双曲线及其标准方程(1)
2.3.1 双曲线及其标准方程1

2.3 双曲线2.3.1 双曲线及其标准方程整体设计教材分析“双曲线及其标准方程”是在讲完了“圆的方程”“椭圆及其标准方程”之后,学习的又一类圆锥曲线知识,也是中学解析几何的学习中最重要的内容之一,它在社会生产、日常生活和科学技术等领域有着广泛的应用,也是大纲中明确要求学生必须熟练掌握的重要内容.双曲线的定义、标准方程与椭圆类似,教科书的处理方法也相仿,也就是说,本小节在数学思想和方法上没有新内容,因此,这一小节的教学可以参照第2.2.1节进行.教学中要着重对比椭圆与双曲线的相同点和不同点,特别是它们的不同点.课时分配本节内容分两课时完成.第1课时讲解双曲线的定义,要求学生类比椭圆标准方程的推导过程推导双曲线的标准方程;第2课时讲解运用双曲线的定义及其标准方程解题.第1课时教学目标知识与技能使学生掌握双曲线的定义,理解双曲线标准方程的推导过程,能根据条件确定双曲线的标准方程.过程与方法在与椭圆的类比中,掌握双曲线的标准方程的推导方法,增强合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、数形结合思想解决问题的能力.情感、态度与价值观发挥类比的作用,与椭圆形成对比,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神,通过引入b2,使方程形式更对称、简洁,无疑会让学生感到数学的特殊魅力,增强学生学习数学的浓厚兴趣.重点难点教学重点:双曲线的定义和双曲线的标准方程.教学难点:双曲线标准方程的推导.教学过程复习引入1.椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆的标准方程(1)焦点在x 轴x 2a 2+y 2b 2=1,(a>b>0); (2)焦点在y 轴y 2a 2+x 2b 2=1,(a>b>0). 3.a 、b 、c 之间有何种关系?a 2=c 2+b 2.探究新知探究:如果把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?用几何画板演示拉链的轨迹:(A) (B)活动成果:以上两条曲线合起来叫做双曲线,每一条叫做双曲线的一支.下面请同学们思考以下问题:设问:①定点与动点不在同一平面内,能否得到双曲线?②两条曲线中到“两定点的距离的差”有什么关系?③这个常数是否会大于或等于两定点间的距离?(几何画板演示当常数等于|F 1F 2|及常数大于|F 1F 2|时的点的轨迹,帮助学生理解)请学生回答:1.不能.指出必须“在平面内”.2.到两定点的距离的差的绝对值相等,否则只表示双曲线的一支,且到两定点的距离的差的绝对值为一个常数,即||MF 1|-|MF 2||=2a.3.应小于两定点间距离且大于零.当常数等于|F 1F 2|时,轨迹是以F 1、F 2为端点的两条射线;当常数大于|F 1F 2|时,无轨迹.活动设计:小组讨论,实验演示,通过提出问题,让学生讨论问题,并尝试解决问题.让学生了解双曲线的前提条件,并培养学生的全面思考能力.感受曲线,解读演示得到的图形是双曲线(一部分).提出问题:类比椭圆的定义,给出双曲线的定义.活动设计:学生先独立思考,教师加以引导,与椭圆有一个类比,允许学生自愿合作、讨论、交流.学情预测:学生的回答可能不全面、不准确,我们可以用几何画板演示学生的回答,让他们发现问题,然后不断补充、纠正,趋于完善.活动成果:师生共同概括出双曲线的定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.(在归纳定义时强调定义要满足三个条件:在平面内、任意一点到两个定点的距离的差的绝对值等于常数、常数小于|F 1F 2|且大于零)下面我们类比椭圆方程的推导,选择适当的坐标系,建立双曲线方程.为今后通过方程研究双曲线的性质做好准备.提出问题:求椭圆方程的步骤是什么?。
双曲线及其标准方程式

双曲线及其标准方程式
双曲线是代数曲线中的一种,其标准方程常用于描述其形状。
标准方程式表示为:
(x^2/a^2) - (y^2/b^2) = 1 (双曲线的方程式)
其中x和y是坐标系中的变量,a和b是正实数,而a>b。
双曲线通常是对称于x轴和y轴的,并且具有两个分支。
当a和b相等时,双曲线变成一个特殊的形状,称为单位双曲线。
单位双曲线的标准方程变为:
(x^2/a^2) - (y^2/a^2) = 1 (单位双曲线的方程式)
双曲线在数学和物理中有广泛的应用,例如在电磁学、光学和力学等领域中描述抛物面、光学器件的形状和物体的运动等。
3.2.1双曲线及其标准方程课件(人教版)(1)

方法归纳
(1)求双曲线标准方程的步骤:
①定位:确定与坐标系的相对位置,在标准方程的前提下,确定焦点位
于哪条坐标轴上,以确定方程的情势.
②定量:确定a2、b2的值,常由条件列方程组求解.
(2)双曲线标准方程的两种求法:
①定义法:根据双曲线的定义得到相应的a、b、c,再写出双曲线的标准
方程.
②待定系数法:先设出双曲线的标准方程,然后根据条件求出待定的
的点的轨迹叫做双曲线.
M
| |MF1| - |MF2| |= 2a (0<2a<|F1F2|)
这两个定点叫做双曲线的焦点,
两焦点间的距离叫做双曲线的焦距=2c,
焦距的一半称为半焦距.
F1
F2
概念辨析
思考:
(1)如果定义中去掉“绝对值”三个字会有什么影响?
如果不加绝对值,那得到的轨迹只是双曲线的一支.
使得|OB|=b吗?
新知探究
3.双曲线的标准方程
y
y
M
F1
O
•
F2 x
x2 y2
焦点在x轴上: 2 2 1(a 0, b 0)
a
b
焦点坐标:
F1(-c,0)、F2(c,0)
a,b,c关系: c2=a2+b2
M
F2
O
x
F1
y2 x2
焦点在y轴上: 2 2 1(a 0, b 0)
段PB为半径作圆.
(1)当点P在线段AB上运动时,如果|F1F2|>|AB|,两圆不相交,不存在
交点轨迹;
(2)如果|F1F2|<|AB|,那么两圆相交,其交点M的轨迹是 椭圆 .
l
A
2.2.1双曲线及其标准方程(1)

F2( c , 0 ) X
问题
我们已经知道, 我们已经知道 , 与两定点的距离的 为常数的点的轨迹是椭圆, 那么与两 和 为常数的点的轨迹是椭圆 , 那么 与两 定点的距离的差 定点的距离的 差 为非零常数的点的轨迹 是怎样的曲线呢? 是怎样的曲线呢?
试验
思考? 类比椭圆的定义,你能给出双曲 思考? 类比椭圆的定义 你能给出双曲
y M
2. 设 点 设 M ( x,y ) 是 双 O F2 x F1 曲线上任意一点,双 曲 线 的 焦 距 为 2c(c>0) , 那么, 那么,. 焦点F 的坐标分别是(- 焦点 1、F2的坐标分别是 - c,0)、(c,0).又设 与F1、F2的距离的差的绝 又设M与 、 又设 对值等于常数2a.由定义可知 由定义可知, 对值等于常数 由定义可知,双曲线就是集 合
线的定义吗? 线的定义吗
双曲线的定义
我们把平面内与两个定点 F1 、 F2 的 距离的差的绝对值等于常数( 距离的差的绝对值等于常数(小于F1 F2 ) 的点的轨迹叫做双曲线 双曲线. 的点的轨迹叫做双曲线
M
说明
①常数小于 F1 F2 ; ②这两个定点叫做双曲线的焦点; 这两个定点叫做双曲线的焦点; 焦点
双曲线及其标准方程 (第一课时)
y
M
F 1
o
F 2
x
Ctrl Break可退出下一页图片
复习
椭圆的定义:
我们把平面内与两个定点F1、F2的距离的和等 于常数(大于∣ F1F2∣)的点的轨迹叫椭圆. 这两个定点叫椭圆的焦点,两焦点的距离叫 椭圆的焦距.
Y
M (x, y)
F1 (− c , 0 )
O
2.类比椭圆标准方程的建立过程 你能建 类比椭圆标准方程的建立过程,你能建 类比椭圆标准方程的建立过程 立双曲线的标准方程吗? 立双曲线的标准方程吗
《双曲线及其标准方程》课件人教新课标1

求 k 的取值范围。
分析:由双曲x 线的标准方程知该双曲线焦y 点可能在 x
轴也可能在 y 轴,故而只要让 x2、y2 的系数异号即可。
练习:课后练习3
x 2、y2
例3、已知 A、B 两地相距 800m ,在 A地听到
炮弹爆炸声比在 B 地晚 2s ,且声速为 340m / s ,
求炮弹爆炸点的轨迹.
双曲线图象
拉链画双曲线
①如图(A), P {M || MF1 | - | MF2 | 2a}
②如图(B),
P {M || MF2 | - | MF1 | 2a}
由①②可得:
P {M ||| MF1 | - | MF2 || 2a}
(差的绝对值)
上面 两条合起来叫做双曲线
一、 双曲线定义(类比椭圆)
课堂练习:
1、已知点F1(- 8, 3 )、F2(2 ,3),动点P满足
|PF1| - |PF2|= 10,则P点的轨迹是( D )
A、双曲线
B、双曲线一支
C、直线
D、一条射线
x2
2、若椭圆
y2
1
(a
0)与双曲线
x2
y2
a2 4
1的焦点相同,则
a
=
3
32
例2 已知方程
x2
y2
1
表示双曲线,
9k k3
课堂小结:
• 本节课学习了双曲线的定义、 图象和标准方程,要注意使用类 比的方法,仿照椭圆的定义、图 象和标准方程的探究思路来处理 双曲线的类似问题。
练习:
课后练习1、2
作业:
教材 P61习题2.3A组 第 1、2题
4.化简
(x c)2 y2 (x c)2 y2 2a
3.2.1双曲线及其标准方程课件(人教版)(1)

2
则有 25 4
,解得 2
,双曲线的标准方程为 5 -y2=1.
− 2 = 1
=1
2
法二∵焦点在x轴上,c=
25
2
y2
6,∴设所求双曲线方程为 λ -6−λ=1(其中0<λ<6).
4
∴ λ -6−λ=1,∴λ=5或λ=30(舍去).
2
∴所求双曲线的标准方程是 5 -y2=1.
P到焦点F2的距离.
【错解一】
a=4,由|PF1|-|PF2|=8,即9-|PF2|=8,得|PF2|=1.
【错解二】
a=4,由双曲线的定义得||PF1|-|PF2||=8,所以|9-|PF2||=8,
所以|PF2|=1或17.
【错因】 错解一是对双曲线的定义中的差的绝对值掌握不够,是概念性的错误.错解二没有验证两解
将P、Q两点坐标代入可得
y2
225
9
−
=1
162
2
25
256
−
=1
2
92
2
2 =9
,解得 2
,
= 16
y2
2
(三)典型例题
1.求双曲线的标准方程
例1.根据下列条件,求双曲线的标准方程.
15
16
(1)经过点P(3, 4 ),Q(- 3 ,5).
2 y2
法二:设双曲线方程为 + =1(mn<0).
焦点
两个定点叫做双曲线的焦点
焦距
两焦点间的距离叫做双曲线的焦距
集合
语言
P={M|||MF1|-|MF2||=2a,0<2a<|F1F2|}
双曲线及其标准方程(1)

2
2
小结
1.双曲线定义及标准方程 1.双曲线定义及标准方程
2.焦点位置的确定方法 焦点位置的确定方法 3求双曲线标准方程关键(定位,定量) 求双曲线标准方程关键(定位,定量) 求双曲线标准方程关键
4.双曲线与椭圆之间的区别与联系 4.双曲线与椭圆之间的区别与联系
作 业
P54 A、2,
1 2
y
M
o
F2
x
(x + c)2 + y 2 − (x − c)2 + y 2 = ±2a
2 ± 移项平方整理得 cx -a =±a (x-c)2+y2 再次平方, 再次平方,得: (c2-a2) x2-a2y2=a2(c2-a2) 由双曲线的定义知, 由双曲线的定义知,2c>2a,即c>a,故c2-a2>0, 即 故 其中b>0,代入整理得: b>0,代入整理得 令c2-a2=b2,其中b>0,代入整理得:
F2
x
y22 y 2 x -x 1 方程 a2 b2 = (a>0,b>0) x 叫做双曲线的标准方程 y
它表示的双曲线焦点在y轴上, 它表示的双曲线焦点在 轴上, 轴上 焦点为F1(0,-c),F2(0,c),且c2=a2+b2 且
M M
y x y
F F22
x y y F y y
1
o o o
F F11
(1)过点P (3, −4)、Q (4,, 5) 且焦点在坐标轴上;
7y − 9x = 31
2 2
课堂练习
变式. 变式 已知双曲线的焦点在坐 标轴上, 标轴上,
并且双曲线上两点 P1、 P2的坐标分别 9 ( 5 为( 3,−4 2 )、 ,),求双曲线的标准 4 方程 .
优质课课件:双曲线及其标准方程 (1)-

探究(一):学习小组内探究
(1)已知A(-5,0),B(5,0),M点到A,B两点的距离之差为8,则M点
的轨迹是什么?
双曲线的一支
(2)已知A(-5,0),B(5,0),M点到A,B两点的距离之差的绝对值为
10,则M点的轨迹是什么? 动点M的轨迹是分别以点A,B为端点,方向指向AB外侧的两
条射线.
5.化简
y
M
F1 O F2
代数式化简得:
x2 a2
c2
y2 a2
1
x
可令:c2-a2=b2
即:
x2 a2
y2 b2
( 1 a
0, b
0)
其中c2=a2+b2
此即为焦点在x 轴上的双曲线
的标准方程
若建系时,焦点在y轴上呢?
y
y
M
FO
1
F2 x
O
x
F ( ±c, 0) F(0, ± c)
x2 y2 a2 b2 1(a 0,b 0)
(3)已知A(-5,0),B(5,0),M点到A,B两点的距离之差的绝对值为12,则
M点的轨迹是什么?
不存在
(4)已知A(-5,0),B(5,0),M点到A,B两点的距离之差
的绝对值为0,则M点的轨迹是什么? 线段AB的垂直平分线
感悟:
1)若定义中的“绝对值”三字去掉,动点M的 轨迹是双曲线的一支。
根据实验及椭圆定义,你给双曲线下定义吗?
双曲线定义
平面内与两个定点F1,F2的距离的差的绝对值
等于常数(大于0且小于︱F1F2︱)的点的轨迹叫做
双曲线.
① 两个定点F1、F2——双曲线的焦点;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线及其标准方程 (1) 理解双曲线的定义,明确焦点、焦距的意义;能根据定义,按求 曲线方程的步骤
导出双曲线的标准方程, 并能熟练写出两类标准 方程; 培养学生分析问题能力和抽象概括能力。
学会用辩证的观 点从椭圆的定义到双曲线定义的“变化”中认识其“不变”性, 并从中发现数学曲线的简洁美和对称美, 培养学生学习数学的兴 趣。
双曲线的定义和双曲线的标准方程.
( 解决办法:通过一个简单实验得出双曲线,再通过设问给出 双曲线的定
义;对于双曲线的标准方程通过比较加深认识.
双曲线的标准方程的推导 (解决办法:引导学生完成,提醒学生与椭圆标准方程
的推导 类比. )
教学过程:复习椭圆的定义及标准方程 7 新知探索 7
双曲线 7 展示现实生活中的双曲线
7 对定义的思考 7 双曲线标准方程的推导 7 课堂小结 7 作业 7 研究性学习
一、 复习引入:
前面我们已经学习了椭圆的有关知识, 请同学们回忆一下椭圆的定义。
问题 1:椭圆的定义是什么?
(板书)平面内与两定点 F i 、F 2的距离的和等于常数(大于|F I F 2|)的点的 轨迹叫做椭
圆. 这两个定点叫做椭圆的焦点, 两焦点间的距离叫做焦距。
二、新知探索 思考:把椭圆定义中的“距离的和”改为“距离的差”,那么这样 点是否存在?
若存在,轨迹会什么? 2、实物拉链演示:双曲线的形成(请同学参与协助画图) (取一条拉链,拉开它的
一部分,在拉开的两边的长度相等,现将 其中的一边剪掉一段(长为2a ),两端点分别固定在黑板的两个定点 F1、F2上,把粉笔放在拉链关上,随着拉链的逐渐拉开或闭合,粉
教学方法: 启发式
福建师大附中
苏诗圣
教学目标: 教学重点: 教学难点: 数学实验 7 双曲线的定义
7 例与练
1、
笔就画出了一条曲线。
请同学们观察在变化中哪些量在变化,哪些量不变。
进作图工具? 3、对双曲线有了初步的认识,现实生活中的双曲线的实物图
(古代建
筑、现代建筑、冷却塔、北京市区交通图
),这些古今中外与双曲
线有关的图片给人一种对称、简洁、流畅的美的享受。
那么,如何 给双曲线一个科学的定义呢?
4、(请同学回答)双曲线的定义:平面内与两定点 F i 、F 2的距离的差的绝对
值是常数(大于零且小于|F I F 2|)的点的轨迹叫做双曲线.这两个定点 叫做双曲线的焦点,两个焦点之间的距离叫做焦距.
(1) 定义中“平面内”起到什么作用?
如果没有这个条件,点的轨迹将变为一个立体图形。
(2) 将定义中的“绝对值”去掉,动点的轨迹是什么?
双曲线的一支,双曲线有两支,丢掉任意一支都是不完整的。
⑶ 将定义中的常数改为零,动点的轨迹是什么?
F I F 2的中垂线。
(4) 将定义中的 两条射线。
(5) 将定义中的 不存在。
(6) 将定义中的 分类讨论
电脑演示(用几何画板制作课件)以上6种情形,在上述基础上,引导学生再 次理解双曲线的定义。
2、双曲线标准方程的推导
现在我们可以用类似于求椭圆标准方程的方法求双曲线的标准方程, 们思考回忆椭圆标准方程的推导方法,随后引导学生自己推导。
(1) 建系设点
取过焦点F i 、F 2的直线为x 轴,线段F I F 2的垂直平分线为y 轴(如图2-24) 建立直角坐标系. 设M(x , y)为双曲线上任意一点,双曲线的焦距是
2C (C >0),
那么F i 、F 2的坐标分别是(-C , 0)、(C , 0).又设点M 与 F i 、F 2的距离的差的绝对值等于常数
2a .
(2) 点的集合
由定义可知,双曲线就是集合
)思考如何改
F i 、F 2 “小于” 改
为“等于” ,动点的轨迹是什么?
“小于” 改
为“大于” ,动点的轨迹是什么? 动点的轨迹是什么?
|F I F 2| ” 去掉, “小于 请同学
F1
F 曾雷
P={M||MF i|-|MF 2||=2a}={M|MF i|-|MF 2|= ± 2a}.
(3) 代数方程
+ I 亚 I 卡一八汽 J (K + c)2 +5? ■ J(if +y2 = ± 2a.
(4) 化简方程
将这个方程移项,两边平方得:
(£ + + 护=4『+ (;: Y 尸 +y<
cx+a 2 2=± a J (x c)2
y 2
化简整理得:(c 2-a 2)x 2-a 2y 2=a 2(c 2-a 2).
由双曲线定义,2c >2a>0 即c >a>0,所以c 2-a 2>0. 设 c 2-a 2=b 2(b > 0),代入上式得:b 2x 2-
a 2y 2=a 2
b 2.
2
y
E T 1(a 0,b 0) b
这就是双曲线的标准方程.(从以上推导过程中可知,曲线上的每一点的坐 标都满足方程。
若以F I F 2所在的直线为y 轴,F I F 2的中垂线为x 轴建立直角坐标系,只须将
2 2
方程中的X 、y 对调即得务 1
a 2
b 2
2 双曲线标准方程中,a >0, b > 0,但a 不一定大于b ;
2
x
~2
a
(1) 2
x
2 a
2 y b 1(a 0,b 0)表示焦点在 0)、
F 2 (c , 0), 这里 c 2=a 2+b 2。
2 2
⑵ y
2
x 2 1(
a
0,b 0)表示焦点在
a
b
-C )、
冃(0, c ), 这里
2 2 , 2
c =a +b 。
X 轴上的双曲线,焦点是F i (-c ,
y 轴上的双曲线,焦点是 F i (O ,
两种标准方程的比较(引导学生归纳):
取值范围和焦点坐标。
分析:
(0, J 2m 1)
变式三:上述方程是否可以表示椭圆和圆?
2
L 1 (2) 2y
2
-7X 2= -14
2
是(2, 例2(书P105例1):已知双曲线两个焦点 F 1(-5,0) 、F 2(5,0),双曲线上
一
点P 到F 1、F 2的距离差的绝对值等于 6,求双曲线的标准方程。
分析:(1) “定位”
中心是否在原点,焦点在哪个轴上,以便确定是哪个
标准方程;
(2) “定量” 双曲线的标准方程中有两个参数,
必须有两个相互独
立的条件来确定 a 和b ;
0)
是(0,
3)
因此,所求方程是梦率
X 2
例3:(书P107练习2)已知方程——
2
1表示焦点在x 轴上的双
曲线,求m 的取值范围。
分析:(2-m )>0 且
(m+1)>0
2
变式一:已知方程」一
2 m
1表示双曲线,
求m 的取值范围。
分析:(2-m)(m+1)>0
得-1<m<2
2
变式二:已知方程一X —
2 m
1表示焦点在 y 轴上的双曲线,求 m 的
(m 1) (m 2) 2m 1
隹占为
八、、八
分析:2-m>0 且 m+1>0 得-1<m<2時为椭圆。
当 2-m=m+1>0时 得m =l 时,表示圆。
四、 小结
双曲线与椭圆的联系与区别 (图表)。
五、 布置作业
P 108 1、2、3
六、 思考题:将作业第一题改为 “△ ABC —边的两个端点是 B (a ,0)和C (-a ,
0),另两边所在直线的斜率之积为常数 k ”,求顶点A 的轨迹。
七、研
究性问题:平面内到两个定点的距离之积为定值的点的轨迹是什么?
1、 可以进行理论研究
2、 可以利用电脑进行研究
3、 可以利用文曲星自编 BASIC 语言进行研究
4、 进行合作探究,相互学习和交流。
设两定点分别为 A ( -C , 0 )、B ( c , 0 ),
P ( X , y )到两定点的距离的积为
a ,则J (x C )2
y 2
J (x
V X 2 c 2 J a 2 4X 2C 2.
点的轨迹为两个分离的封闭图形,如图 1所
点的轨迹为两个相切的封闭图形,在原点相切,如图
\2 2
C ) y a,
示。
化简得
2
当c >a 当c 2
=a 时,
y
时, 当C 2 <a 时, 3所示。
点的轨迹为一个封闭图形,我们可称其为“花生形” 如图
©
e
图1 图2
厂f
■.
c >0 .平面上任意一点
平面内到两个定点的距离之商为定值K 的点的轨迹是什么?当K>0 且不等于1 时,表示圆,当K 等于1 时,表示中垂线。