双曲线及其标准方程练习题
(完整word版)双曲线及其标准方程练习题.doc

2.2.1 双曲线及其标准方程x 2 y 2 )1.已知方程1表示焦点在 y 轴上的双曲线,则 k 的取值范围是(9 kk 3A.3<k <9B.k >3C.k >9D.k <32.方程 x 2 +(k-1)y 2=k+1 表示焦点在 x 轴上的双曲线,则 k 的取值范围是 ( )A.k <-1B.k > 1C.-1< k <1D.k < -1 或 k > 13.方程x 2y 2 1表示焦点在坐标轴上的双曲线,则α是第几象限的角()sincosA.二B.四C.二或四D.一或三4.已知双曲线的焦点 F 1(-4,0),F 2( 4, 0),且经过点 M (2 6 ,2)的双曲线标准方程是 ______.5.双曲线的焦点在 x 轴上,且经过点 M (3,2)、N (-2,-1),则双曲线标准方程是 ______.双曲线x 2 y 2 1 上点 P 到左焦点的距离为 6,这样的点有 ______个.6.12437.双曲线 3x 2 -y 2=2 的右支上有一点 P , P 到 x 轴、 y 轴的距离之比为,则点 P 的坐标是______.8.若双曲线 x 2 -4y 2 =4 的焦点是 F 1、F 2 过 F 1 的直线交左支于 A 、B ,若|AB|=5,则△ AF 2B 的周长是 ______.1 / 39.已知双曲线 x2y 2 1 ,过它的焦点且垂直于 x 轴的弦长是 ______. 25 2410.在双曲线 x 2-y 2 =4 上的一点,使该点与焦点的连线互相垂直,则这个点坐标是______.11. 已知 12 是双曲线 x 2 21 的两个焦点,点 P 在双曲线上且满足∠ F 1 PF2 F 、 F y4=90°,求△ F 1PF 2 的面积 .2 / 3参考答案1. C2. C3. C4. y 2 x 2 15. x 2y 2 16. 39 77 73 57.(2 6, 6 ) 8. 189.483510.( 6 , 2 ),(- 6 , 2 ),( 6 ,- 2 ),(- 6 ,- 2 )∵ 为双曲线 x 2y 21 上的一个点且 F 1、2 为焦点. 11. P4F∴ ||PF 1|-|PF 2||=2a=4,|F 1 F 2|=2c=2 5∵∠ F 1PF 2=90°∴在 Rt △PF 1F 2 中 ,|PF 1|2+|PF 2|2=|F 1F 2|2=20∵( |PF 1|-|PF 2|)2=|PF 1 |2+|PF 2|2-2|PF 1||PF 2|=16∴20-2|PF 1||PF 2|=16∴ |PF 1| ·|PF 2|=2∴SF PF12|PF 1| |PF ·2|=1 12由此题可归纳出 S △ F1PF2=b 2cot ∠F 1PF223 / 3。
双曲线标准方程--离心率练习题

双曲线的标准方程及其简单的几何性质一、选择题1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )-y 2=1B .y 2-x 23=1 -y 24=1 -x 24=15.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) -y 23=1-y 22=1 -y 2=1 D .x 2-y 24=1 7.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) -y 27=1 -y 27=1(y >0) -y 27=1或x 27-y 29=1 -y 27=1(x >0)8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )-y 24=1 -y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=110.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )-y 224=1 -x 224=1 -x 212=1 -y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )B .3C .4D .2 二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程21.如图,F 1,F 2是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,过F 1的直线l 与C 的左、右分支分别交于A ,B 两点.若AB :BF 2:AF 2=3:4:5,则双曲线的离心率为______.求双曲线方程及离心率练习题1.已知双曲线22214y x a -=过点()2,1-,则双曲线的离心率为( ) A. 2 B. 2 C. 3 D. 42.双曲线221()mx y m R +=∈的离心率为2,则m 的值为( ) A .1 B .-1 C. 1± D .22.已知双曲线Γ: 22221x y a b-=(0a >, 0b >)的一条渐近线为l ,圆C : ()228x a y -+=与l 交于A , B 两点,若ABC 是等腰直角三角形,且5OB OA =(其中O 为坐标原点),则双曲线Γ的离心率为( )A.133 B. 2133 C. 135 D. 21353.若双曲线的焦点到渐近线的距离是焦距的,则该双曲线的离心率为( ) A.B. C. 2 D.4.设F 为双曲线22221x y a b-=(0a >,0b >)的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( ) A .22B 23C .23D .35.双曲线的焦点到渐近线的距离等于半实轴长,则该双曲线的离心率等于 ( ) A 2 B 3 C. 2 D .36.双曲线的顶点到渐进线的距离等于虚轴长的14 ,则此双曲线的离心率是( )A. 2B. 2C. 3D. 37.过双曲线()222210 0x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点,则双曲线的离心率为( )2358.已知双曲线的方程为,过左焦点作斜率为的直线交双曲线的右支于点P ,且y 轴平分线段,则双曲线的离心率为( ).A.B.C.D.9.已知双曲线,其一渐近线被圆所截得的弦长等于4,则的离心率为( ) A. B.C. 或D. 或10.已知双曲线22221x y a b-=(0a >, 0b >)的渐近线与圆()228223x y -+=相切,则该双曲线的离心率为( )A.62 B. 32C. 3D. 3 11.设F 为双曲线C : 22221(0,0)x y a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左、右支交于点,P Q ,若2PQ QF =, 60PQF ∠=,则该双曲线的离心率为( ) A. 3 B. 13+ C. 23+ D. 423+12.双曲线的左右焦点分别为,直线经过点及虚轴的一个端点,且点到直线的距离等于实半轴的长,则双曲线的离心率为( ) A.B.C.D.13.设,分别为椭圆:与双曲线:的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的值为( ) A. 2 B. C. 3 D. 214.已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为( )A. 6B. 3C.D.15.已知O 为坐标原点,F 是双曲线C :的左焦点,A ,B 分别为双曲线C 的左、右顶点,P 为双曲线C 上的一点,且PF⊥x 轴,过点A 的直线与线段PF 交于M ,与y 轴交于点E ,直线BM 与y 轴交于点N ,若,则双曲线C 的离心率为A. 2B. 3C. 2D. 3 16.已知双曲线的左,右焦点分别为,点P 为双曲线右支上一点,若,则双曲线的离心率取值范围为( )A.B.C.D.17.已知双曲线 的一条渐近线方程为,,分别是双曲线的左, 右焦点, 点P 在双曲线上, 且, 则等于( )A. 4B. 6C. 8D.18.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是( ) A. 30m -<< B. 32m -<< C. 34m -<< D. 13m -<< 19.已知直线l 过点()1,0A -且与22:20B x y x +-=相切于点D ,以坐标轴为对称轴的双曲线E 过点D ,其一条渐近线平行于l ,则E 的方程为( )A. 223144x y -=B. 223122x y -=C. 22513y x -= D. 223122y x -= 20.已知双曲线的右顶点为A ,过右焦点的直线与双曲线的一条渐近线平行,交另一条渐近线于点B ,则()A. B. C.D.双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O ,x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1.5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0), 又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =c a= 2. 14、[答案] C [解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎪⎨⎪⎧ 9a 2-4b2=14a 2-1b 2=1,∴⎩⎪⎨⎪⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1. 18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1. 20、[答案]y 2254-x 2394=1 [解析] 椭圆x 29+y 225=1中,a =5,b =3,c 2=16, 21、求双曲线方程及离心率练习题1.C 【解析】由题意可得:221411,42a a -=⇒= ,据此有: 2222219,4,22a b c a b ===+= ,则: 2229,3c e e a=== .本题选择C 选项.2.B 【解析】因为 ,所以 ,选B.2.A3.D 【解析】不妨设双曲线的焦点为,则其中一条渐近线为,焦点到其距离,又知,所以,故选D .4.B 【解析】由题意得的垂直平分线与渐近线在第一象限内的交点为,因此到另一条渐近线的距离为选B.5.A 【解析】因为双曲线的焦点到渐近线的距离为b ,所以 选A.6.A7.A8.A,解得,选A.9.D 【解析】 的渐近线为 渐近线被截得的弦长为或或.选D.10.A 【解析】由题意知圆心()22,0到渐近线0bx ay -=的距离等于83,化简得2232a c =,解得62e =, 11.B12.D13.B14.A15.C【解析】因为轴,所以设,16.A 【解析】根据双曲线定义,,且点在左支,则,设,,则,,则,,在中,,则离心率.∴.故选A.17.C 【解析】由题知双曲线的渐近线方程为 ,据所给渐近线方程,又 ,知 ,根据双曲线的定义可得,又 ,则.故本题答案选.【解析】由题意知, ()()23032m m m -+<⇒-<<,则C ,D 均不正确,而B 为充要条件,不合题意,故选A.19.D 【解析】可设直线方程: 22(1),:20y k x B x y x =++-=的圆心为(1,0)半径为1,由相切得条件可得: 203d=131k k k k +-=⇒=±+,所以直线方程: 3(1),3y x =±+,联立圆解得: 1313,(,)2222x y D ==±⇒±,故渐近线方程为32y x =±,设双曲线方程为2213y x m -=代入D 可得双曲线方程: 223122y x -= 20.A【解析】 渐近线为 与的一条渐近线平行,不妨用,即的纵坐标.选B.。
双曲线练习题(含答案)

双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
【高中数学】3.2.1 双曲线及其标准方程

3.2 双曲线3.2.1 双曲线及其标准方程基础过关练题组一 双曲线的定义及其应用1.(2020辽宁六校协作体高二上月考)已知M(-3,0),N(3,0),|PM|-|PN|=6,则动点P 的轨迹是( )A.一条射线B.双曲线右支C.双曲线D.双曲线左支2.设F 1,F 2分别是双曲线x 2-y29=1的左、右焦点.若点P 在双曲线上,且|PF 1|=5,则|PF 2|=( )A.5B.3C.7D.3或73.(2019河北唐山一中高二上月考)已知平面内两定点F 1(-2,0),F 2(2,0),下列条件中满足动点P 的轨迹为双曲线的是( ) A.|PF 1|-|PF 2|=±3 B.|PF 1|-|PF 2|=±4 C.|PF 1|-|PF 2|=±5 D.|PF 1|2-|PF 2|2=±44.已知双曲线x 24-y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O 的距离为( ) A.3或7B.6或14C.3D.75.已知F 1,F 2分别为双曲线C:x 2-y 2=1的左,右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于 .6.已知双曲线的左,右焦点分别为F 1,F 2,过F 1的直线与双曲线的左支交于A,B 两点,线段AB 的长为5.若2a=8,那么△ABF 2的周长是 .题组二 双曲线的标准方程 7.(2019北京一一中学高二上期中)双曲线x 23-y 24=1的焦点坐标为()A.(±1,0)B.(±√7,0)C.(±√5,0)D.(±4,0) 8.已知动点P 到A(-5,0)的距离与它到B(5,0)的距离之差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1B.y 29-x 216=1 C.x 29-y 216=1(x ≤3) D.x 29-y 216=1(x ≥3) 9.已知双曲线的一个焦点为F 1(-√5,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的标准方程是( )A.x 24-y 2=1 B.x 2-y24=1C.x 22-y 23=1 D.x 23-y 22=1 10.如图所示,已知双曲线以长方形ABCD 的顶点A,B 为左,右焦点,且双曲线过C,D 两顶点.若AB=4,BC=3,则此双曲线的标准方程为 .11.经过点P(-3,2√7)和Q(-6√2,-7)的双曲线的标准方程是 .12.已知与双曲线x 216-y 29=1共焦点的双曲线过点P (-√52,-√6),求该双曲线的标准方程.题组三 双曲线的综合运用13.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为( )A.1B.1或-2C.1或12D.1214.已知方程x 21+k -y 21−k=1表示双曲线,则k 的取值范围是( )A.(-1,1)B.(0,+∞)C.[0,+∞)D.(-∞,-1)∪(1,+∞)15.若ax 2+by 2=b(ab<0),则这个曲线是( ) A.双曲线,焦点在x 轴上 B.双曲线,焦点在y 轴上 C.椭圆,焦点在x 轴上 D.椭圆,焦点在y 轴上16.(2020湖南长沙长郡中学高二上期中) 设F 1,F 2是双曲线x 25-y 24=1的两个焦点,P 是该双曲线上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .能力提升练题组一 双曲线的定义及其应用 1.(2020辽宁大连二十四中高二期中,)已知双曲线x 216-y 220=1的左,右焦点分别为F 1,F 2,P 为双曲线右支上一点,且PF 2的中点M 在以O 为圆心,OF 1为半径的圆上,则|PF 2|=( )A.6B.4C.2D.12.(2020湖南师大附中高二上期中检测,)已知双曲线C:x 216-y 29=1的左,右焦点分别是F 1,F 2,P 是双曲线C 的右支上的一点(不是顶点),过F 2作∠F 1PF 2的平分线的垂线,垂足是M,O 是原点,则|MO|=( ) A.随P 点变化而变化 B.2C.4D.53.(2020广东东莞高二上期末教学质量检查,)已知双曲线C:x 216-y 29=1的左、右焦点分别为F 1、F 2, P 为双曲线C 上一点,直线l 分别与以F 1为圆心,F 1P 为半径的圆和以F 2为圆心,F 2P 为半径的圆相切于点A,B,则|AB|=( ) A.2√7 B.6 C.8 D.104.()给出问题:F 1,F 2分别是双曲线x 216-y 220=1的左,右焦点,点P 在双曲线上,若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下: 由||PF 1|-|PF 2||=2a=8,即|9-|PF 2||=8,得|PF 2|=1或|PF 2|=17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确答案填在横线上..题组二 双曲线的标准方程及其应用 5.()在平面直角坐标系Oxy 中,点B 与点A(-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13,则动点P 的轨迹方程为( ) A.x 2-3y 2=-2 B.x 2-3y 2=2(x ≠±1) C.x 2-3y 2=2 D.x 2-3y 2=-2(x ≠±1) 6.(2020山东菏泽一中高二期中,)“实数mn<0”是“方程x 2m +y 2n=1表示焦点在x 轴上的双曲线”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 7.(2019河北邯郸一中高二期末,)如图,F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a>0,b>0)的左,右焦点,过F 1(-√7,0)的直线l 与双曲线的左,右两支分别交于点A,B.若△ABF 2为等边三角形,则双曲线的方程为( )A.5x 27-5y 228=1B.x 26-y 2=1 C.x 2-y 26=1 D.5x 228-5y 27=1 8.()已知双曲线的两个焦点分别是F 1(-√5,0),F 2(√5,0),P 是双曲线上一点,且PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0,|PF 1|·|PF 2|=2,则双曲线的标准方程为 . 题组三 双曲线的综合运用 9.()已知点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x+5)2+y 2=1上,点R 在曲线C 3:(x-5)2+y 2=1上,则|PQ|-|PR|的最大值是( ) A.6 B.8 C.10 D.1210.(2019黑龙江齐齐哈尔四校联盟高二上期中,)已知双曲线x 2m -y 23m=1的一个焦点是(0,2),椭圆y 2n -x 2m=1的焦距等于4,则n= .11.(2019江西南昌二中高二上期中,)若点(x,y)在双曲线x 24-y 2=1上,则3x 2-2y 的最小值是 . 12.()已知双曲线x 24-y 29=1,F 1,F 2是其两个焦点,点M 在双曲线上.(1)若∠F 1MF 2=90°,求△F 1MF 2的面积;(2)若∠F 1MF 2=120°,△F 1MF 2的面积是多少?若∠F 1MF 2=60°,△F 1MF 2的面积又是多少?答案全解全析基础过关练1.A因为|PM|-|PN|=6=|MN|,所以动点P的轨迹是一条射线.故选A.2.D依题意得,a=1,b=3,因此c=√10,因为|PF1|=5>a+c=1+√10,所以点P可以在双曲线的左、右两支上,因此|PF1|-|PF2|=±2,即5-|PF2|=±2,所以|PF2|=3或7,故选D.3.A当|PF1|-|PF2|=±3时,||PF1|-|PF2||=3<|F1F2|=4,满足双曲线的定义,所以点P的轨迹是双曲线.故选A.4.A连接ON,PF2(F2为双曲线的右焦点),则ON是△PF1F2的中位线,∴|ON|=12|PF2|,∵||PF1|-|PF2||=4,|PF1|=10,∴|PF2|=14或6,∴|ON|=12|PF2|=7或3.5.答案4解析在△PF1F2中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos60°=(|PF1|-|PF2|)2+|PF1|·|PF2|,即(2√2)2=22+|PF1|·|PF2|,解得|PF1|·|PF2|=4.6.答案26解析|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,∴|AF2|+|BF2|-(|AF1|+|BF1|)=16.∴|AF2|+|BF2|=16+5=21,∴△ABF2的周长为|AF2|+|BF2|+|AB|=21+5=26.7.B由题意得双曲线的焦点在x轴上,且a2=3,b2=4,∴半焦距c=√a2+b2=√7,∴双曲线的焦点坐标为(±√7,0).故选B.8.D由题意知,动点P的轨迹应为以A(-5,0),B(5,0)为焦点的双曲线的右支.由半焦距c=5,实半轴长a=3,知b2=16,所以P点的轨迹方程为x29-y216=1(x≥3).故选D.9.B 设双曲线的标准方程为x 2a2-y 2b 2=1(a>0,b>0),因为半焦距c=√5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a2-y 25−a 2=1.因为线段PF 1的中点坐标为(0,2),所以点P 的坐标为(√5,4).将P(√5,4)代入双曲线方程,得5a2-165−a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线的标准方程为x 2-y24=1.故选B.10.答案 x 2-y23=1解析 设双曲线的标准方程为x 2a2-y 2b2=1(a>0,b>0).由题意得B(2,0),C(2,3),∴{4=a 2+b 2,4a2-9b2=1,解得{a 2=1,b 2=3或{a 2=16,b 2=−12(舍去).∴双曲线的标准方程为x 2-y23=1.11.答案y 225-x 275=1解析 设双曲线的方程为mx 2+ny 2=1(mn<0), 则{9m +28n =1,72m +49n =1,解得{m =−175,n =125,故双曲线的标准方程为y 225-x 275=1.12.解析 已知双曲线x 216-y 29=1,则c 2=16+9=25,∴c=5.设所求双曲线的标准方程为x 2a2-y 2b2=1(a>0,b>0).∵所求双曲线与双曲线x 216-y 29=1共焦点,∴b 2=25-a 2,故所求双曲线方程可写为x 2a 2-y 225−a 2=1.∵点P (-√52,-√6)在所求双曲线上, ∴(-√52)2a 2-(-√6)225−a 2=1,化简得4a 4-129a 2+125=0,解得a 2=1或a 2=1254.当a 2=1254时,b 2=25-a 2=25-1254=-254<0,不合题意,舍去,∴a 2=1,b 2=24,∴所求双曲线的标准方程为x 2-y224=1.13.A 由题意知{a >0,0<a 2<4,4−a 2=a +2,解得a=1.14.A 由题意得(1+k)(1-k)>0, 所以(k-1)(k+1)<0,所以-1<k<1. 故选A.15.B 原方程可化为x 2b a+y 2=1,因为ab<0,所以ba<0,所以方程表示的曲线是双曲线,且焦点在y 轴上.16.答案 12解析 ∵F 1,F 2是双曲线x 25-y 24=1的两个焦点,∴可设F 1(-3,0),F 2(3,0),∴|F 1F 2|=6,∵|PF 1|∶|PF 2|=2∶1,∴设|PF 2|=x(x>0),则|PF 1|=2x. 由双曲线的性质知2x-x=2√5,解得x=2√5. ∴|PF 1|=4√5,|PF 2|=2√5, ∴cos ∠F 1PF 2=2×4√5×2√5=45,∴sin ∠F 1PF 2=35.∴△PF 1F 2的面积为12×4√5×2√5×35=12.能力提升练 1.B 依题意得,a 2=16,b 2=20,∴c 2=36,从而c=6. 且|OM|=|OF 2|=c=6,由M 是PF 2的中点,O 是F 1F 2的中点得,|PF 1|=2|OM|=12. ∵P 在双曲线的右支上,∴|PF 1|-|PF 2|=2a=8,因此|PF 2|=12-8=4,故选B.2.C 延长F 2M 交PF 1于Q,据题意得PM 是线段F 2Q 的中垂线,即|PQ|=|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=|PF 1|-|PQ|=|QF 1|=8,又线段MO 是△F 2F 1Q 的中位线,所以|MO|=4.3.B 依题意得,a=4,b=3,c=√a 2+b 2=5.设点P 在双曲线的右支上,如图所示,过F 2作F 2D ⊥AF 1于点D.易得四边形ABF 2D 为矩形.∵|AF 1|=|PF 1|,|BF 2|=|PF 2|,∴|F 1D|=|AF 1|-|AD|=|AF 1|-|BF 2|=|PF 1|-|PF 2|=2a=8. 又∵|F 1F 2|=2c=10,∴在Rt △F 1DF 2中,|F 2D|=√|F 1F 2|2-|F 1D|2=√102-82=6, ∴|AB|=|F 2D|=6.4.答案 学生的解答不正确,|PF 2|=17解析 由双曲线的定义知,||PF 1|-|PF 2||=2a,即|PF 1|-|PF 2|=±2a.正负号的取舍取决于点P 的位置是在双曲线的左支上还是右支上.因为点(4,0)到左焦点(-6,0)的距离为10>9,所以点P 只能在双曲线的左支上. 所以|PF 2|=17.5.D 由题意得,A(-1,1),B(1,-1),设P(x,y)(x ≠±1),则k AP =y -1x+1,k BP =y+1x -1.由k AP ·k BP =13,得x 2-3y 2=-2(x ≠±1).6.B 若曲线x 2m+y 2n=1是焦点在x 轴上的双曲线,则m>0,n<0,因此mn<0;若mn<0,可能有m<0,n>0的情况,此时双曲线的焦点在y 轴上,因此“mn<0”是“曲线x 2m+y 2n=1是焦点在x 轴上的双曲线”的必要而不充分条件.故选B.7.C 根据双曲线的定义,有|AF 2|-|AF 1|=2a ①,|BF 1|-|BF 2|=2a ②,由于△ABF 2为等边三角形,因此|AF 2|=|AB|=|BF 2|,①+②,得|BF 1|-|AF 1|=4a, 则|AB|=|AF 2|=|BF 2|=4a,|BF 1|=6a,又∠F 1BF 2=60°,所以(2c)2=(6a)2+(4a)2-2×6a×4a×12,即7a 2=c 2=7,解得a 2=1,则b 2=c 2-a 2=6,所以双曲线的方程为x 2-y26=1.8.答案x 24-y 2=1解析 由题意得,双曲线的焦点在x 轴上,且|F 1F 2|=2c=2√5.由双曲线的定义,知||PF 1|-|PF 2||=2a,得|PF 1|2-2|PF 1|·|PF 2|+|PF 2|2=4a 2.① 由PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0知PF 1⊥PF 2,∵|PF 1|·|PF 2|=2, ∴|PF 1|2+|PF 2|2=|F 1F 2|2=20. 代入①式,解得a 2=4. 又c=√5,∴b 2=c 2-a 2=1, ∴双曲线的标准方程为x 24-y 2=1.9.C 由双曲线的知识,不妨设C 1:x 216-y 29=1的两个焦点分别是F 1(-5,0)与F 2(5,0),且|PF 1|-|PF 2|=8,而这两点恰好是两圆(x+5)2+y 2=1和(x-5)2+y 2=1的圆心,且两圆的半径分别是r 2=1,r 3=1,所以|PQ|max =|PF 1|+1,|PR|min =|PF 2|-1,所以|PQ|-|PR|的最大值为(|PF 1|+1)-(|PF 2|-1)=|PF 1|-|PF 2|+2=8+2=10. 故选C. 10.答案 5解析 因为双曲线的一个焦点是(0,2),所以设双曲线的标准方程为y 2a2-x 2b 2=1,a>0,b>0,又由题意得,双曲线的标准方程是y 2-3m -x 2-m=1,所以a 2=-3m,b 2=-m,所以c 2=-4m=4,即m=-1,所以椭圆方程是y 2n+x 2=1,因为椭圆的焦距2c=4,所以c=2,所以n-1=4,解得n=5.11.答案14312解析 因为点(x,y)在双曲线x 24-y 2=1上,所以x 24=1+y 2,则3x 2-2y=3(1+y 2)×4-2y=12y 2-2y+12,令f(y)=12y 2-2y+12,则二次函数的图象的对称轴为y=112,结合二次函数的图象及性质可知,当y=112时,f(y)最小,为14312.12.解析 设|MF 1|=r 1,|MF 2|=r 2(不妨设r 1>r 2),θ=∠F 1MF 2, 因为S △F 1MF 2=12r 1r 2sin θ,θ已知,所以只需求r 1r 2即可.(1)当θ=90°时,S △F 1MF 2=12r 1r 2sin θ=12r 1r 2.由双曲线方程知a=2,b=3,c=√13,由双曲线的定义,得r 1-r 2=2a=4,两边平方,得r 12+r 22-2r 1r 2=16,又r12+r22=|F1F2|2,即|F1F2|2-4S△F1MF2=16,也即52-16=4S△F1MF2,求得S△F1MF2=9.(2)若∠F1MF2=120°,则在△F1MF2中,|F1F2|2=r12+r22-2r1r2cos120°=(r1-r2)2+3r1r2=52,所以r1r2=12,求得S△F1MF2=12r1r2sin120°=3√3.同理,可求得∠F1MF2=60°时,S△F1MF2=9√3.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
双曲线及其性质最有效训练题

双曲线及其性质最有效训练题(限时45分钟)1. 已知双曲线1722=-y m x ,直线l 过其左焦点1F ,交双曲线左支于B A ,两点,且4=AB ,2F 为双曲线的右焦点,2ABF ∆的周长为20,则的值为( )A. 8B. 9C. 16D. 202. 若点O 和点)0,2(-F 分别为双曲线)0(1222>=-a y ax 的中心和左焦点,点P 为双曲线右支上的任意一点,则FP OP ⋅的取值范围为( ) A. [)+∞-,323 B. [)+∞+,323C. ⎪⎭⎫⎢⎣⎡+∞-,47D. ⎪⎭⎫⎢⎣⎡+∞,47 3. 已知21,F F 为双曲线222=-y x 的左、右焦点,点P 在C 上,212PF PF =,则=∠21cos PF F ( ) A. 41 B. 53 C. 43 D. 544. 若椭圆)0(12222>>=+b a b y a x 的离心率为23,则双曲线)0,0(12222>>=-b a b y a x 的渐近线方程为( ) A. x y 21±= B. x y 2±= C. x y 4±= D. x y 21±= 5. 双曲线C 的左、右焦点分别为21,F F ,且2F 恰好为抛物线x y 42=的焦点,设双曲线C与该抛物线的一个交点为A ,若21F AF ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为( ) A. 2 B. 21+ C. 31+ D. 32+6. 已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为)0,5(F ,则=a _______,=b ___________.7. 已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一个点,若21PF PF ⊥,则21PF PF +的值为_________.8. 若双曲线)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,P 为双曲线上一点,且213PF PF =,则该双曲线离心率的取值范围是________.9. 根据下列条件,求双曲线的标准方程:(1)与双曲线13422=-y x 有共同的渐近线,且过点)32,2(; (2)与双曲线191622=-y x 有公共焦点,且过点)4,22(-; (3)已知双曲线的渐近线方程为x y 32±=,且过点)1,29(-M ; (4)与椭圆1244922=+y x 有公共焦点,且离心率45=e .10. 中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点21,F F ,且13221=F F ,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3:7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求21cos PF F ∠的值.11. 已知双曲线的中心在原点,焦点21,F F 在坐标轴上,离心率为2,且过点)10,4(-P .(1)求双曲线方程;(2)若点),3(m M 在双曲线上,求证:021=⋅MF MF ;(3)在(2)的条件下,求21MF F ∠∆的面积.。
双曲线及其标准方程练习

∵0<a<c,∴令c2-a2=b2(b>0)
x 2 y2 2 1 (a 0,b 0, 2 a b a不一定大于b) y2 x 2 2 1 2 a b
【典例训练】
1.双曲线2x2-y2=k的焦距为6,则k的值为___________.
x2 y2 1 表示双曲线,则m的取值范围为_____. 2.方程 2m m 3 2 2 3.讨论方程 x y 1 表示何种圆锥曲线?它们有何共同特 25 k 9 k
(2)焦点F1、F2的位置,是双曲线定位的条件,它决定了双曲 线标准方程的类型.“焦点跟着正项走”:若x2项的系数为正,
则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时,ຫໍສະໝຸດ 双曲线的方程才具有标准形式.
求双曲线的标准方程 【技法点拨】 1.求双曲线标准方程的三个关注点
x 2 y2 2.若方程 1 表示焦点在x轴上的双曲线,那么m,n的符 m n
号怎样? 提示:m>0,n<0.
3.对双曲线标准方程的三点说明
x 2 y2 y2 x 2 双曲线的标准方程有两种不同类型: 2 2 1, 2 2(a>0,b>0), 1 a b a b
分别表示焦点在x轴上和焦点在y轴上的双曲线. (1)标准方程中的两个参数a和b确定了双曲线的形状和大小, 是双曲线的定形条件,这里b2=c2-a2,与椭圆中b2=a2-c2(a>b>0) 相区别,且椭圆中a>b>0,而双曲线中,a、b大小不确定.
②
③
一般地,在△PF1F2中,通过以上三个等式,所求问题就会顺利 解决.
焦点三角形SPF1F2 b cot 2
双曲线及其标准方程

双曲线及其标准方程基础练习
1、 双曲线的渐近线方程为23
y x =±,且过点()
-423⋅,则双曲线的标准方程是_________________________________ 2、 直线2y x b =+(0)b ≠与双曲线22
128
x y -=的交点个数是______个 3、 椭圆221259x y +=与双曲线22
1259
x y k k -=--(925)k <<始终有相同的( ) A 、离心率 B 、顶点 C 、焦点 D 、以上全不对
4、
双曲线的一条渐近线方程是y =,焦点是(4,0),(4,0)-,则双曲线的标准方程是_______________________________
5、已知双曲线22
1169
x y -=,过右焦点2F 作双曲线的弦AB ,且AB =5,则双曲线的另外的一个焦点为1F ,三角形1ABF 的周长是
6、设双曲线22
221x y a b
-=的半焦距为C ,直线过(,0),(,0)a b 两点,已知原点到直
,则双曲线的离心率为_____________ 7、已知椭圆22
185
x y +=,以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的标准方程是
8、等轴双曲线的离心率是___________渐近线方程是______________
9、双曲线2
2
13y x -=的两条渐近线的夹角为________________ 10、已知双曲线2
2
132x y -=与直线20x y --=交于A ,B 两点,AB =。
最新双曲线及其标准方程练习题

课时作业(十)[学业水平层次]一、选择题1.方程x 22+m -y 22-m =1表示双曲线,则m 的取值范围( )A .-2<m <2B .m >0C .m ≥0D .|m |≥2【解析】 ∵已知方程表示双曲线,∴(2+m )(2-m )>0. ∴-2<m <2. 【答案】 A2.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1 B.y 29-x 216=1 C.x 29-y 216=1(x ≤-3)D.x 29-y 216=1(x ≥3)【解析】 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,a =3,知b 2=16,∴P 点的轨迹方程为x 29-y 216=1(x ≥3). 【答案】 D3.(2014·福州高级中学期末考试)已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=1【解析】由⎩⎨⎧|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(25)2,⇒(|PF 1|-|PF 2|)2=16,即2a =4,解得a =2,又c =5,所以b =1,故选C. 【答案】 C4.已知椭圆方程x 24+y 23=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为( )A.2B. 3 C .2D .3【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a =1,c =2,所以双曲线的离心率为e =c a =21=2.【答案】 C 二、填空题5.设点P 是双曲线x 29-y 216=1上任意一点,F 1,F 2分别是其左、右焦点,若|PF 1|=10,则|PF 2|=________.【解析】 由双曲线的标准方程得a =3,b =4. 于是c =a 2+b 2=5.(1)若点P 在双曲线的左支上,则|PF 2|-|PF 1|=2a =6,∴|PF 2|=6+|PF 1|=16; (2)若点P 在双曲线的右支上, 则|PF 1|-|PF 2|=6, ∴|PF 2|=|PF 1|-6=10-6=4. 综上,|PF 2|=16或4. 【答案】 16或46.(2014·河南省洛阳高一月考)已知F 1(-3,0),F 2(3,0),满足条件|PF 1|-|PF 2|=2m -1的动点P 的轨迹是双曲线的一支,则m 可以是下列数据中的________.(填序号)①2;②-1;③4;④-3.【解析】 设双曲线的方程为x 2a 2-y 2b 2=1,则c =3,∵2a <2c =6,∴|2m -1|<6,且|2m -1|≠0,∴-52<m <72,且m ≠12,∴①②满足条件.【答案】 ①②7.(2014·哈尔滨高二检测)已知△ABP 的顶点A 、B 分别为双曲线C :x 216-y 29=1的左、右焦点,顶点P 在双曲线C 上,则|sin A -sin B |sin P 的值等于________.【解析】 由方程x 216-y 29=1知a 2=16,b 2=9,即a =4,c =16+9=5.在△ABP 中,利用正弦定理和双曲线的定义知,|sin A -sin B |sin P=||PB |-|P A |||AB |=2a 2c =2×42×5=45.【答案】 45 三、解答题8.求与双曲线x 24-y 22=1有相同焦点且过点P (2,1)的双曲线的方程.【解】 ∵双曲线x 24-y 22=1的焦点在x 轴上. 依题意,设所求双曲线为x 2a 2-y 2b 2=1(a >0,b >0). 又两曲线有相同的焦点, ∴a 2+b 2=c 2=4+2=6.①又点P (2,1)在双曲线x 2a 2-y 2b 2=1上, ∴4a 2-1b 2=1.②由①、②联立,得a 2=b 2=3, 故所求双曲线方程为x 23-y 23=1.9.已知方程kx 2+y 2=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的曲线类型.【解】 (1)当k =0时,y =±2,表示两条与x 轴平行的直线;(2)当k =1时,方程为x 2+y 2=4,表示圆心在原点,半径为2的圆;(3)当k <0时,方程为y 24-x 2-4k =1,表示焦点在y 轴上的双曲线;(4)当0<k <1时,方程为x 24k +y 24=1,表示焦点在x 轴上的椭圆;(5)当k >1时,方程为x 24k+y 24=1,表示焦点在y 轴上的椭圆.[能力提升层次]1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为( )A .1 B. 2 C .2 D .3【解析】 由题意知椭圆、双曲线的焦点在x 轴上,且 a >0.∵4-a 2=a +2,∴a 2+a -2=0, ∴a =1或a =-2(舍去).故选A. 【答案】 A2.(2014·桂林高二期末)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )A .2B .4C .6D .8【解析】 不妨设P 是双曲线右支上一点, 在双曲线x 2-y 2=1中,a =1,b =1,c =2,则|PF 1|-|PF 2|=2a =2,|F 1F 2|=22,∵|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2, ∴8=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·12, ∴8=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, ∴8=4+|PF 1||PF 2|, ∴|PF 1||PF 2|=4.故选B. 【答案】 B3.(2014·福建省厦门一中期末考试)已知双曲线x 216-y 225=1的左焦点为F ,点P 为双曲线右支上的一点,且PF 与圆x 2+y 2=16相切于点N ,M 为线段PF 的中点,O 为坐标原点,则|MN |-|MO |=________.【解析】 设F ′是双曲线的右焦点,连PF ′(图略),因为M ,O 分别是FP ,FF ′的中点,所以|MO |=12|PF ′|,又|FN |=|OF |2-|ON |2=5,且由双曲线的定义知|PF |-|PF ′|=8,故|MN |-|MO |=|MF |-|FN |-12|PF ′|=12(|PF |-|PF ′|)-|FN |=12×8-5=-1.【答案】 -14.已知双曲线x 216-y 24=1的两焦点为F 1、F 2.(1)若点M 在双曲线上,且MF 1→·MF 2→=0,求点M 到x 轴的距离; (2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.【解】 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,MF 1→·MF 2→=0, 则MF 1⊥MF 2,设|MF 1|=m ,|MF 2|=n ,由双曲线定义知,m -n =2a =8,又m 2+n 2=(2c )2=80,②由①②得m ·n =8, ∴12mn =4=12|F 1F 2|·h , ∴h =255.(2)设所求双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16),由于双曲线C 过点(32,2),所以1816-λ-44+λ=1,解得λ=4或λ=-14(舍去).∴所求双曲线C 的方程为x 212-y 28=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(十)
[学业水平层次]
一、选择题
1.方程x 22+m -y 2
2-m =1表示双曲线,则m 的取值范围( )
A .-2<m <2
B .m >0
C .m ≥0
D .|m |≥2
【解析】 ∵已知方程表示双曲线,∴(2+m )(2-m )>0. ∴-2<m <2. 【答案】 A
2.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( )
A.x 29-y 2
16=1 B.y 29-x 2
16=1 C.x 29-y 2
16=1(x ≤-3)
D.x 29-y 2
16=1(x ≥3)
【解析】 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,a =3,知b 2=16,
∴P 点的轨迹方程为x 29-y 2
16=1(x ≥3). 【答案】 D
3.(2014·福州高级中学期末考试)已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )
A.x 22-y 2
3=1 B.x 23-y 2
2=1
C.x 24-y 2
=1 D .x 2-y
24=1
【解析】
由⎩⎨
⎧
|PF 1|·
|PF 2|=2,|PF 1|2+|PF 2|2=(2
5)2
,
⇒(|PF 1|-|PF 2|)2=16,
即2a =4,解得a =2,又c =5,所以b =1,故选C. 【答案】 C
4.已知椭圆方程x 24+y 2
3=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为( )
A.2
B. 3 C .2
D .3
【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a =1,c =2,所以双曲线的离心率为e =c a =2
1=2.
【答案】 C 二、填空题
5.设点P 是双曲线x 29-y 2
16=1上任意一点,F 1,F 2分别是其左、右焦点,若|PF 1|=10,则|PF 2|=________.
【解析】 由双曲线的标准方程得a =3,b =4. 于是c =a 2+b 2=5.
(1)若点P 在双曲线的左支上,
则|PF 2|-|PF 1|=2a =6,∴|PF 2|=6+|PF 1|=16; (2)若点P 在双曲线的右支上, 则|PF 1|-|PF 2|=6, ∴|PF 2|=|PF 1|-6=10-6=4. 综上,|PF 2|=16或4. 【答案】 16或4
6.(2014·河南省洛阳高一月考)已知F 1(-3,0),F 2(3,0),满足条件|PF 1|-|PF 2|=2m -1的动点P 的轨迹是双曲线的一支,则m 可以是下列数据中的________.(填序号)
①2;②-1;③4;④-3.
【解析】 设双曲线的方程为x 2a 2-y 2
b 2=1,则
c =3,∵2a <2c =6,∴|2m -1|<6,且|2m -1|≠0,∴-52<m <72,且m ≠1
2,∴①②满足条件.
【答案】 ①②
7.(2014·哈尔滨高二检测)已知△ABP 的顶点A 、B 分别为双曲线C :x 216-y 29=1的左、右焦点,顶点P 在双曲线C 上,则|sin A -sin B |sin P 的值等于________.
【解析】 由方程x 216-y 2
9=1知a 2=16,b 2=9,即a =4,c =16+9=5.
在△ABP 中,利用正弦定理和双曲线的定义知,|sin A -sin B |
sin P
=
||PB |-|P A |||AB |=2a 2c =2×42×5=45.
【答案】 4
5 三、解答题
8.求与双曲线x 24-y 2
2=1有相同焦点且过点P (2,1)的双曲线的方程.
【解】 ∵双曲线x 24-y 2
2=1的焦点在x 轴上. 依题意,设所求双曲线为x 2a 2-y 2
b 2=1(a >0,b >0). 又两曲线有相同的焦点, ∴a 2+b 2=
c 2=4+2=6.
①
又点P (2,1)在双曲线x 2a 2-y 2
b 2=1上, ∴4a 2-1
b 2=1.
②
由①、②联立,得a 2=b 2=3, 故所求双曲线方程为x 23-y 2
3=1.
9.已知方程kx 2+y 2=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的曲线类型.
【解】 (1)当k =0时,y =±2,表示两条与x 轴平行的直线;
(2)当k =1时,方程为x 2+y 2=4,表示圆心在原点,半径为2的圆;
(3)当k <0时,方程为y 24-x 2
-4k =1,表示焦点在y 轴上的双曲线;
(4)当0<k <1时,方程为x 24k +y 2
4=1,表示焦点在x 轴上的椭圆;
(5)当k >1时,方程为x 24k
+y 2
4=1,表示焦点在y 轴上的椭圆.
[能力提升层次]
1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2
2=1有相同的焦点,则a 的值为
( )
A .1 B. 2 C .2 D .3
【解析】 由题意知椭圆、双曲线的焦点在x 轴上,且 a >0.∵4-a 2=a +2,∴a 2+a -2=0, ∴a =1或a =-2(舍去).故选A. 【答案】 A
2.(2014·桂林高二期末)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )
A .2
B .4
C .6
D .8
【解析】 不妨设P 是双曲线右支上一点, 在双曲线x 2-y 2=1中,a =1,b =1,c =2, 则|PF 1|-|PF 2|=2a =2,|F 1F 2|=22,
∵|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2, ∴8=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·12, ∴8=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, ∴8=4+|PF 1||PF 2|, ∴|PF 1||PF 2|=4.故选B. 【答案】 B
3.(2014·福建省厦门一中期末考试)已知双曲线x 216-y 225=1的左焦点为F ,点P 为双曲线右支上的一点,且PF 与圆x 2+y 2=16相切于点N ,M 为线段PF 的中点,O 为坐标原点,则|MN |-|MO |=________.
【解析】 设F ′是双曲线的右焦点,连PF ′(图略),因为M ,O 分别是FP ,FF ′的中点,所以|MO |=1
2|PF ′|,
又|FN |=
|OF |2-|ON |2=5,且由双曲线的定义知|PF |-|PF ′|=
8,故|MN |-|MO |=|MF |-|FN |-12|PF ′|=12(|PF |-|PF ′|)-|FN |=1
2×8-5=-1.
【答案】 -1
4.已知双曲线x 216-y 2
4=1的两焦点为F 1、F 2.
(1)若点M 在双曲线上,且MF 1→·MF 2→
=0,求点M 到x 轴的距离; (2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.
【解】 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,
MF 1→·MF 2→=0, 则MF 1⊥MF 2, 设|MF 1|=m ,|MF 2|=n ,
由双曲线定义知,m -n =2a =8,
又m 2+n 2=(2c )2=80,
②
由①②得m ·n =8, ∴12mn =4=1
2|F 1F 2|·h , ∴h =255.
(2)设所求双曲线C 的方程为 x 216-λ-y 2
4+λ
=1(-4<λ<16), 由于双曲线C 过点(32,2), 所以1816-λ-44+λ=1,
解得λ=4或λ=-14(舍去). ∴所求双曲线C 的方程为x 212-y 2
8=1.。