2015_2016高中数学2.2.1双曲线及其标准方程说课稿新人教A版选修1_1
高中数学新课标人教A版选修1-1《2.2.1双曲线及其标准方程》教案

教
学
过
程
例5点 与定点 的距离和它到直线 的距离之比是常数 ,求点 的轨迹.
(教师分ቤተ መጻሕፍቲ ባይዱ——示范书写)
三、课堂练习:
①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?
⑴ 与 ⑵ 与 (学生口答,并说明原因)
②求适合下列条件的椭圆的标准方程.
⑴经过点
⑵长轴长是短轴长的 倍,且经过点
⑶焦距是 ,离心率等于
(学生演板,教师点评)
③作业: 第4题.
4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比 称为离心率.记 .
可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.
5.例题
例4求椭圆 的长轴和短轴的长,离心率,焦点和定点坐标.
提示:将一般方程化为标准方程.
(学生回答——老师书写)
练习:求椭圆 和椭圆 的长轴和短轴长,离心率,焦点坐标,定点坐标.
2.椭圆的标准方程.
二、讲授新课:
1.范围——变量 的取值范围,亦即曲线的取值范围:横坐标 ;纵坐标 .
方法:①观察图像法;②代数方法.
2.对称性——既是轴对称图形,关于 轴对称,也关于 轴对称;又是中心对称图形.
方法:①观察图像法;②定义法.
3.顶点:椭圆的长轴 ,椭圆的短轴 ,
椭圆与四个对称轴的交点叫做椭圆的顶点, .
上课时间
第 周星期第节
课型
课题
2.2椭圆的简单几何性质
教学目的
根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.
教学设想
教学重点:通过几何性质求椭圆方程并画图.
《双曲线及其标准方程》高二数学说课稿

《双曲线及其标准方程》高二数学说课稿《双曲线及其标准方程》高二数学说课稿《双曲线及其标准方程》高二数学说课稿1一、教材分析1、教材地位本节课是新课程人教A版选修2―1第2章第三节第一课时。
它是在学生学习了直线、圆和椭圆的基础上进一步研究学习的,也为后面的抛物线及其标准方程做铺垫。
2、教材作用(重要模型,数形结合)圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。
同时,圆锥曲线也是体现数形结合思想的重要素材。
3、设计理念:体现素质教育的要求和新课程理念,融合"知识与技能"、"过程与方法"、"情感态度与价值观"三维教学目标,注重学生学习过程的体验,体现自主、合作、探究的学习方式;注重数学基本能力的培养和基础知识的掌握,又注重数学思想与方法的教育,同时反映数学学科前沿以及与科学、技术、社会的联系;教学过程中体现过程性评价对学生发展的作用,体现教师的有效指导作用。
二、目标分析1、知识与技能目标①理解双曲线的定义。
②能根据已知条件求双曲线的标准方程。
③进一步感受曲线方程的概念,了解建立曲线方程的基本方法。
2、过程与方法目标①提高运用坐标法解决几何问题的能力及运算能力。
②培养学生利用数形结合这一思想方法研究问题。
③培养学生的类比推理能力、观察能力、归纳能力、探索发现能力。
3、情感、态度与价值观目标①亲身经历双曲线及其标准方程的获得过程,感受数学美的熏陶。
②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。
4、重点难点基于以上分析,我将本课的教学重点、难点确定为:①重点:感受建立曲线方程的基本过程,掌握双曲线的标准方程及其推导方法。
②难点:双曲线的标准方程的推导。
三、学情策略分析1、知识方面:学生已经学习直线、圆和椭圆,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,对数形结合、类比推理的思想方法有一定的体会。
高中数学 双曲线教案 新人教A版选修1

2.2.2 双曲线的简单几何性质(第一课时)教学目标知识与技能 使学生了解双曲线的几何性质,能运用双曲线的标准方程讨论它的几何性质,能确定双曲线的形状特征。
过程与方法 进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比,提高类比、分析、归纳的能力。
情感态度与价值观 通过类比旧知识,探索新知识,培养学生学习数学的兴趣,探索新知识的能力及勇于创新的精神。
教学重点及难点重点 双曲线的几何性质,双曲线各元素之间的相互依存关系,特别是双曲线的渐近线性质。
难点 有关双曲线的离心率、渐近线的问题,数形结合思想、方程思想、等价转化思想的运用。
教学过程一、 复习引入:1、复习椭圆的几何性质;2、复习双曲线的标准方程。
二、新授内容:(一)双曲线的几何性质:(以焦点在x 轴为例)1、范围 由标准方程22221x y a b-=推导出,x a a y R ≤-≥∈或x2、对称性 双曲线关于x 轴、y 轴及原点对称。
3、顶点 双曲线与它的对称轴的交点即为双曲线的顶点。
双曲线仅有两个顶点:()()12,0,,0A a A a -4、轴 线段12A A 叫做双曲线的实轴,实轴长是2a ,a 叫实半轴长。
()()120,,0,B b B b -,线段12B B 叫做双曲线的虚轴,虚轴长是2b ,b 叫虚半轴长。
实轴和虚轴等长的双曲线叫等轴双曲线。
5、渐近线 直线00x y x ya b a b+=-=或叫做双曲线的渐近线。
特别地,当a b =时,双曲线的方程为222x y a -=,实轴长和虚轴长都等于2a ,双曲线是等轴双曲线,其渐近线方程为y x y x ==-或,它们互相垂直。
6、离心率 双曲线的焦距与实轴长的比值叫做双曲线的离心率,即c e a=,因为c >a >0,所以1e >。
又222c a b =+,所以c e a ==1、已知方程求其几何性质例1 (1)求双曲线22916144y x -=的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程,并作出草图。
高中数学——双曲线说课稿

《双曲线及其标准方程》说课稿各位评委老师:大家好!我说课的题目是《双曲线及其标准方程》,内容选自于人教版《高中数学选修1-1》的第二章第二节第一小节,课时安排为两课时,本课为第一课时.下面我将从这五个方面来谈谈对教材的理解和对教学设计的一些构思.一、教材分析1、教材的地位与作用双曲线是继椭圆之后学习的又一种圆锥曲线,它是解析几何的重要内容之一.与椭圆相比,双曲线所涉及到的知识更加丰富、方法更加灵活,能力要求更高.解析几何无论从知识结构、题目类型、解题方法还是数学思想都在双曲线这里达到高潮.可以说双曲线是解析几何的核心.学习双曲线本身就是对椭圆知识和方法的巩固、深化和提高.自然也为进一步学习抛物线,解决更复杂的解析几何综合问题奠定良好的基础.因此,本节课具有承前启后的作用.2、教学目标教学目标是教学设计的灵魂和统帅, 根据新课标的教学要求和学生的认知水平,确定如下的教学目标:(1)理解双曲线的定义,掌握双曲线标准方程.(2)通过定义及标准方程的挖掘与探究,使学生进一步体验类比、数形结合等思想方法的运用,提高学生观察问题、探究问题、归纳问题的能力.(3)亲历双曲线及其标准方程的获得过程,体会数学的理性与严谨,感受数学美的熏陶.3、重点和难点依据教学目标,确定本节课重点为:理解双曲线的定义,掌握双曲线的标准方程.难点为:双曲线标准方程的推导.二、学情分析教学的主体是学生,对学生的认识是否全面直接决定了教学的成败。
1、知识方面:学生已经学习了直线、圆和椭圆,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,对数形结合、类比推理的思想方法有一定的体会.2、能力方面:学生有一定的分析问题、解决问题的能力,且有一定的群体性小组交流能力与协同讨论学习能力.三、方法分析1、教学方法我将采取启发探究的教学方法.引导学生在分析问题时不断与椭圆的有关知识类比,在对比中归纳问题,强化椭圆与双曲线的区别和联系.2、教学手段使用多媒体辅助教学,通过丰富的内容体现,使枯燥的知识“活”起来,增强学习的趣味性.3、学法指导引导学生学习方式发生转变,在教师的引导下主动参与、积极体验、类比探究的学习.四、过程设计接下来看我的教学设计,我将教学过程分为这五个阶段.下面我就本节课展开具体叙述:(一)创设情景,引入课题首先引导学生回顾椭圆定义,同时在屏幕上给出相应的定义,以利于下一问题中进行对比.接着由学生探讨:若把椭圆定义中的“与两定点的距离之和”改为“距离之差”,轨迹又是什么图形呢?设计意图:通过一个知识冲突的教学情境,有和到差,不仅加强新旧知识的联系,而且通过学生类比和与差,促进学生思考,激发他们的求知欲望.接下来我拿出准备好的一条拉链,随着拉链的拉开闭合,通过观察,引导学生思考拉链拉开的两部分长度的内在联系.紧接着再通过多媒体播放这个拉链的演示实验,以强化学生的认识.然后通过小组活动,由学生利用提前准备的拉链,作两端点位置互换后拉链头运行的轨迹.这是学生的作图过程,和作图结果.设计意图:通过观察动画和动手画图,使学生从空洞的数学分析转化为感受图形的实际变化,既可以提高学生的动手能力,又可以激发学生学习数学的兴趣.接下来提出两个问题:1、分别说出这两条曲线上的点满足的条件.2、用一个数学式子表达这两条曲线上的点满足的条件.引导学生通过前面的作图,总结得出结论.接着指出这两条曲线就是本节课要探讨的双曲线,其中每一支叫双曲线的一支.最后,试着由学生归纳双曲线定义.设计意图:这一环节通过自主探究,使学生体会双曲线定义的获得过程,培养学生观察、分析和归纳能力.(二) 探究发现,挖掘新知1、定义的发掘在屏幕上给出双曲线定义,让学生思考定义中关键词是什么?根据讨论结果总结出:定义中差的绝对值和常数小于两定点距离是关键词,并强调定义中绝对值的必要性及2a <2c .再和椭圆定义相对比,发现其中的区别与联系.设计意图: 通过师生、生生的交流合作,使学生理解和掌握双曲线定义.学会利用定义判断曲线形状.此时学生对双曲线的形状有了比较深刻的印象,我给出两组双曲线在实际生产、生活中应用的图片,一组是热电厂的冷却塔和广州新电视塔,它们的外形和轴截面的交线是双曲线,另一组是双曲线在飞机导航系统和道路交通结构中的应用.设计意图:这些图片使学生感受数学美的熏陶,体会数学的实用性,进一步形成清晰地感性认知,为推导双曲线标准方程的理性认知打下基础.2、标准方程的推导在标准方程的推导中,由于双曲线与椭圆定义非常相似,图形也具有同样的对称特征.学生类比椭圆标准方程的推导,很容易得出双曲线标准方程推导步骤:(1)建 系 以21F F 所在直线为x 轴,线段21F F 的垂直平分线为y 轴,建立直角坐标系.(2)设点 设双曲线上任意一点),(y x M ,双曲线的焦距为c 2(0>c ),)0,(1c F -∴,)0,(2c F ,常数a 2=(3)列 式 2a ||MF |-|MF ||21=即a y c x y c x 2|)()(|2222=+--++ 为使学生便于观察类比,我又通过图片的形式给出椭圆标准方程的推导过程.在探究过程中,学生很容易发现双曲线标准方程的推导与椭圆非常相似,在第四步的化简中学生自然会使用同样的方法.因此,为加强学生的运算能力,方程的化简由学生自主完成,并展示部分学生的化简过程,顺利突破难点.最后给出完整的化简过程.(4)化 简得)()(22222222a c a y a x a c -=--两边同除以)(222a c a -得 122222=--a c y a x 02222>-⇒>⇒>a c a c a c令222b a c =-(0>b )代人得 )0,0(12222>>=-b a by a x 其中222b a c += 指出:这个方程叫做双曲线的标准方程.它表示的双曲线焦点在x 轴上,强调222b a c +=.最后引导学生思考:以上是焦点在x 轴上的情况,对于焦点在y 轴上的情形呢?联想到椭圆在两种建系方法下方程形式的区别,学生很快得出:可以通过x 、y 的互换,得到焦点在y 轴上的标准方程.设计意图:此环节使学生经历双曲线标准方程的获得过程,体验数形结合思想在解决几何问题的优越性,形成锲而不舍的钻研精神和科学的态度. 推导出双曲线的两个标准方程后,通过对比观察和小组交流,由学生找出他们的相同点、不同点.再由同学们对比双曲线与椭圆的标准方程,找出它们的异同点,以起到强化的效果,从而升华学生对双曲线对标准方程的认识.(三) 题组训练,应用新知【练一练】练习1:判断下列方程哪些表示双曲线?(1) (2) (3) (4) 练习2:方程 是否表示双曲线? 设计意图:第一题让学生熟练利用方程判断曲线的形状,掌握求焦点坐标的方法,第二题使学生深化双曲线标准方程形式的理解.3、例题讲解 例1 已知两定点为)0,5(),0,5(21F F -,求动点M 到F 1、F 2的距离的差的绝对值等于6的轨迹方程.变式1:若已知F 1 (0,-5),F 2(0,5) .2:例1改求“动点M 到F 1、F 2的距离的差等于6的轨迹方程”.设计意图:重视课本例题,适当对题目进行引申,使例题作用更加突出,再通过两个变式达到举一反三的目的,从而升华学生对双曲线定义的理解.(四)畅谈收获、感悟新知4、知识小结以填表格的形式,让学生回顾梳理本节课的重点知识,有助于学生在知识掌握上的条理化和系统化. 再由学生谈谈:除了知识方面的学习,还有哪些收获?通过学生畅谈收获,引起学生反思、整理,提高学生的自我认知能力.(五) 课后拓展、巩固提高5、作业布置为巩固学生对本节课知识的学习,我设计了基础作业和能力作业.基础作业要求学生独立完成;能力作业由小组讨论交流完成,并通过下节课由小组代表演板的形式进行检查和指导.6、板书设计 好的板书是课堂内容最精华的体现,根据本节课的特点,我设计了这个22149x y +=-12422=-y x 224936y x +=22032x y -=)0(122>=-m n ny m x板书,做到简明,概括.五、教学评价在教学过程中,我努力营造一个认真探索、积极交流、踊跃发言的学习氛围.以问题为主线,结合类比、数形结合等思想方法,引导学生不断地探究,进而归纳、总结得出结论,既体现学生积极参与的主体地位,又实现教师引导探索的主导作用.我的说课到此结束,恳请各位专家、各位同仁批评指正,谢谢大家!。
【教案】双曲线及其标准方程说课稿-高二上学期数学人教A版(2019)选择性必修第一册

3.2.1双曲线及其标准方程尊敬的各位评委:大家好!我今天说课的内容是《双曲线及其标准方程》。
下面,我将从教学内容及其解析、教学目标及其解析、教学问题诊断分析、教学支持条件分析、教学过程设计五个方面来汇报我的思考与设计。
一、教学内容及其解析1.教学内容本节课是人教A 版选择性必修第一册第三章第二节第1 课时。
其主要内容包括:双曲线的现实背景与几何情境,双曲线的几何特征与概念以及双曲线的标准方程。
2.教学内容解析本节内容是在学习直线和圆的方程以及椭圆的基础上,先类比椭圆,从几何情境中抽象出双曲线的几何特征,进而得出双曲线的概念,然后建立它的标准方程,最后再通过例题让学生进一步熟悉双曲线的定义、方程和实际应用。
本节课纵向承接椭圆和抛物线,横向为双曲线简单几何性质的探究打下了基础,起到了深化提高、承上启下的重要作用,为随后抛物线的学习提供了良好的类比价值,也为从整体上认识圆锥曲线提供了经验。
本节课的教学,继续强化了几何概念的抽象过程,充分发挥了坐标法的核心纽带作用,进一步贯彻了“先用几何眼光观察与思考、再用坐标法解决”的研究策略,促进了学生的数学抽象、直观想象、逻辑推理、数学运算等素养的发展。
基于以上分析,确定本节课的教学重点为:双曲线的几何特征,双曲线的定义以及双曲线的标准方程。
二、教学目标及其解析1.教学目标(1)能从几何情境中抽象出双曲线的几何特征,给出双曲线的定义,并能用它解决简单的问题,发展数学抽象素养。
(2)类比椭圆标准方程的建立过程,运用坐标法推导出双曲线的标准方程,并能用它解决简单的问题,进一步体会建立曲线的方程的方法,发展直观想象、数学运算等素养。
2.教学目标解析达成上述目标的标志是:(1)能通过观察利用信息技术演示绘制双曲线的过程,明确双曲线上的点满足的几何条件,明确双曲线的几何特征,形成双曲线的概念。
(2)能认识建立双曲线标准方程的过程与建立椭圆标准方程的过程是类似的。
能通过建立适当的坐标系,根据双曲线上点的几何特征,列出双曲线上点的坐标满足的方程,进而化简所列出的方程,得到双曲线的标准方程;并能用它解决简单的问题,进一步认识获得曲线的方程的方法。
高中数学(人教A版)选修1-1教案:2.2.1双曲线及其标准方程教案

河北省保定市物探中心学校第一分校高中数学《2.2.1 双曲线及其标准方程》教案新人教A版选修1-1◆◆知识与技能目标理解双曲线的概念,掌握双曲线的定义、会用双曲线的定义解决实际问题;理解双曲线标准方程的推导过程及化简无理方程的常用的方法;了解借助信息技术探究动点轨迹的《几何画板》的制作或操作方法.◆过程与方法目标(1)预习与引入过程预习教科书56 页至60 页,当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面与圆锥的轴线或平行时,截口曲线是双曲线,待观察或操作了课件后,提出两个问题:第一、你能理解为什么此时的截口曲线是双曲线而不是两条抛物线;第二、你能举出现实生活中双曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起思考与探究P56 页上的问题(同桌的两位同学准备无弹性的细绳子两条(一条约10cm长,另一条约6cm每条一端结一个套)和笔尖带小环的铅笔一枝,教师准备无弹性细绳子两条(一条约20cm,另一条约12cm,一端结个套,另一端是活动的),图钉两个).当把绳子按同一方向穿入笔尖的环中,把绳子的另一端重合在一起,拉紧绳子,移动笔尖,画出的图形是双曲线.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗§2.2.1 双曲线及其标准方程.(2)新课讲授过程(i )由上述探究过程容易得到双曲线的定义.〖板书〗把平面内与两个定点F,F2 的距离的差的绝对值等于常数(小于F1F2 )的1点的轨迹叫做双曲线(hyperbola ).其中这两个定点叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距.即当动点设为M 时,双曲线即为点集P M MF1 MF2 2a .(ii )双曲线标准方程的推导过程提问:已知椭圆的图形,是怎么样建立直角坐标系的?类比求椭圆标准方程的方法由学生来建立直角坐标系.无理方程的化简过程仍是教学的难点,让学生实际掌握无理方程的两次移项、平方整理的数学活动过程.类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、a,b, c 的关系有明显的几何意义.类比:写出焦点在y 轴上,中心在原点的双曲线的标准方程2 2y x2 2 1 0, 0a bb a.(iii )例题讲解、引申与补充例1 已知双曲线两个焦点分别为F,1 5,0 F2 5,0 ,双曲线上一点P 到F,F2 距1离差的绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b, c .补充:求下列动圆的圆心M 的轨迹方程:①与⊙C : 2 2x 2 y 2 内切,且过点A 2,0 ;②与⊙ 2 22 1 1 2 1 4C :x y 和⊙C2 :x y 都外切;③与⊙C1 :12 2x 3 y 9外切,且与⊙C2 :2 2x 3 y 1内切.解题剖析:这表面上看是圆与圆相切的问题,实际上是双曲线的定义问题.具体解:设动圆M 的半径为r .①∵⊙ C 与⊙M 内切,点 A 在⊙ C 外,∴MC r 2 ,MA r ,因此有MA MC 2 ,∴点M 的轨迹是以 C 、A 为焦点的双曲线的左支,即M 的轨迹方程是22 2y2 1 2x x ;7②∵⊙M 与⊙C、⊙C2 均外切,∴MC1 r 1,MC2 r 2 ,因此有1MC2 MC1 1,∴点M 的轨迹是以C、2 C 为焦点的双曲线的上支,∴M 的轨迹方程1是 22 4x 34 13 4y y ;③∵M 与 C 外切,且M 与C2 内切,∴MC1 r 3 ,MC2 r 1,因1此M C1 MC2 4,∴点M 的轨迹是以C、C2 为焦点的双曲线的右支,∴M 的轨迹1方程是2 2x y4 51 x2 .例 2 已知A ,B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s,且声速为340m / s,求炮弹爆炸点的轨迹方程.分析:首先要判断轨迹的形状,由声学原理:由声速及 A ,B 两地听到爆炸声的时间差,即可知 A ,B 两地与爆炸点的距离差为定值.由双曲线的定义可求出炮弹爆炸点的轨迹方程.扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚4s.已知各观察点到该中心的距离都是1020m.试确定该巨响发生的位置(假定当时声音传播的速度为340m / s;相关点均在同一平面内).解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚4s,则巨响应在以这两个观察点为焦点的双曲线上.如图,以接报中心为原点O,正东、正北方向分别为x轴、y 轴方向,建立直角坐标系,设 A 、B 、C 分别是西、东、北观察点,则 A 1020,0 ,。
人教A版高中数学选修1 1第二章双曲线及其标准方程教学设计

人教A版高中数学选修1-1第二章《双曲线及其标准方程》教学设计
一、教学目标
1、知识与技能目标:了解双曲线的定义,几何图形和标准方程,并能初步应用。
2、过程与方法目标:本次课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程有一个比较深刻的认识。
3、情感、态度与价值观目标:在类比研究过程中激发学生的求知欲,培养他们浓厚的学习兴趣、培养学生认真参与积极交流的主题意识,锻炼学生善于发现问题的规律和解决问题的态度。
通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
二、重点
双曲线的定义及其标准方程和简单应用。
三、难点
对双曲线定义的理解,推导双曲线的标准方程。
四、教学方法
从学生的认知规律出发,让学生自主学习,运用探究性教学法、启发式教学法等充分调动学生的积极性,通过教师的组织,让学生对双曲线及其标准方程加以理解与记忆。
221 双曲线及其标准方程 教案(人教A版选修1-1)

2.2 双曲线2.2.1双曲线及其标准方程(教师用书独具)●三维目标1.知识与技能(1)理解双曲线的定义并能独立推导标准方程.(2)会利用双曲线的定义标准方程解决简单的问题.2.过程与方法通过定义及标准方程的挖掘与探究,使学生进一步体验类比、数形结合等思想方法的运用,提高学生的观察与探究能力.3.情感、态度与价值观通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生用联系的观点认识问题.●重点、难点重点:理解和掌握双曲线的定义及其标准方程.难点:双曲线标准方程的推导.由于双曲线的定义和标准方程与椭圆很类似,学生已经有了一些学习椭圆的经验,所以本节课用“启发探究”式的教学方式,重点突出以下两点:①以类比思维作为教学的主线;②以自主探究作为学生的学习方式,并结合多媒体辅助教学,进而实现重点、难点的突破.(教师用书独具)●教学建议在教法上,宜采用探究性教学法和启发式教学法.让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题.以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习.通过创设情境,充分调动学生已有的学习经验,让学生经历“观察——猜想——证明——应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识.又通过实际操作,使刚产生的数学知识得到完善,提高学生动手动脑的能力和增强研究探索的综合素质.●教学流程给出拉链试验,引出问题:移动笔尖画出的曲线满足什么条件?⇒引导学生结合试验分析,得出曲线满足的条件,给出双曲线定义并探究特殊情形.⇒通过引导学生类比椭圆标准方程得出的方法,推导双曲线的标准方程.⇒通过例1及其变式训练,使学生理解双曲线的标准方程,对比与椭圆方程的异同.⇒通过例2及其变式训练,使学生掌握用待定系数法求双曲线的标准方程.⇒对比椭圆与双曲线定义的异同,完成例3及其变式训练,从而掌握双曲线定义的应用问题.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第29页)取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1、F2处,把笔尖放于点M,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?【提示】如图,曲线上的点满足条件:|MF1|-|MF2|=常数;如果改变一下位置,使|MF2|-|MF1|=常数,可得到另一条曲线.把平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.【问题导思】双曲线定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?【提示】双曲线的一支.1.能否用推导椭圆标准方程的方法推出双曲线的方程?怎样推导?【提示】能.(1)建系:以直线F1F2为x轴,F1F2的中点为原点建立平面直角坐标系.(2)设点:设M(x,y)是双曲线上任一点,且双曲线的焦点坐标为F1(-c,0),F2(c,0).(3)列式:由|MF1|-|MF2|=±2a,可得(x+c)2+y2-(x-c)2+y2=±2a.(4)化简:移项,平方后可得(c2-a2)x2-a2y2=a2(c2-a2).令c2-a2=b2,得双曲线的标准方程为x2 a2-y2b2=1(a>0,b>0).2.双曲线的标准形式有两种,如何区别焦点所在的坐标轴?【提示】双曲线标准方程中x2与y2的系数的符号决定了焦点所在的坐标轴:当x2系数为正时,焦点在x轴上;当y2的系数为正时,焦点在y轴上,而与分母的大小无关.双曲线的标准方程(对应学生用书第29页)(2013·泰安高二检测)方程x 24-k +y 2k -1=1表示的曲线为C ,给出下列四个命题:①曲线C 不可能是圆;②若1<k <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <52.其中正确命题的序号是________.【思路探究】 方程x 24-k +y 2k -1=1表示什么曲线?此时k 的取值范围是多少?【自主解答】 当4-k =k -1>0时,即k =52时,曲线C 是圆,∴命题①是假命题.对于②,当1<k <4且k ≠52时,曲线C 是椭圆,则②是假命题.根据双曲线和椭圆定义及其标准方程,③④是真命题. 【答案】 ③④1.双曲线焦点在x 轴上⇔标准方程中x 2项的系数为正;双曲线焦点在y 轴上⇔标准方程中y 2项的系数为正.2.在曲线方程x 2m +y 2n =1中,若m =n >0,则曲线表示一个圆;若m >0,n >0,且m ≠n ,则曲线表示一个椭圆;若mn <0,则曲线表示双曲线.若k ∈R ,则“k >3”是“方程x 2k -3-y 2k +3=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 方程x 2k -3-y 2k +3=1表示双曲线的充要条件是(k -3)(k +3)>0,即k <-3或k >3;当k >3时,一定有(k -3)(k +3)>0,但反之不成立.∴k >3是方程表示双曲线的充分不必要条件.【答案】 A已知双曲线上两点P 1、P 2的坐标分别为(3,-42)、(94,5),求双曲线的标准方程.【思路探究】 (1)当双曲线的焦点位置不确定时,应怎样求双曲线的方程? (2)已知双曲线上两点的坐标,可将双曲线的方程设为怎样的形式,以便于计算? 【自主解答】 法一 若双曲线的焦点在x 轴上, 设其方程为x 2a 2-y 2b2=1(a >0,b >0).根据题意得⎩⎨⎧9a 2-32b 2=1,8116a 2-25b 2=1,该方程组无解;若双曲线的焦点在y 轴上,设其方程为y 2a 2-x 2b2=1(a >0,b >0).根据题意得⎩⎨⎧32a 2-9b 2=1,25a 2-8116b 2=1,解得a 2=16,b 2=9.故所求双曲线的标准方程为y 216-x 29=1.法二 设所求双曲线的方程为mx 2+ny 2=1(mn <0).根据题意得⎩⎪⎨⎪⎧9m +32n =1,8116m +25n =1,解得m =-19,n =116.故所求双曲线的标准方程为y 216-x 29=1.1.求双曲线标准方程一般有两种方法:一是定义法,二是待定系数法. 2.用待定系数法求双曲线标准方程的步骤:(1)定位:确定双曲线的焦点位置,如果题目没有建立坐标系,一般把焦点放在x 轴上; (2)设方程:根据焦点的位置设相应的双曲线标准方程(当焦点在两个坐标轴上都有可能时,一般设为Ax 2+By 2=1(AB <0));(3)定值:根据题目的条件确定相关的系数的方程,解出系数,代入所设方程.求适合下列条件的双曲线的标准方程. (1)a =5,c =3,焦点在y 轴上;(2)双曲线过P 1(-2,325)和P 2(437,4)两点.【解】 (1)由a =5,c =3得b 2=c 2-a 2=4. ∴所求双曲线的标准方程为y 25-x 24=1.(2)因为双曲线的焦点位置不确定,所以设双曲线方程为mx 2+ny 2=1(mn <0),因为P 1、P 2在双曲线上,所以有⎩⎨⎧4m +45n4=1,169×7m +16n =1,解得⎩⎨⎧m =-116,n =19.所以所求双曲线的方程为-x 216+y 29=1,即y 29-x 216=1.如图2-2-1所示,已知双曲线x 24-y 29=1,F 1,F 2是其两个焦点,点M 在双曲线上.图2-2-1(1)若∠F 1MF 2=90°,求△F 1MF 2的面积;(2)若∠F 1MF 2=120°,△F 1MF 2的面积是多少?若∠F 1MF 2=60°,△F 1MF 2的面积又是多少?【思路探究】 (1)求三角形的面积该联想到哪些方法? (2)如何运用双曲线的定义解决问题?【自主解答】 (1)由双曲线方程知,a =2,b =3,c =13,设|MF 1|=r 1,|MF 2|=r 2(r 1>r 2). 由双曲线定义知,有r 1-r 2=2a =4,两边平方得r 21+r 22-2r 1·r 2=16, 即|F 1F 2|2-4S △F 1MF 2=16, 也即52-16=4S △F 1MF 2, 求得S △F 1MF 2=9. (2)若∠F 1MF 2=120°,在△MF 1F 2中,由余弦定理得,|F 1F 2|2=r 21+r 22-2r 1r 2cos 120°, |F 1F 2|2=(r 1-r 2)2+3r 1r 2=(2c )2,r 1r 2=12, 求得S △F 1MF 2=12r 1r 2sin 120°=3 3.同理可求得若∠F 1MF 2=60°,S △F 1MF 2=9 3.双曲线的定义是用双曲线上任意一点到两焦点的距离来描述的.定义中||PF 1|-|PF 2||=2a <|F 1F 2|,包含|PF 1|-|PF 2|=2a 和|PF 1|-|PF 2|=-2a ,即要看到点离定点的距离的“远”与“近”.涉及双曲线上点到焦点的距离问题,或符合双曲线定义的轨迹问题可用双曲线的定义求解.常见题目类型为:(1)双曲线的焦点三角形问题; (2)判断点的轨迹或求轨迹方程.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.【解】如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和B ,根据两圆外切的条件,得 |MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |. ∵|MA |=|MB |,∴|MC 1|-|AC 1|=|MC 2|-|BC 2|, ∴|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2.这表明动点M 与两定点C 2,C 1的距离的差是常数2. 根据双曲线的定义,动点M 的轨迹为双曲线的左支, 则2a =2,a =1,c =3, ∴b 2=c 2-a 2=8.因此所求动点M 的轨迹方程为x 2-y 28=1(x <0).(对应学生用书第31页)记不清a 、b 、c 的关系致误双曲线8kx 2-ky 2=8的一个焦点为(0,3),则k =A .1B .-1 C.79 D .-79【错解】 将双曲线化为标准方程为x 21k -y 28k =1,∵焦点在y 轴上,且c =3,∴a 2=-8k ,b 2=-1k ,∴-8k -(-1k )=-7k =32,∴k =-79.【答案】 D【错因分析】 双曲线中a 、b 、c 的关系不是a 2-b 2=c 2.【防范措施】 要区别椭圆与双曲线中a 、b 、c 的关系.在椭圆中a 2-b 2=c 2,在双曲线中a 2+b 2=c 2,二者一定不要混淆.【正解】 将双曲线化为标准方程为x 21k -y 28k =1,∵焦点在y 轴上,且c =3,∴a 2=-8k ,b 2=-1k .∴-8k -1k =9,∴k =-1.【答案】 B1.理解双曲线的定义应特别注意以下两点: (1)距离的差要加绝对值,否则表示双曲线的一支. (2)距离差的绝对值必须小于焦距,否则不是双曲线.2.求双曲线的标准方程包括“定位”和“定量”两个过程.“定位”指确定焦点在哪个坐标轴上,“定量”是指确定a 2,b 2的大小.(对应学生用书第31页)1.到两定点F 1(-3,0)、F 2(3,0)的距离之差的绝对值等于6的点M 的轨迹是( ) A .椭圆 B .线段 C .双曲线D .两条射线【解析】 由题意|F 1F 2|=|||MF 1|-|MF 2|=6. ∴点M 的轨迹是两条射线. 【答案】 D2.双曲线x 225-k +y 29-k =1的焦距为( )A .16B .8C .4D .234 【解析】 ∵25-k >9-k 且25-k >0,9-k <0,即a 2=25-k ,b 2=k -9, ∴c 2=16,c =4. 焦距为2c =8. 【答案】 B3.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D.()3,0【解析】 将双曲线方程化为标准形式x 2-y 212=1,所以a 2=1,b 2=12,∴c =a 2+b 2=62, ∴右焦点坐标为⎝⎛⎭⎫62,0.【答案】 C4.双曲线的一个焦点为(0,-6),且经过点(-5,6),求此双曲线的标准方程. 【解】 由题意知c =6,且焦点在y 轴上,另一焦点为(0,6),所以由双曲线的定义有: 2a =|(-5-0)2+(6+6)2-(-5-0)2+(6-6)2|=8,∴a =4,∴b 2=62-42=20,∴双曲线的标准方程为y 216-x 220=1.一、选择题1.(2013·台州高二检测)设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1 B.y 29-x 216=1C.x 29-y 216=1(x ≤-3) D.x 29-y 216=1(x ≥3) 【解析】 由题意动点P 的轨迹是以A 、B 为焦点的双曲线的右支,且a =3,b =4,故应选D.【答案】 D2.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .1【解析】 由于a >0,0<a 2<4且4-a 2=a +2,∴a =1. 【答案】 D3.(2013·泰安高二检测)已知双曲线方程为x 2a 2-y 2b 2=1,点A 、B 在双曲线的右支上,线段AB 经过右焦点F 2,|AB |=m ,F 1为左焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m 【解析】 根据双曲线的定义:|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,而三角形的周长为|AF 1|+|BF 1|+|AB |=(|AF 1|-|AF 2|)+(|BF 1|-|BF 2|)+2|AB |=4a +2m .【答案】 B4.已知平面内有一线段AB ,其长度为4,动点P 满足|P A |-|PB |=3,O 为AB 中点,则|PO |的最小值是( )A .1 B.32C .2D .4【解析】 ∵|P A |-|PB |=3<|AB |=4, ∴点P 在以A 、B 为焦点的双曲线的一支上, 其中2a =3,2c =4, ∴|PO |min =a =32.【答案】 B5.(2013·临沂高二检测)已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y 29=1C.x 23-y 27=1D.x 27-y 23=1 【解析】 由双曲线定义||MF 1|-|MF 2||=2a ,两边平方得:|MF 1|2+|MF 2|2-2|MF 1||MF 2|=4a 2,因为MF 1→·MF 2→=0,故△MF 1F 2为直角三角形,有|MF 1|2+|MF 2|2=(2c )2=40,而|MF 1|·|MF 2|=2,∴40-2×2=4a 2,∴a 2=9,∴b 2=1,所以双曲线的方程为x 29-y 2=1.【答案】 A 二、填空题6.设m 为常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.【解析】 由题意c =5,且m +9=25,∴m =16. 【答案】 167.(2013·莱芜高二检测)若方程x 2k +2-y 25-k =1表示双曲线,则k 的取值范围是________.【解析】 方程表示双曲线需满足(5-k )(k +2)>0,解得:-2<k <5,即k 的取值范围为(-2,5).【答案】 (-2,5)8.已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为______.【解析】 设右焦点为F ′,由题意知F ′(4,0),根据双曲线的定义,|PF |-|PF ′|=4,∴|PF |+|P A |=4+|PF ′|+|PA |,∴要使|PF |+|P A |最小,只需|PF ′|+|P A |最小即可,即需满足P 、F ′、A 三点共线,最小值为4+|F ′A |=4+9+16=9.【答案】 9 三、解答题9.求与椭圆x 29+y 24=1有相同焦点,并且经过点(2,-3)的双曲线的标准方程.【解】 由x 29+y 24=1知焦点F 1(-5,0),F 2(5,0).依题意,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴a 2+b 2=5,①又点(2,-3)在双曲线x 2a 2-y 2b 2=1上,∴4a 2-3b2=1.② 联立①②得a 2=2,b 2=3, 因此所求双曲线的方程为x 22-y 23=1.10.(2013·杭州高二检测)已知A (-7,0),B (7,0),C (2,-12),椭圆过A 、B 两点且以C 为其一个焦点,求椭圆另一个焦点的轨迹方程.【解】 设椭圆的另一个焦点为P (x ,y ), 则由题意知|AC |+|AP |=|BC |+|BP |, ∴|BP |-|AP |=|AC |-|BC | =2<|AB |=14,所以点P 的轨迹是以A 、B 为焦点,实轴长为2的双曲线的左支,且c =7,a =1, ∴b 2=c 2-a 2=48.∴所求的轨迹方程为x 2-y 248=1.11.A 、B 、C 是我方三个炮兵阵地,A 在B 的正东,相距6 km ,C 在B 的北偏西30°方向上,相距4 km ,P 为敌炮阵地,某时刻A 发现敌炮阵地的某种信号,由于B 、C 两地比A 距P 地远,因此4秒后,B 、C 才同时发现这一信号(该信号的传播速度为每秒1 km).A 若炮击P 地,求炮击的方位角.【解】 以AB 的中点为原点,BA 所在的直线为x 轴建立直角坐标系,则A (3,0),B (-3,0),C (-5,23).∵|PB |-|P A |=4,∴点P 在以A 、B 为焦点的双曲线的右支上,该双曲线右支的方程是 x 24-y 25=1(x ≥2).① 又∵|PB |=|PC |,∴点P 在线段BC 的垂直平分线上,该直线的方程为x -3y +7=0.② 将②代入①得11x 2-56x -256=0,得x =8或x =-3211(舍).于是可得P (8,53).设α为P A 所在直线的倾斜角,又k PA =tan α=3,∴α=60°,故点P 在点A 的北偏东30°方向上,即A 炮击P 地的方位角是北偏东30°.(教师用书独具)已知B (-5,0),C (5,0)是△ABC 的两个顶点,且sin B -sin C =35sin A ,求顶点A 的轨迹方程.【解】 ∵sin B -sin C =35sin A ,∴由正弦定理得|AC |-|AB |=35|BC |=35×10=6.又∵|AC |>|AB |,6<|BC |,∴点A 的轨迹是以B ,C 为焦点的双曲线的左支(且除去左顶点), 由2a =6,2c =10,得a =3,c =5,b 2=c 2-a 2=16, ∴顶点A 的轨迹方程为x 29-y 216=1(x <-3).已知定点A (3,0)和定圆C :(x +3)2+y 2=16,动圆和圆C 相外切,并且过点A ,求动圆圆心P 的轨迹方程.【解】 设动圆半径为r ,圆心为P (x ,y ),定圆C 的圆心为C (-3,0),半径为4, 由平面几何知识有|PC |=r +4,|P A |=r , ∴|PC |-|P A |=4,∴动点P 的轨迹为双曲线右支. c =3,a =2,b 2=c 2-a 2=5,x2 4-y25=1(x>0).∴圆心P的轨迹方程为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《双曲线及其标准方程》说课稿
一、教材分析
1、教材的地位与作用
双曲线是继椭圆之后学习的又一种圆锥曲线,它是解析几何的重要内容之一.与椭圆相比,双曲线所涉及到的知识更加丰富、方法更加灵活,能力要求更高.解析几何无论从知识结构、题目类型、解题方法还是数学思想都在双曲线这里达到高潮.可以说双曲线是解析几何的核心.
学习双曲线本身就是对椭圆知识和方法的巩固、深化和提高.自然也为进一步学习抛物线,解决更复杂的解析几何综合问题奠定良好的基础.因此,本节课具有承前启后的作用.
2、教学目标
教学目标是教学设计的灵魂和统帅, 根据新课标的教学要求和学生的认知水平,确定如下的教学目标:
(1)理解双曲线的定义,掌握双曲线标准方程.
(2)通过定义及标准方程的挖掘与探究,使学生进一步体验类比、数形结合等思想方法的运用,提高学生观察问题、探究问题、归纳问题的能力.
(3)亲历双曲线及其标准方程的获得过程,体会数学的理性与严谨,感受数学美的熏陶.
3、重点和难点
依据教学目标,确定本节课
重点为:理解双曲线的定义,掌握双曲线的标准方程.
难点为:双曲线标准方程的推导.
二、学情分析
教学的主体是学生,对学生的认识是否全面直接决定了教学的成败。
1、知识方面:学生已经学习了直线、圆和椭圆,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,对数形结合、类比推理的思想方法有一定的体会.
2、能力方面:学生有一定的分析问题、解决问题的能力,且有一定的群体性小组交流能力与协同讨论学习能力.
三、方法分析
1、教学方法
我将采取启发探究的教学方法.引导学生在分析问题时不断与椭圆的有关知识类比,在
对比中归纳问题,强化椭圆与双曲线的区别和联系.
2、教学手段
使用多媒体辅助教学,通过丰富的内容体现,使枯燥的知识“活”起来,增强学习的趣味性.
3、学法指导
引导学生学习方式发生转变,在教师的引导下主动参与、积极体验、类比探究的学习.
四、过程设计
接下来看我的教学设计,我将教学过程分为这五个阶段.
下面我就本节课展开具体叙述:
(一)创设情景,引入课题
首先引导学生回顾椭圆定义,同时在屏幕上给出相应的定义,以利于下一问题中进行对比.接着由学生探讨:若把椭圆定义中的“与两定点的距离之和”改为“距离之差”,轨迹又是什么图形呢?
设计意图:通过一个知识冲突的教学情境,有和到差,不仅加强新旧知识的联系,而且通过学生类比和与差,促进学生思考,激发他们的求知欲望.
接下来我拿出准备好的一条拉链,随着拉链的拉开闭合,通过观察,引导学生思考拉链拉开的两部分长度的内在联系.紧接着再通过多媒体播放这个拉链的演示实验,以强化学生的认识.然后通过小组活动,由学生利用提前准备的拉链,作两端点位置互换后拉链头运行的轨迹.这是学生的作图过程,和作图结果.
设计意图:通过观察动画和动手画图,使学生从空洞的数学分析转化为感受图形的实际变化,既可以提高学生的动手能力,又可以激发学生学习数学的兴趣.
接下来提出两个问题:1、分别说出这两条曲线上的点满足的条件.2、用一个数学式子表达这两条曲线上的点满足的条件.引导学生通过前面的作图,总结得出结论.接着指出这两条曲线就是本节课要探讨的双曲线,其中每一支叫双曲线的一支.最后,试着由学生归纳双曲线定义.
设计意图:这一环节通过自主探究,使学生体会双曲线定义的获得过程,培养学生观察、分析和归纳能力.
(二)探究发现,挖掘新知
1、定义的发掘
在屏幕上给出双曲线定义,让学生思考定义中关键词是什么?根据讨论结果总结出:定义中
差的绝对值和常数小于两定点距离是关键词,并强调定义中绝对值的必要性及2a <2c .再和椭圆定义相对比,发现其中的区别与联系.
设计意图: 通过师生、生生的交流合作,使学生理解和掌握双曲线定义.学会利用定义判断曲线形状.
此时学生对双曲线的形状有了比较深刻的印象,我给出两组双曲线在实际生产、生活中应用的图片,一组是热电厂的冷却塔和广州新电视塔,它们的外形和轴截面的交线是双曲线,另一组是双曲线在飞机导航系统和道路交通结构中的应用.
设计意图:这些图片使学生感受数学美的熏陶,体会数学的实用性,进一步形成清晰地感性认知,为推导双曲线标准方程的理性认知打下基础.
2、标准方程的推导
在标准方程的推导中,由于双曲线与椭圆定义非常相似,图形也具有同样的对称特征.学生类比椭圆标准方程的推导,很容易得出双曲线标准方程推导步骤:
(1)建 系 以21F F 所在直线为x 轴,线段21F F 的垂直平分线为y 轴,建立直角坐标
系.
(2)设点 设双曲线上任意一点),(y x M ,双曲线的焦距为
c 2(0>c ),)0,(1c F -∴,)0,(2c F ,常数a 2=
(3)列 式 2a ||MF |-|MF ||21=即a y c x y c x 2|)()(|2222=+--++
为使学生便于观察类比,我又通过图片的形式给出椭圆标准方程的推导过程.在探究过程中,学生很容易发现双曲线标准方程的推导与椭圆非常相似,在第四步的化简中学生自然会使用同样的方法.因此,为加强学生的运算能力,方程的化简由学生自主完成,并展示部分学生的化简过程,顺利突破难点.最后给出完整的化简过程.
(4)化 简
得)()(22222222a c a y a x a c -=--
两边同除以)(222a c a -得 1222
22=--a
c y a x 02222>-⇒>⇒>a c a c a c
令222b a c =-(0>b )代人得 )0,0(122
22>>=-b a b
y a x 其中222b a c += 指出:这个方程叫做双曲线的标准方程.它表示的双曲线焦点在x 轴上,强调222b a c +=.
最后引导学生思考:以上是焦点在x 轴上的情况,对于焦点在y 轴上的情形呢?
联想到椭圆在两种建系方法下方程形式的区别,学生很快得出:可以通过x 、y 的互
换,得到焦点在y 轴上的标准方程.
设计意图:此环节使学生经历双曲线标准方程的获得过程,体验数形结合思想在解
决几何问题的优越性,形成锲而不舍的钻研精神和科学的态度.
推导出双曲线的两个标准方程后,通过对比观察和小组交流,由学生找出他们的相同点、不同点.
再由同学们对比双曲线与椭圆的标准方程,找出它们的异同点,以起到强化的效果,从而升华学生对双曲线对标准方程的认识.
(三) 题组训练,应用新知
【练一练】
练习1:判断下列方程哪些表示双曲线?
(1) (2) (3) (4) 练习2:方程 是否表示双曲线? 设计意图:第一题让学生熟练利用方程判断曲线的形状,掌握求焦点坐标的方法,第
二题使学生深化双曲线标准方程形式的理解.
3、例题讲解 例1 已知两定点为)0,5(),0,5(21F F -,求动点M 到F 1、F 2的距离的差的绝对值等
于6的轨迹方程.
变式1:若已知F 1 (0,-5),F 2(0,5) .
2:例1改求“动点M 到F 1、F 2的距离的差等于6的轨迹方程”.
设计意图:重视课本例题,适当对题目进行引申,使例题作用更加突出,再通过两个变22
149
x y +=-12422=-y x 224936y x +=22032x y -=)0(12
2>=-m n n
y m x
式达到举一反三的目的,从而升华学生对双曲线定义的理解.
(四)畅谈收获、感悟新知
4、知识小结
以填表格的形式,让学生回顾梳理本节课的重点知识,有助于学生在知识掌握上的条理化和系统化. 再由学生谈谈:除了知识方面的学习,还有哪些收获?
通过学生畅谈收获,引起学生反思、整理,提高学生的自我认知能力.
(五)课后拓展、巩固提高
5、作业布置
为巩固学生对本节课知识的学习,我设计了基础作业和能力作业.基础作业要求学生独立完成;能力作业由小组讨论交流完成,并通过下节课由小组代表演板的形式进行检查和指导.
6、板书设计
好的板书是课堂内容最精华的体现,根据本节课的特点,我设计了这个板书,做到简明,概括.
五、教学评价
在教学过程中,我努力营造一个认真探索、积极交流、踊跃发言的学习氛围.以问题为主线,结合类比、数形结合等思想方法,引导学生不断地探究,进而归纳、总结得出结论,既体现学生积极参与的主体地位,又实现教师引导探索的主导作用.
我的说课到此结束,恳请各位专家、各位同仁批评指正,谢谢大家!。