整式的乘法单元——测试题(提高)
《整式的乘法与因式分解》单元测试题(含答案)

∴a2b8=(ab4)2=32=9.
故选B.
点睛:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.
9.下列各式中与 的相等的是
A. B. C. D.
【答案】B
【解析】
【分析】
根据完全平方公式进行选择即可.
14.若 , ,则 ________________.
【答案】-32
【解析】
分析:
先逆用“同底数幂 除法和幂的乘方的法则”把 转化为用含“ ”和“ ”的式子表达,再代值计算即可.
详解:
∵ ,
∴ .
故答案为: .
点睛:熟悉 和 ,并能逆用是解答本题的关键.
15.计算:(a-2b+c)2=________.
20.已知: ( 为多项式),则 ________________________.
三、解答题(共5小题;共60分)
21.计算:
(1) (2)
(3) (4)
22.因式分解:
(1) (2)
(3) (4)
23.先化简,再求值.
(1) ,其中 ,
(2) ,其中 ,
24.仔细阅读下面例题,然后按要求解答问题:
16.定义新运算: ,则 ___________________.
17.若代数式 2a- b 的值是 3,则多项式8- 6a3b的值是______.
18.计算: _________________.
19.如图,在边长为 的正方形中央剪去一边长为 的小正方形 ,将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为__________________.
《整式的乘法与因式分解》单元测试(带答案)

[分析]
先分别进行幂的乘方与积的乘方运算,然后再根据单项式乘除法的法则进行计算即可得.
[详解]原式=A6•A6B2÷A2B
=A12B2÷A2B
=A10B,
故答案 A10B.
[点睛]本题考查了单项式乘除混合运算,熟练掌握各运算的运算法则以及确定好运算顺序是解题的关键.
12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米= 米,用科学记数法将16纳米表示为__________________米.
4.已知多项式2x2+Bx+C分解因式为2(x-3)(x+1),则B,C的值为().
A.B=3,C=-1B.B=-6,C=2
C.B=-6,C=-4D.B=-4,C=-6
[答案]D
[解析]
[分析]
利用整式的乘法计算出2(x-3)(x+1)的结果,与2x2+Bx+C对应找到一次项的系数和常数项即可解题.
考点:因式分解.
10.已知 则 的大小关系是()
A. B. C. D.
[答案]A
[解析]
[分析]
先把A,B,C化成以3为底数的幂的形式,再比较大小.
[详解]解:
故选A.
[点睛]此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.
二、填空题
11. =____________
[答案]
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
整式的乘法专题训练

整式的乘法专题训练题目一:(2x)(3x)解析:根据单项式乘以单项式法则,系数相乘,字母部分按同底数幂相乘,结果为6x²。
题目二:(-3a²b)(4ab²)解析:系数相乘为-12,同底数幂相乘,a 的次数为2+1 = 3,b 的次数为1+2 = 3,结果是-12a³b³。
题目三:(2x²y)(-3xy³)解析:系数相乘为-6,x 的次数为2+1 = 3,y 的次数为1+3 = 4,答案是-6x³y⁴。
题目四:(5m²n)(-2m³n²)解析:系数相乘为-10,m 的次数为2+3 = 5,n 的次数为1+2 = 3,结果是-10m⁴n³。
题目五:(3x)(x² - 2x + 1)解析:用3x 分别乘以括号里的每一项,3x·x² = 3x³,3x·(-2x) = -6x²,3x·1 = 3x,结果为3x³ - 6x² + 3x。
题目六:(2x - 1)(x + 3)解析:用2x 乘以(x + 3)得2x² + 6x,再用-1 乘以(x + 3)得-x - 3,最后相加,2x² + 6x - x - 3 = 2x² + 5x - 3。
题目七:(x - 2)(x² + 3x - 1)解析:x 乘以(x² + 3x - 1)得x³ + 3x² - x,-2 乘以(x² + 3x - 1)得-2x² - 6x + 2,相加得x³ + 3x² - x - 2x² - 6x + 2 = x³ + x² - 7x + 2。
题目八:(3x + 2)(2x² - 5x + 1)解析:3x 乘以(2x² - 5x + 1)得6x³ - 15x² + 3x,2 乘以(2x² - 5x + 1)得4x² -10x + 2,相加得6x³ - 15x² + 3x + 4x² - 10x + 2 = 6x³ - 11x² - 7x + 2。
《整式的乘法与因式分解》单元检测题(附答案)

[答案]B
[解析]
[分析]
把式子展开,找到所有x项的系数,令其为0,求解即可.
[详解]解:∵(x+1)(5x+A)=5x2+Ax+5x+A=5x2+(A+5)x+A,
又∵乘积中不含x一次项,
∴A+5=0,解得A=-5.
故选B.
[点睛]本题主要考查了多项式乘多项式,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.
考点:因式分解-运用公式法.
点评:本题考查了公式法分解因式,掌握平方差公式,完全平方公式 结构特征是解决本题的关键.
11.已知x2+mx+25是完全平方式,则m的值为( )
A.10B.±10C.20D.±20
[答案]B
[解析]
[分析]
根据完全平方式的特点求解:A2±2A B+B2.
[详解]∵x2+mx+25是完全平方式,
提出问题:
(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;
(2)请写出三个代数式(A+B)2,(A-B)2,A B之间的一个等量关系:___________________________;
问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x-y的值.
[答案]C
[解析]
试题分析:A、右边不是整式积的形式,不是因式分解,故本选项错误;
B、右边不是整式积的形式,不是因式分解,故本选项错误;
C、是符合因式分解的定义,故本选项正确;
D、右边不是整式积的形式,不是因式分解,故本选项错误;
《整式的乘法与因式分解》单元综合检测(附答案)

人教版数学八年级上学期《整式的乘法与因式分解》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a42.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y23.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-154.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 86.计算:(a-b+3)(a+b-3)=()A. a2+b2-9B. a2-b2-6b-9C. a2-b2+6b-9D. a2+b2-2ab+6a+6b+97.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()学_科_网...学_科_网...A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)(a-b)=a2+ab-2b28.若m=2200,n=2550,则m,n的大小关系是()A. m>nB. m<nC. m=nD. 无法确定9.多项式77x2-13x-30可分解成(7x+a)(bx+c),其中a,b,c均为整数,求a+b+c之值为何?()A. 0B. 10C. 12D. 2210.观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;……请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66二、填空题(每小题3分,共24分)11.计算:(-5a4)·(-8ab2)=______.12.分解因式:ab4-4ab3+4ab2=_______.13.若(2x+1)0=(3x-6)0,则x的取值范围是_______.14.已知|x-y+2|+(x+y-2)2=0,则x2-y2的值为_____.15.已知a m=3,a n=2,则a2m-3n=_____.16.若一个正方形的面积为a2+a+,则此正方形的周长为______.17.已知△ABC的三边长为整数a,b,c,且满足a2+b2-6a-4b+13=0,则c为_____.18.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为______.三、解答题(共66分)19.计算:(1) y(2x-y)+(x+y)2;(2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘法公式计算:(1)982;(2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.25.已知a,b,c为△ABC的三条边的长,试判断代数式a2-2ac+c2-b2的值的符号,并说明理由.26.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.参考答案一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a4【答案】D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选:D.2.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y2【答案】D【解析】【分析】根据积的乘方的运算法则即可解答.【详解】根据积的乘方的运算法则可得:(-x3y)2= x6y2.故选D.【点睛】本题主要考查了积的乘方的运算法则:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘.3.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-15【答案】C【解析】【分析】根据零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则依次计算各项,即可解答.【详解】选项A,根据零指数幂的性质可得(-2)0=1,选项A正确;选项B,根据单项式除以单项式的运算法则可得28x4y2÷7x3=4xy2,选项B正确;选项C,根据多项式除以单项式的运算法则可得(4xy2-6x2y+2xy)÷2xy=2y-3x+1,选项C错误;选项D,根据多项式乘以多项式的运算法则可得(a-5)(a+3)=a2-2a-15,选项D正确.故选C.【点睛】本题考查了零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则,熟记法则是解题的关键.4.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】B【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B考点:因式分解-运用公式法;因式分解-提公因式法.5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 8【答案】B【解析】试题分析:把等式右边根据平方差公式去括号后即可得到结果。
《整式的乘法与因式分解》单元综合检测卷(附答案)

(2)把这个规律用含有字母的式子表示出来,并说明其正确性.
参考答案
一、选择题(每题3分,共33分)
1.下列计算,正确的是( )
A. B. C. D.
[答案]D
[解析]
[分析]
根据同底数幂的乘法法则对A进行判断;根据同底数幂的除法法则对B进行判断;根据合并同类项法则对C进行判断;根据幂的乘方对D进行判断.
18.计算:
(1) ;
(2) ;
(3) ;
(4) .
[答案](1)-6x3y4;(2)6A4-10A2B;(3) ;(4) .
[解析]
[分析]
原式利用单项式乘以单项式,多项式乘以多项式,以及单项式乘以多项式法则计算即可得到结果.
[详解](1)原式=-6x3y4;
(2)原式=6A4-10A2B;
(3)原式= = ;
A.1B.-2C.-1D.2
5.已知4x2+4mx+36是完全平方式,则m的值为()
A. 2B. ±2C. -6D. ±6
6.已知 ,则()
A.A=BB.A>BC.A<BD.A≤B
7.如 与 的乘积中不含x的一次项,则m的值为()
A. B. 3C. 0D. 1
8.已知A B2=﹣1,则﹣A B(A2B5﹣A B3﹣B) 值等于()
[答案]-395
[解析]
[分析]
根据完全平方公式、平方差公式,可得答案.
[详解]原式=(200-1)2-(200-2)(200+2)
=2002-400+1-(2002-4)
=2002-400+1-2002+4
=-395.
《整式的乘法与因式分解》单元测试(含答案)

A. 9B. 27C. 54D. 81
二、填空题:
13.2xy(x﹣y)=______.
14.若3×9m×27m=316,则m=______.
15.如果(x+1)(x2﹣5ax+a)的乘积中不含x2项,则a为_______.
∵(a+b)2=72=49,
∴a2-ab+b2=(a+b)2-3ab=49-39=10,
故答案为10.
18.现有A、B、C三种型号地砖,其规格如图所示,用这三种地砖铺设一个长为x+y,宽为3x+2y的长方形地面,则需要A种地砖___________块.
【答案】3
【解析】
【分析】
由长与宽的乘积表示出长方形底面面积,即可确定出需要A种地砖的块数.
故选A.
【点睛】考查了单项式乘法,关键是掌握单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
9.若(y+3)(y-2)=y2+my+n,则m、n的值分别为()
A. , B. , C. , D. ,
【答案】B
【解析】
【分析】
先根据多项式乘以多项式的法则计算 ,再根据多项式相等的条件即可求出 、 的值.
A. ①②B. ③④C. ②④D. ④
5.(2011福建龙岩,4,4分) 的计算结果是
A. B. C. D.
6.下列计算正确的是()
A.a+a2=a3B.a6b÷a2=a3bC.(a﹣b)2=a2﹣b2D.(﹣ab3)2=a2b6
《整式的乘法与因式分解》单元检测含答案

【解析】
【分析】
原式各项分解得到结果,即可做出判断.
【详解】A.原式不能合并,错误;
B.原式=(x2+y2)(x2−y2)=(x2+y2)(x+y)(x−y),错误;
C.原式=(2a−1)2,正确;
D.原式=(x−y)(a+b),错误.
故答案选C.
【点睛】本题考查了因式分解的知识点,解题的关键是熟练的掌握因式分解的相关知识点.
(3)实际上有许多代数恒等式可以用图形的面积来表示,如图③,它表示了______.
23.(1)已知实数a、b满足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.
(2)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.
24.观察下列计算过程,发现规律,利用规律猜想并计算:
故答案为: , .
【点睛】本题考查了配方法的应用,解题的关键是熟练的掌握配方法的应用.
14.分解因式:ba2+b+2ab=_____.
【答案】b(a+1)2
【解析】
先提公因式,再运用完全平方公式即可.
解:
故答案为: .
15.因式分解:(x+2)x﹣x﹣2=_____.
【答案】(x+2)(x﹣1)
【解析】
【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
12.分解因式:2a3﹣8a=________.
【答案】2a(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法 单元测试(提升)
一、 填空题:(每空3分,共30分)
1. ()()25434x y xy -= 。
2. ()200420030.24-⨯= 。
3. ()()()2224a a a +-+= 。
4. 若2164b m ++是完全平方式,则m = 。
5. 当3,1a b x y +=-=时,代数式222a ab b x y ++-+的值等于 。
6. 已知99,98a b ==,代数式22255a ab b a b -+-+= 。
7. 已知:15a a +=,则221a a
+= 。
8. 已知:4,2x y xy +==,则()2x y -= ,22x y += 。
9. 因式分解(1)2291x y -= ,(2)
2214x y xy +-= 。
(3)2514x x --= 。
10.若()2190m n -+-=,将22mx ny -因式分解得 。
二、 选择题:(每题4分,共24分)
11. 将11n n x x +--因式分解,结果正确的是 ( ) A .()1n x x x -- B .()11n x x --
C . ()12
1n x x -- D .()()111n x x x -+-
12.下列各式是因式分解,并且正确的是 ( ) A .()()22a b a b a b +-=- B .
123111a a a +=+++ C .()()232111a a a a a --+=-+ D .()()2222a ab b a b a b +-=-+
13.把2221a b b -+-因式分解,正确的是 ( )
A . ()()21a b a b b +-+-
B .()()11a b a b ++--
C . ()()11a b a b +-++
D .()()11a b a b +--+
14.化简()2003200455-+所得的值为 ( )
A .5-
B .0
C .20025
D . 200345⨯ 15.给出下列多项式:(1)222x xy y +-;(2)222x y xy --+;(3)22x xy y ++;(4)2114x x ++
其中能用完全平方公式分解因式的有 ( )
A 1个
B 2个
C 3个
D 4个
16.在边长为a 的正方形中挖掉一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形,
通过计算两个图形的面积,验证了一个等式,则这个等式是( )
A ()22()a b a b a b -=-+
B ()2
222a b a ab b +=++
C ()2222a b a ab b -=-+
D ()()2222a b a b a ab b +-=+-
三、解答题:(每题5分,共20分)
17.把下列各式因式分解:
(1)am an ap -+ (2)325x x -
(3)2225204x xy y ++ (4)2710y y -+
18.把下列各式因式分解:
(1)212315123m m m a b a b a b +++- (2)()()22a x y b y x -+-
(3)32412a a a --+ (4)()()241x y x y +-+-
四,解答题。
(每题7分,共14分)
19.试说明代数式()()()233263516y y y y y ++-+++的值与y 的值无关。
20.已知8xy =满足2256x y xy x y --+=。
求22x y +的值。
21.若321x y z -=-=-,求222x y z xy yz zx ++---的值。
22.对于式子221610
4x y x y +-++,你能否确定其值的正负性?若能,请写出解答过程;若不能,请简要说明理由。
五,探索题:(本题12分)
23.已知1,1a b ab +==-,设2233123,,s a b s a b s a b =+=+=+,-------,n n n s a b =+。
(1)计算1s = ;2s = ;3s = ;4s = ;
(2)试写出21,,n n n s s s --三者之间的关系式 ;
(3)根据以上得出的结论,计算77a b +。
24.某公园计划砌一个形状如图(1)所示的喷水池,后有人建议改为如图(2)所示的形状,且外圆的直径不变,
只是担心原来准备好的材料不够用,请你通过计算,比较哪一种方案需要用的材料多(即哪个周长更长)?
(1) (2)。