双曲线及其标准方程详解

合集下载

双曲线及其标准方程

双曲线及其标准方程

双曲线的一支. 当|MF1|-|MF2|=2a 时,曲线仅表示焦点 F2 所对
应的一支;当|MF1|-|MF2|=-2a 时,曲线仅表示焦点 F1 所对应 的一支. (2)0<2a<|F1F2|.当 2a=|F1F2|时,则动点的轨迹是以 F1、F2 为端点的 两条射线 ;当 2a>|F1F2|时,动点轨迹不存在;当 2a
π 答案 {θ|2kπ-2<θ<2kπ,k∈Z}
探究 3 种形式:
(1)由于坐标系的建法不同,双曲线的标准方程有两
x2 y2 当焦点在 x 轴上时,其标准方程为 2- 2=1(a>0,b>0); a b y2 x2 当焦点在 y 轴上时,其标准方程为a2-b2=1(a>0,b>0). (2)若曲线方程 Ax2+By2=1 表示双曲线,只需 A、B 异号, 即 A· B<0 即可!
解析
如图,由双曲线定义
|PF2|-|PF1|=8, |QF2|-|QF1|=8,
∴|PF2|+|QF2|-(|PF1|+|QF1|)=16, 即|PF2|+|QF2|-|PQ|=16.
答案 C
x2 y2 例 2 已知 M 是双曲线 - =1 上的一点,F1,F2 是双曲 40 9 线的两个焦点,∠F1MF2=90° ,求△F1MF2 的面积.
探究 1
定义是解题的根本方法,好好利用有时能起到意想
不到的效果!
思考题 1
x2 y2 已知 F1、F2 是双曲线 - =1 的两个焦点, 16 9
PQ 是过点 F1 的弦,且 PQ 的倾斜角为 α,那么|PF2|+|QF2|-|PQ| 的值是( A.8 C.16 ) B.12 D.随 α 角的大小而变化
=0 时,动点的轨迹是线段 F1F2 的 中垂线.
要点 2

高考数学复习点拨 解读双曲线定义及其标准方程

高考数学复习点拨 解读双曲线定义及其标准方程

解读双曲线定义及其标准方程一、双曲线的定义定义:平面内与两个定点12F F ,的距离的差的绝对值等于常数(小于12F F 且不等于零)的点的轨迹叫做双曲线. 集合表达式:{}122P M MF MF a =-=±|.从以下几个方面加强对定义的理解:1.对教材拉链实验的理解如图,从左边开始都减去等量的线段后,差仍然是2a .2.定义中的三个关键词定义中有三个“关键词”:“小于12F F ”、“绝对值”、“常数”,这三个关键词始终伴随着双曲线,在解题时,应首先考虑.(1) 关于“小于12F F ”,① 若将“小于12F F ”改为“等于12F F ”,其余条件不变,则曲线为两条射线.② 若将“小于12F F ”改为“大于12F F ”,其余条件不变,则曲线就不存在.(2) 关于“绝对值”若将“绝对值”去掉,其余条件不变,则点的轨迹为双曲线的一支.(3)关于“常数”若“常数”等于零,其余条件不变,则点的轨迹是线段12F F 的中垂线.当然以上还有前提是:在平面内,若去掉“在平面内”,则就是空间图形了,不是中学所研究的范畴.例 若点12(0)(0)F c F c -,,,(0c >,且c 为常数)为两个不同定点,且点M 满足122MF MF a -=(20a ≥,a 为常数),求点M 的轨迹.分析:抓住双曲线定义中的三个“关键词”,不难分为22a c >,22a c =,022a c <<及20a =四种情况讨论.解:①若22a c >,点M 的轨迹不存在;②若22a c =,点M 的轨迹是以点2F 为端点向右延伸的射线;③若022a c <<,点M 的轨迹是以点12F F ,为焦点的双曲线的右支,这时的双曲线方程为222221(0)x y x a c a-=>-;④若20a =,点M 的轨迹是线段12F F 的垂直平分线.二、双曲线的标准方程双曲线的标准方程中“标准”的含义有两层:其一是两个焦点在坐标轴上,其二是两个焦点的中点与坐标原点重合.当焦点在x 轴上时,双曲线的标准方程为22221x y a b-=(00a b >>,);当焦点在y 轴上时,双曲线的标准方程为22221(00)y x a b a b-=>>,. 说明:(1)双曲线的焦点在x 轴上时,2x 项的系数为正数,2y 项的系数为负数,其焦点坐标为(0)c ±,,且222c a b =+;双曲线的焦点在y 轴上时,2y 项的系数为正数,2x 项的系数为负数,其焦点坐标为(0)c ±,,且222c a b =+. (2)在双曲线的标准方程中,a 与b 无大小之分,但0c a >>,且有222c a b =+.(3)有关双曲线方程的实际应用问题是教材的一个难点,体现了数学的使用价值,可以激发我们学习数学的兴趣,那么,如何解答这类题型呢?①建立数学模型:就是要在读懂题意的基础上,转化为双曲线问题;②以定义法求双曲线的方程,这里注意所求方程是双曲线的一支还是两支符合条件; ③再以纯数学解答结果来解释其应用.重难点解析:双曲线的定义和标准方程与椭圆类似,如,双曲线的标准方程也是从两点间的距离关系推倒出来的.本节在数学思想和方法上没有新内容,在学习中应着重对比双曲线和椭圆的相同点与不同点,特别要注意它们的不同点.。

双曲线及其标准方程

双曲线及其标准方程

双曲线1.双曲线的概念平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0;(1)当a <c 时,P 点的轨迹是双曲线.(2)当a =c 时,P 点的轨迹是两条射线.(3)当a >c 时,P 点的轨迹不存在.2.双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈R x ∈R ,y ≤-a 或y ≥a对称性对称轴:坐标轴对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞),其中c =a 2+b 2实虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)1.方程x 2m -y 2n=1(mn >0)表示的曲线(1)当m >0,n >0时,表示焦点在x 轴上的双曲线.(2)当m <0,n <0时,则表示焦点在y 轴上的双曲线.2.方程的常见设法(1)与双曲线x 2a 2-y 2b 2=1共渐近线的方程可设为x 2a 2-y 2b 2=λ(λ≠0).(2)若渐近线的方程为y =±b a x ,则可设双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).3.常用结论1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a .4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.(2)性质:①a =b ;②e =2;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.(2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.()(3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.((4).双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是m (5).若双曲线x )x ±ny =0.( )2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 222.双曲线2x 2-y 2=8的实轴长是=1(此条件中两条双曲线称为共轭双曲线).( )()A .2B .22C .4D .423.(2021·全国甲卷)点(3,0)到双曲线x 216-y 29=1的一条渐近线的距离为()A.95B.85C.65D.454.(教材改编)过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是()A .28B .14-82C .14+82D .825.已知双曲线E :x 216-y 2m 2=1的离心率为54,则双曲线E 的焦距为__________.双曲线的定义的应用例题:(1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆(2)已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程为()A.x 22-y 216=1(x ≤-2) B.x 22-y 214=1(x ≥2)C.x 22-y 216=1 D.x 22-y 214=1(3)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为______________(4)已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=__________.(5)已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为()A .1B .52C .2D .5(6).(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(7)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为()A .215a 2B .15a 2C .30a 2D .15a 2(8)P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线.P 在l上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为()A .1B .2+155C .4+155D .22+1(9)已知双曲线x2-y2=4,F1是左焦点,P1,P2是右支上的两个动点,则|F1P1|+|F1P2|-|P1P2|的最小值是()A.4B.6C.8D.16(10)双曲线C的渐近线方程为y=±233x,一个焦点为F(0,-7),点A的坐标为(2,0),点P为双曲线第一象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.8B.10C.4+37D.3+317双曲线的标准方程求双曲线标准方程的方法:(1)定义法(2)待定系数法①当双曲线焦点位置不确定时,设为Ax2+By2=1(AB<0);②与双曲线x2a2-y2b2=1共渐近线的双曲线方程可设为x2a2-y2b2=λ(λ≠0);③与双曲线x2a2-y2b2=1共焦点的双曲线方程可设为x2a2-k-y2b2+k=1(-b2<k<a2).例题:(1)根据下列条件,求双曲线的标准方程:(1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M(0,12);(3)经过两点P(-3,27)和Q(-62,-7).(2)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为(-3,0),且C 的离心率为32,则双曲线C 的方程为()A.y 24-x 25=1 B.y 25-x 24=1 C.x 24-y 25=1 D.x 25-y 24=1(3)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是()A.7x 216-y 212=1 B.y 23-x 22=1C .x 2-y 23=1D.3y 223-x 223=1(4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为()A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=1(5)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是()A .x12-y 2=1B .x 29-y 23=1C .x 2-y 23=1D .x 223-y 232=1(6)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为()A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=1(7)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点M 在双曲线的右支上,点N 为F 2M 的中点,O 为坐标原点,|ON |-|NF 2|=2b ,∠ONF 2=60°,△F 1MF 2的面积为23,则该双曲线的方程为__________.双曲线的几何性质求双曲线的渐近线方程例:(1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则双曲线C 的渐近线方程为()A .y =±3xB .y =±33x C .y =±12xD .y =±2x(2)已知双曲线T 的焦点在x 轴上,对称中心为原点,△ABC 为等边三角形.若点A 在x 轴上,点B ,C 在双曲线T 上,且双曲线T 的虚轴为△ABC 的中位线,则双曲线T 的渐近线方程为()A .y =±153xB .y =±53xC .y =±33x D .y =±55x (3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2a 2-y 2b 2=12的焦点相同,则双曲线的渐近线方程为()A .y =±3xB .y =±33x C .y =±22x D .y =±2x(4)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线在第一象限和第三象限的交点分别为M ,N ,设四边形F 1NF 2M 的周长为p ,面积为S ,且满足32S =p 2,则该双曲线的渐近线方程为()A .y =±32x B .y =±233xC .y =±12xD .y =±22x求双曲线的离心率(范围)例:(1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.72B.132C.7D.13(2).已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__________.(3)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过坐标原点O 的直线与双曲线C 的左、右支分别交于点P ,Q ,若|PQ |=2|QF |,∠PQF =60°,则该双曲线的离心率为()A .3B .1+3C .2+3D .4+23(4)(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(5)圆C :x 2+y 2-10y +16=0上有且仅有两点到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A .(2,5)B.⎪⎭⎫⎝⎛2535,C.⎪⎭⎫⎝⎛2545,D .(5,2+1)双曲线几何性质的综合应用例:(1)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是()A.⎪⎪⎭⎫⎝⎛-3333, B.⎪⎪⎭⎫⎝⎛-6363,C.⎪⎪⎭⎫⎝⎛-322322, D.⎪⎪⎭⎫⎝⎛-332332,逻辑推理(2020·新高考卷Ⅰ)(多选)已知曲线C :mx 2+ny 2=1.()A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线直线与双曲线的位置关系例题:若双曲线E :x 2a 2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若|AB |=63,求k 的值.双曲线课后练习1.方程x2m+2+y2m-3=1表示双曲线的一个充分不必要条件是()A.-3<m<0B.-1<m<3C.-3<m<4D.-2<m<3 2.在平面直角坐标系中,已知双曲线C与双曲线x2-y23=1有公共的渐近线,且经过点P(-2,3),则双曲线C的焦距为()A.3B.23C.33D.433.设双曲线C:x2-4y2+64=0的焦点为F1,F2,点P为C上一点,|PF1|=6,则|PF2|为()A.13B.14C.15D.224.若双曲线C:x2a2-y2b2=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,则C的渐近线方程为()A.y=±13x B.y=±33x C.y=±3x D.y=±3x5.若双曲线C:x2a2-y2b2=1(a>0,b>0)的右顶点A到一条渐近线的距离为223a,则双曲线的离心率为()A.223B.13C.3D.226.已知双曲线的一个焦点F(0,5),它的渐近线方程为y=±2x,则该双曲线的标准方程为_____________7.已知双曲线x24-y25=1的左焦点为F,点P为其右支上任意一点,点M的坐标为(1,3),则△PMF周长的最小值为()A.5+10B.10+10C.5+13D.9+138.已知直线l与双曲线C:x2-y2=2的两条渐近线分别交于A,B两点,若AB 的中点在该双曲线上,O为坐标原点,则△AOB的面积为()A.12B.1C.2D.49.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线上一点,且|PF 1|=2|PF 2|.若cos ∠F 1PF 2=14,则该双曲线的离心率等于()A.22 B.52C .2 D.3+110.(2020·全国卷Ⅱ)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为()A .4B .8C .16D .3211.双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交双曲线左支于A ,B 两点,△F 2AB 是以A 为直角顶点的直角三角形,且∠AF 2B =30°,若该双曲线的离心率为e ,则e 2=()A .11+43B .13+53C .16-63D .19-10312.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以F 为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M ,且MF 与双曲线的实轴垂直,则双曲线C 的离心率为()A.52 B.5C.2D .213.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实轴长为8,右焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF ,O 为坐标原点,若S △OMF =6,则双曲线C 的离心率为)______________14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,点P 为双曲线上一点,∠F 1PF 2=120°,则双曲线的渐近线方程为__________;若双曲线C 的实轴长为4,则△F 1PF 2的面积为__________.15.已知F 1,F 2分别是双曲线x 2-y 2b 2=1(b >0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等于_____________16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线分别交双曲线的左、右两支于M ,N .若以MN 为直径的圆经过右焦点F 2,且|MF 2|=|NF 2|,则双曲线的离心率为____________.17.已知点P (1,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线上,F 为双曲线C 的右焦点,O 为原点.若∠FPO =90°,则双曲线C 的方程为_____________,其离心率为__________.18.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为________.19.(2021·山东淄博二模)已知动点P 在双曲线C :x 2-y 23=1上,双曲线C 的左、右焦点分别为F 1,F 2,下列结论错误的是()A .C 的离心率为2B .C 的渐近线方程为y =±3xC .动点P 到两条渐近线的距离之积为定值D .当动点P 在双曲线C 的左支上时,|PF 1||PF 2|2的最大值为14。

第59讲 双曲线及其标准方程

第59讲  双曲线及其标准方程
答案: A
(2)经过点(2,1),且渐近线与圆 x2+(y-2)2=1 相切的
双曲线的标准方程为( )
A.1x12 -1y12 =1 3
B.x22-y2=1
C.1y12 -1x12=1 3
D.1y12 -1x12 =1 3
解:(2) 设双曲线的方程为ax22-by22=λ(a>0,b>0,λ≠0),
(3)双曲线ax22-by22=1 的渐近线为ax22-by22=0.一般地,双 曲线的一个焦点到它的渐近线的距离 d=b.
【变式探究】
3.(1)(2017·新课标卷Ⅱ)若 a>1,则双曲线ax22-y2=1
的离心率的取值范围是( )
A.( 2,+∞)
B.( 2,2)
C.(1, 2)
D.(1,2)
解:(1)由题意得双曲线的离心率 e=
a2+1 a.
所以 e2=a2a+2 1=1+a12.
因为 a>1,所以 0<a12<1,所以 1<1+a12<2, 所以 1<e< 2.
答案:C
(2)(2017·山东卷)在平面直角坐标系 xOy 中,双曲线 ax22-by22=1(a>0,b>0)的右支与焦点为 F 的抛物线 x2= 2py(p>0)交于 A,B 两点.若|AF|+|BF|=4|OF|,则该双 曲线的渐近线方程为
曲线 C:x2-my2=4m(m>0)的一个焦点,则点 F 到 C 的一
条渐近线的距离为( )
A.2
B.4
C.2m
D.4m
解:双曲线 C:4xm2 -y42=1,双曲线的焦点到一条渐近
线的距离为虚轴的一半,即 2.
答案:A

双曲线的定义及标准方程(201911新)

双曲线的定义及标准方程(201911新)
若2a < | F1F2 |,则动点P的轨迹是双曲线; 若2a = | F1F2 |,则动点P的轨迹是射线; 若2a> | F1F2 | , 则动点P的轨迹不存在。
判断下列曲线的焦点在哪轴? 并求a、b、c
x2
y2
1. 1
16 25
2. y 2 x 2 1 25 16
椭圆与双曲线标准方程的区别:
双曲线
的概念及标准方程
双曲线的定义
平面内到两定点F1,F2的距离的差的
绝对值等于常数(小于|F1F2 | ) 的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点。 两焦点的距离叫做双曲线的焦距(2c)
1、建系:以线段F1F2所在直线为x轴,
M
线段F1F2的垂直平分线为y轴。F1
F2
设|F1F2|=2c,常数为2a,
则F1(-c,0)、F2(c,0),
设M(x,y)为轨迹上任意一点,
2、列式:||MF1|-|MF2||=2a, 即|MF1|-|MF2|=2a
3、代换:(x c)2 y2 (x c)2 y2 2a
即 (x c)2 y2 (x c)2 y2 2a
一、定型:
两边平方得(x c)2 y2 (x c)2 y2 4a2 4a (x c)2 y2
即cx a2 a (x c)2 y2
两边平方得 (cx a2 )2 a2 (x2 2cx c2 y2 )
即(c2 a2 )x2 a2 y2 a2 (c2 a2 )
双曲线的标准方程
x2 a2

y2 b2
1(a>0,b>0)表示焦点在x轴上的双曲线
标准方程,其中F1(-C,0) F2(C,0)

双曲线的性质与方程解析

双曲线的性质与方程解析

双曲线的性质与方程解析双曲线在数学中是一种常见的曲线类型,具有许多独特的性质与方程解析。

本文将探讨双曲线的基本定义、方程形式、性质特点以及解析方法等相关内容。

一、基本定义双曲线可以定义为平面上的一类曲线,其形状类似于打开的弓形或者两个分离的超越曲线。

具体来说,双曲线由两个分离的支线组成,每个支线都是非闭合的曲线。

二、方程形式双曲线的方程形式一般有两种常见情况:1. 标准方程:双曲线的标准方程可以表示为:(x^2/a^2) - (y^2/b^2) = 1 或者(y^2/b^2) - (x^2/a^2) = 1,其中a和b分别表示椭圆的长半轴和短半轴。

2. 参数方程:双曲线的参数方程形式可以表示为:x = a * secθ,y = b * tanθ 或者x = a * coshθ,y = b * sinhθ,其中θ是参数,a和b分别表示参数方程中的系数。

三、性质特点双曲线具有多个独特的性质和特点,包括:1. 渐近线:双曲线有两条渐近线,分别对应于横轴和纵轴方向无限延伸的情况。

这两条渐近线与曲线的分支永远不相交。

2. 焦点与准线:双曲线的焦点是曲线的特殊点,其定义决定了曲线的形状。

双曲线的准线是与焦点对称且与渐近线相切的直线。

3. 集中性质:双曲线的两个支线向外无限延伸,因此曲线逐渐集中于焦点附近。

这种集中性质在许多实际应用中都有重要的意义。

四、解析方法在解析几何中,双曲线的研究常常涉及到方程的化简、参数的确定以及曲线的绘制等问题。

以下是一些解析方法的示例:1. 方程化简:根据给定的曲线方程,可以通过代数运算将其整理为标准方程或者参数方程的形式,以便更好地研究曲线的性质。

2. 参数确定:在参数方程中,选择合适的参数取值范围,可以确定曲线的部分或者全部形状。

通过调整参数,可以观察曲线的变化情况。

3. 绘制曲线:利用计算机软件绘制双曲线图形是一种常见的方法。

通过选择适当的参数和绘图工具,可以清晰地展示双曲线的形态特征。

双曲线及其标准方程解答

双曲线及其标准方程解答

2.2 双曲线2.2.1 双曲线及其标准方程【课标要求】1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点)自学导引1.双曲线的定义把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么?提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示.(2)若“常数大于|F 1F 2|”,此时动点轨迹不存在.(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 2.双曲线的标准方程想一想:如何判断方程x a 2-y b 2=1(a >0,b >0)和y a 2-x b 2=1(a >0,b >0)所表示双曲线的焦点的位置?提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上.名师点睛1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.题型一 求双曲线的标准方程【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5; (2)c =6,经过点(-5,2),焦点在x 轴上.[思路探索] 由于(1)无法确定双曲线焦点的位置,可设x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b2=1(a >0,b >0)两种情况,分别求解.另外也可以设双曲线方程为mx 2+ny 2=1(mn <0)或x 2m +y 2n=1(mn <0),直接代入两点坐标求解.对于(2)可设其方程为x 2a 2-y 2b 2=1(a >0,b >0)或x 2λ-y 26-λ=1(0<λ<6).解 (1)法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由于点P ⎝⎛⎭⎫3,154和Q ⎝⎛⎭⎫-163,5在双曲线上, 所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1.法二 设双曲线方程为x 2m +y 2n=1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n=1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)法一 依题意,可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程的形式,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法.【变式1】 求适合下列条件的双曲线的标准方程: (1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6). 解 (1)由题设知,a =3,c =4,由c 2=a 2+b 2,得b 2=c 2-a 2=42-32=7.因为双曲线的焦点在x 轴上,所以所求双曲线的标准方程为x 29-x 27=1.(2)由已知得c =6,且焦点在y 轴上.因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即2a =|(-5-0)2+(6+6)2-(-5-0)2+(6-6)2|=|13-5|=8,则a =4,b 2=c 2-a 2=62-42=20.因此,所求双曲线的标准方程是y 216-x 220=1.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( )A .m -aB .m -bC .m 2-a 2D .m -bA 解析:设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|=2m . 由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a . ∴|PF 1|·|PF 2|=m -a .题型二 双曲线定义的应用【例2】如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.[思路探索] (1)由双曲线的定义,得||MF 1|-|MF 2||=2a ,则点M 到另一焦点的距离易得; (2)结合已知条件及余弦定理即可求得面积.解 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义,得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.故点M 到另一个焦点的距离为6 或22.(2)将||PF 2|-|PF 1||=2a =6,两边平方,得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, ∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|= 36+2×32=100.在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°, ∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.规律方法 (1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.【变式2】1.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).1.解:连接ON ,ON 是△PF 1F 2的中位线,所以|ON |=12|PF 2|.因为||PF 1|-|PF 2||=8,|PF 1|=10,所以|PF 2|=2或18,|ON |=12|PF 2|=1或9.2.设P 为双曲线x 216-y29=1上一点,F 1,F 2是该双曲线的两个焦点,若∠F 1PF 2=60°,求△PF 1F 2的面积.解:由方程x 216-y 29=1,得a =4,b =3,故c =16+9=5,所以|F 1F 2|=2c =10.又由双曲线的定义,得||PF 1|-|PF 2||=8,两边平方,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|=64.①在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=100.②①-②,得|PF 1||PF 2|=36,所以12PF F S ∆=12|PF 1||PF 2|sin 60°=12×36×32=93.3.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理,得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°,所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.误区警示 忽略双曲线焦点位置致误【示例】 方程x 22-m +y 2|m |-3=1表示双曲线,那么m 的取值范围是________.[错解] 由⎩⎪⎨⎪⎧2-m >0,|m |-3<0解得-3<m <2,∴m 的取值范围是{m |-3<m <2}.只考虑焦点在x 轴上,忽视了焦点在y 轴上的情况.[正解] 依题意有⎩⎪⎨⎪⎧ 2-m >0|m |-3<0或⎩⎪⎨⎪⎧2-m <0,|m |-3>0,解得-3<m <2或m >3.∴m 的取值范围是{m |-3<m <2或m >3}. 答案 {m |-3<m <2或m >3}方程x 2m +y 2n=1既可以表示椭圆又可以表示双曲线.当方程表示椭圆时,m 、n 应满足m >n >0或n >m >0,当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.当方程表示双曲线时,m 、n 应满足mn <0,当m >0,n <0时,方程表示焦点在x 轴上的双曲线;当m <0,n >0时,方程表示焦点在y 轴上的双曲线. 当堂检测1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A .22=1169x y -(x ≤-4) B .22=1916x y -(x ≤-3) C .22=1169x y -(x ≥4) D .22=1916x y -(x ≥3) 答案:D 解析:由已知动点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,且a =3,c=5,b 2=c 2-a 2=16,∴所求轨迹方程为22=1916x y -(x ≥3). 2.已知双曲线为22=12x y λ+,则此双曲线的焦距为( ) AB.CD.答案:D 解析:由已知λ<0,a 2=2,b 2=-λ,c 2=2-λ,∴焦距2c =3.已知双曲线22=1169x y -上的点P 到(5,0)的距离为15,则点P 到点(-5,0)的距离为( ) A .7 B .23 C .5或25 D .7或23 答案:D 解析:设F 1(-5,0),F 2(5,0), 则由双曲线的定义知:||PF 1|-|PF 2||=2a =8,而|PF 2|=15,解得|PF 1|=7或23.4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),顶点B 在双曲线22=12511x y -的左支上,则sin sin sin A C B-=______. 答案:56解析:如图,||||s i n s i n ||||222||sin ||21262BC AB A C BC AB a R R AC B AC c R---=====.5.在平面直角坐标系xOy 中,已知双曲线22=1412x y-上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为__________.答案:4 解析:设右焦点为F ,则点F 的坐标为(4,0).把x =3代入双曲线方程得y =±15,即M 点的坐标为(3,±15).由两点间距离公式得|MF|=(3-4)2+(±15-0)2=4.。

(完整版)双曲线标准方程及几何性质知识点及习题

(完整版)双曲线标准方程及几何性质知识点及习题

双曲线标准方程及几何性质知识点及习题1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。

这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。

2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。

定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。

当曲线上一点沿曲线无限远离原点时,如果到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。

无限接近,但不可以相交。

例1. 方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线的标准方程:(1)焦点在x 轴上的:x a y b a b 2222100-=>>(),(2)焦点在y 轴上的:y a x ba b 2222100-=>>(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。

注:c 2=a 2+b 2【例2】求虚轴长为12,离心率为54双曲线标准方程。

【例3】求焦距为26,且经过点M (0,12)双曲线标准方程。

练习。

焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x【例4】与双曲线221916x y -=有公共渐进线,且经过点(3,A -练习。

求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.解决双曲线的性质问题,关键是找好等量关系,特别是e 、a 、b 、c 四者的关系,构造出ce a=和222c a b =+的关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 双曲线2.2.1 双曲线及其标准方程【课标要求】1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点)自学导引1.双曲线的定义把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么?提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示.(2)若“常数大于|F 1F 2|”,此时动点轨迹不存在.(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 2.双曲线的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2b 2=1 (a >0,b >0) y 2a 2-x 2b 2=1 (a >0,b >0)焦点坐标 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )a ,b ,c 的关系c 2=a 2+b 2想一想:如何判断方程x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b 2=1(a >0,b >0)所表示双曲线的焦点的位置?提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上.名师点睛1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.题型一 求双曲线的标准方程 【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5; (2)c =6,经过点(-5,2),焦点在x 轴上.[思路探索] 由于(1)无法确定双曲线焦点的位置,可设x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b2=1(a >0,b >0)两种情况,分别求解.另外也可以设双曲线方程为mx 2+ny 2=1(mn <0)或x 2m +y 2n=1(mn <0),直接代入两点坐标求解.对于(2)可设其方程为x 2a 2-y 2b 2=1(a >0,b >0)或x 2λ-y 26-λ=1(0<λ<6).解 (1)法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由于点P ⎝⎛⎭⎫3,154和Q ⎝⎛⎭⎫-163,5在双曲线上, 所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1.法二 设双曲线方程为x 2m +y 2n=1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n=1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)法一 依题意,可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b 2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程的形式,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法.【变式1】 求适合下列条件的双曲线的标准方程: (1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6). 解 (1)由题设知,a =3,c =4,由c 2=a 2+b 2,得b 2=c 2-a 2=42-32=7.因为双曲线的焦点在x 轴上,所以所求双曲线的标准方程为x 29-x 27=1.(2)由已知得c =6,且焦点在y 轴上.因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即2a =|(-5-0)2+(6+6)2-(-5-0)2+(6-6)2|=|13-5|=8,则a =4,b 2=c 2-a 2=62-42=20.因此,所求双曲线的标准方程是y 216-x 220=1.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( )A .m -aB .m -bC .m 2-a 2D .m -bA 解析:设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|=2m . 由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a . ∴|PF 1|·|PF 2|=m -a .题型二 双曲线定义的应用【例2】如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2[思路探索] (1)由双曲线的定义,得||MF 1|-|MF 2||=2a ,则点M 到另一焦点的距离易得; (2)结合已知条件及余弦定理即可求得面积.解 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义,得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.故点M 到另一个焦点的距离为6 或22.(2)将||PF 2|-|PF 1||=2a =6,两边平方,得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, ∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|= 36+2×32=100.在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°, ∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.规律方法 (1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.【变式2】1.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).1.解:连接ON ,ON 是△PF 1F 2的中位线,所以|ON |=12|PF 2|.因为||PF 1|-|PF 2||=8,|PF 1|=10,所以|PF 2|=2或18,|ON |=12|PF 2|=1或9.2.设P 为双曲线x 216-y29=1上一点,F 1,F 2是该双曲线的两个焦点,若∠F 1PF 2=60°,求△PF 1F 2的面积.解:由方程x 216-y 29=1,得a =4,b =3,故c =16+9=5,所以|F 1F 2|=2c =10.又由双曲线的定义,得||PF 1|-|PF 2||=8,两边平方,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|=64.①在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=100.② ①-②,得|PF 1||PF 2|=36,所以12PF F S ∆=12|PF 1||PF 2|sin 60°=12×36×32=93.3.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理,得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.误区警示 忽略双曲线焦点位置致误【示例】 方程x 22-m +y 2|m |-3=1表示双曲线,那么m 的取值范围是________.[错解] 由⎩⎪⎨⎪⎧2-m >0,|m |-3<0解得-3<m <2,∴m 的取值范围是{m |-3<m <2}.只考虑焦点在x 轴上,忽视了焦点在y 轴上的情况.[正解] 依题意有⎩⎪⎨⎪⎧ 2-m >0|m |-3<0或⎩⎪⎨⎪⎧2-m <0,|m |-3>0,解得-3<m <2或m >3.∴m 的取值范围是{m |-3<m <2或m >3}. 答案 {m |-3<m <2或m >3}方程x 2m +y 2n=1既可以表示椭圆又可以表示双曲线.当方程表示椭圆时,m 、n 应满足m >n >0或n >m >0,当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.当方程表示双曲线时,m 、n 应满足mn <0,当m >0,n <0时,方程表示焦点在x 轴上的双曲线;当m <0,n >0时,方程表示焦点在y 轴上的双曲线. 当堂检测1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A .22=1169x y -(x ≤-4) B .22=1916x y -(x ≤-3) C .22=1169x y -(x ≥4) D .22=1916x y -(x ≥3) 答案:D 解析:由已知动点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,且a =3,c =5,b 2=c 2-a 2=16,∴所求轨迹方程为22=1916x y -(x ≥3). 2.已知双曲线为22=12x y λ+,则此双曲线的焦距为( ) AB.CD.答案:D 解析:由已知λ<0,a 2=2,b 2=-λ,c 2=2-λ,∴焦距2c = 3.已知双曲线22=1169x y -上的点P 到(5,0)的距离为15,则点P 到点(-5,0)的距离为( ) A .7 B .23 C .5或25 D .7或23 答案:D 解析:设F 1(-5,0),F 2(5,0), 则由双曲线的定义知:||PF 1|-|PF 2||=2a =8,而|PF 2|=15,解得|PF 1|=7或23.4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),顶点B 在双曲线22=12511x y -的左支上,则sin sin sin A C B-=______. 答案:56解析:如图,||||sin sin ||||210522||sin ||21262BC AB A C BC AB a RR AC B AC c R---=====.5.在平面直角坐标系xOy 中,已知双曲线22=1412x y-上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为__________.答案:4 解析:设右焦点为F ,则点F 的坐标为(4,0).把x =3代入双曲线方程得y =±15,即M 点的坐标为(3,±15).。

相关文档
最新文档