·v=( + )·v= ·v + ·v=0.
因此v⊥,得⊥AC.
本例证明所得的结论,通常称为三垂线定理.
线面平 ②根据线面平行判定定理在平面内找一个向量与已知直线的方向向
3.2.1平面的法向量

∴ AB = (1,−2,−4), AC = (2,−4,−3).
设平面α的法向量是n = ( x, y, z ).
依题意,应有n • AB = 0且n • AC = 0,即
x − 2 y − 4 z = 0, 解得z = 0且x = 2 y, 令y = 1, 则x = 2. 2 x − 4 y − 3 z = 0,
线线垂直
l ⊥ m ⇔ a ⊥b ⇔ a ⋅b = 0 ;
l ⊥α ⇔ a ∥ u ⇔ a = ku ;
线面垂直
面面垂直
α ⊥ β ⇔ u ⊥ v ⇔ u ⋅ v = 0.
例1
已知平面α经过三点A(1,2,3)、B (2,0,−1)、 C (3,−2,0), 试求平面α的一个法向量.
解:
∵ A(1,2,3)、B(2,0,−1)、C (3,−2,0),
A
α
1.向量 n 是平面的法向量,向 向量 是平面的法向量, 是与平面平行或在平面内, 量 m 是与平面平行或在平面内, ; 则有 m ⋅ n=0 2.法向量一定是非零向量 法向量一定是非零向量; 法向量一定是非零向量 3.一个平面的所有法向量都互 一个平面的所有法向量都互 相平行; 相平行
设直线 l, m 的方向向量分别为 a, b , 平面 α , β 的法向量分别为 u, v ,则
∴ 平面α的一个法向量是n = (2,1,0).
建 建 立空间直角坐标系,然后用待定系数法 待定系数法求解,一般 立空间直角坐标系 待定系数法 步骤如下:
(1)设出平面的法向量为 n = ( x, y , z ).
(2)找出(求出)平面内的两个不共线的向量的坐标 a = (a1 , b1 , c1 ), b = (a2 , b 2 , c2 ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y C y
M
B
四、应用举例
题型三、利用法向量证明线面平行
例3 如图,已知矩形 ABCD 和矩形 ADEF 所在平面互相垂直,点 1 1 M , N 分别在对角线 BD, AE 上,且 BM BD, AN AE, 3 3 求证:MN // 平面CDE
F
z
N
E
A B M
D
y
x
C
五、课堂小结
二、形成概念
平行的, 所以,可以 用垂直于平面的直线的方向 向量来刻画平面的“方向”。
C1
A1 B
C
A
三、新课讲解
l
它们之间什么关系?
问2、一个平面的法向量与此平面 共面的所有向量间有什么关系? 问3、如何求一个平面的法向量?
n
四、应用举例
题型一、求平面的法向量
本节主要内容是什么? 有哪些应用?
C1
A C
D y
四、应用举例
题型二、利用法向量证明线面垂直
例2、 如图,在正方体 ABCD A1 B1C1 D1 中, M,N 分别为 AB,B1C 的中点。
z D1 C1 C1 B1 B1 N M C B A x
试用向量法证明:MN 平面 A1BD D1 z
方法归纳: A1 1、几何法:借助几何知识求证; A1 P 2、向量法:①证线的方向向量 为平面的法向量;②证线的方 D D 向向量与面的法向量共线。
一、新课引入
前面,我们把
平面向量
推广到
空间向量
向量 渐渐成为重要工具
立体几何问题
(研究的基本对象是点、直线、平面 以及由它们组成的空间图形)
从今天开始,我们将进一步来体会向量这一工 具在立体几何中的应用.
一、新课引入
1、直线的方向向量定义是什么?
2、直线的方向向量有哪些应用?
①求证两直线平行;
②求证两直线垂直; ③求两直线的夹角。
例 1、如图,在正方体 ABCD A1 B1C1 D1 中, z (1) 求平面 ABCD 的法向量 A1 (2) 求平面 A1 BD 的法向量
D1
归纳:求法向量的方法 B1 1、几何法:借助几何知识求 平面的法向量; 2、待定系数法:(步骤如下)
①建立空间直角坐标系(关键) ②设法向量、选两不共线的向量;B ③列方程组并求解; x ④赋非零值(简单点); ⑤得结论