最新双曲线及其标准方程练习题
(完整word版)双曲线及其标准方程练习题.doc

2.2.1 双曲线及其标准方程x 2 y 2 )1.已知方程1表示焦点在 y 轴上的双曲线,则 k 的取值范围是(9 kk 3A.3<k <9B.k >3C.k >9D.k <32.方程 x 2 +(k-1)y 2=k+1 表示焦点在 x 轴上的双曲线,则 k 的取值范围是 ( )A.k <-1B.k > 1C.-1< k <1D.k < -1 或 k > 13.方程x 2y 2 1表示焦点在坐标轴上的双曲线,则α是第几象限的角()sincosA.二B.四C.二或四D.一或三4.已知双曲线的焦点 F 1(-4,0),F 2( 4, 0),且经过点 M (2 6 ,2)的双曲线标准方程是 ______.5.双曲线的焦点在 x 轴上,且经过点 M (3,2)、N (-2,-1),则双曲线标准方程是 ______.双曲线x 2 y 2 1 上点 P 到左焦点的距离为 6,这样的点有 ______个.6.12437.双曲线 3x 2 -y 2=2 的右支上有一点 P , P 到 x 轴、 y 轴的距离之比为,则点 P 的坐标是______.8.若双曲线 x 2 -4y 2 =4 的焦点是 F 1、F 2 过 F 1 的直线交左支于 A 、B ,若|AB|=5,则△ AF 2B 的周长是 ______.1 / 39.已知双曲线 x2y 2 1 ,过它的焦点且垂直于 x 轴的弦长是 ______. 25 2410.在双曲线 x 2-y 2 =4 上的一点,使该点与焦点的连线互相垂直,则这个点坐标是______.11. 已知 12 是双曲线 x 2 21 的两个焦点,点 P 在双曲线上且满足∠ F 1 PF2 F 、 F y4=90°,求△ F 1PF 2 的面积 .2 / 3参考答案1. C2. C3. C4. y 2 x 2 15. x 2y 2 16. 39 77 73 57.(2 6, 6 ) 8. 189.483510.( 6 , 2 ),(- 6 , 2 ),( 6 ,- 2 ),(- 6 ,- 2 )∵ 为双曲线 x 2y 21 上的一个点且 F 1、2 为焦点. 11. P4F∴ ||PF 1|-|PF 2||=2a=4,|F 1 F 2|=2c=2 5∵∠ F 1PF 2=90°∴在 Rt △PF 1F 2 中 ,|PF 1|2+|PF 2|2=|F 1F 2|2=20∵( |PF 1|-|PF 2|)2=|PF 1 |2+|PF 2|2-2|PF 1||PF 2|=16∴20-2|PF 1||PF 2|=16∴ |PF 1| ·|PF 2|=2∴SF PF12|PF 1| |PF ·2|=1 12由此题可归纳出 S △ F1PF2=b 2cot ∠F 1PF223 / 3。
双曲线及其标准方程(专题训练)

双曲线及其标准方程双曲线的定义:平面内与两个定点1F 、2F 的距离 等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线. 如图所示:双曲线的概念注:实轴和虚轴等长的双曲线称为等轴双曲线.设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准 线的距离为2d ,则1212F F e d d M M ==.标准方程 )0,0(12222>>=-b a by ax)0,0(12222>>=-b a bx ay图形性 质焦点F 1(-)0,c ,F 2()0,cF 1(),0c -,F 2(),c o焦距 | F 1F 2|=2c 222c b a =+范围 x≤-a 与x ≥ay ≤-a 与y ≥a对称性 关于x 轴,y 轴和原点对称顶点 (-a ,0)。
(a ,0) (0,-a )(0,a )轴 实轴A 1A 2长2a ,虚轴B 1B 2长2b准线cax 2±= cay 2±=渐近线 x ab y ±=.a y x b=±共渐近线的双曲线系方程λ=-2222by ax (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).题型一:双曲线定义问题1.若+∈R a ,方程()()2222556x y x y-+-++=,表示什么曲线?若改成:()()2222556x y x y -+-++= ?2.已知ABC ∆的顶点()4,0-A 、()4,0B ,且()4sin sin 3sin B A C -=,则顶点C 的轨迹方程是 3.双曲线221169xy-=上一点P 到左焦点的距离为15,那么该点到右焦点的距离为变式:设12,F F 是双曲线2211620xy-=的焦点,点P 是双曲线上的点,点P 到焦点1F 的距离等于9,求点P 到2F 的距离。
4..若R ∈k ,则“3>k ”是“方程13322=+--k yk x表示双曲线”的( )A. 充分不必要条件.B.必要不充分条件.C.充要条件.D.既不充分也不必要条件.题型二,利用标准方程确定参数1. 求双曲线22254100x y -=-的实半轴长 虚半轴长 焦点坐标, 焦距 离心率 2.若方程22125xyk k-=+-表示x 型双曲线,则k 的取值范围是表示y 型双曲线,则k 是 表示双曲线,则k 的取值范围是 3.已知双曲线228y 8kx k -=的一个焦点为()3,0,k 为4.椭圆14222=+ay x与双曲线1222=-yax有相同的焦点,则a 的值是5变式:与椭圆224936x y +=有相同焦点,且过点()3,2的双曲线方程6.等轴双曲线的一个焦点是()16,0F -,则它的标准方程是题型三。
双曲线练习题(含答案)

双曲线练习题(含答案)双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( )A .双曲线B .一条直线C .一条线段D .两条射线2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( )A .双曲线的一支B .圆C .抛物线D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y24=1 D.y 23-x 24=15.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( )A.x 29-y 27=1B.x 29-y 27=1(y >0)C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .16B .18C .21D .26 9.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1D .-x 24+y 212=110.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1B.y 212-x 224=1C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43x D .y =±34x 13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2 B. 3 C. 2 D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2 二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________.16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x24+y2a2=1与双曲线x2a2-y2=1焦点相同,则a=________.20.双曲线以椭圆x29+y225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13.B 14. D二、填空题1. 10 2. 234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析]由题意得(1+k)(1-k)>0,∴(k-1)(k+1)<0,∴-1<k<1.3、[答案] A [解析]设动圆半径为r,圆心为O,x2+y2=1的圆心为O1,圆x2+y2-8x+12=0的圆心为O2,由题意得|OO1|=r+1,|OO2|=r+2,∴|OO2|-|OO1|=r+2-r-1=1<|O1O2|=4,由双曲线的定义知,动圆圆心O的轨迹是双曲线的一支.4、[答案] B [解析]由题意知双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,双曲线方程为y2-x23=1.5、[答案] C [解析]ab<0⇒曲线ax2+by2=1是双曲线,曲线ax2+by2=1是双曲线⇒ab<0.6、[答案] C [解析]∵c=5,|PF1|2+|PF2|2=|F1F2|2=4c2,∴(|PF1|-|PF2|)2+2|PF1|·|PF2|=4c2,∴4a2=4c2-4=16,∴a2=4,b2=1.7、[答案] D [解析]由双曲线的定义知,点P 的轨迹是以F1、F2为焦点,实轴长为6的双曲线的右支,其方程为:x29-y27=1(x>0)8、[答案] D [解析]|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2,∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c2a 2=a 2+b 2a2=259,∴b 2a 2=169,∴b a =43,∴a b =34. 又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x . 13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a2=1,∴c 2=2a 2,e =c a = 2.14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎪⎨⎪⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎪⎨⎪⎧a 2=73b 2=75.16、[答案] 833 [解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7,该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833. 17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b 2∈(1,2),∴-12<b <0.19、[答案] 62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62.焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
双曲线练习题

双曲线练习题一、选择题1. 下列关于双曲线的方程中,正确的是()A. x^2 y^2 = 1B. x^2 + y^2 = 1C. y^2 x^2 = 1D. x^2 y^2 = 02. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1(a>0,b>0),则其渐近线方程为()A. y = ±(a/b)xB. y = ±(b/a)xC. x = ±(a/b)yD. x = ±(b/a)y3. 双曲线的离心率e满足()A. 0 < e < 1B. e = 1C. e > 1D. e ≤ 14. 下列关于双曲线的焦点坐标,正确的是()A. (±c, 0)B. (0, ±c)C. (±a, 0)D. (0, ±a)二、填空题1. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1,则其焦点到中心的距离是 _______。
2. 已知双曲线的一个焦点为(4, 0),实轴长为6,则双曲线的方程为 _______。
3. 双曲线的离心率为2,实轴长为4,则双曲线的虚轴长为_______。
三、解答题1. 已知双曲线方程为 x^2/9 y^2/16 = 1,求:(1)焦点坐标;(2)实轴长;(3)渐近线方程。
2. 设双曲线的方程为 y^2 x^2/4 = 1,求:(1)离心率;(2)焦点坐标;(3)渐近线方程。
3. 已知双曲线的两个焦点分别为(±5, 0),且离心率为2,求双曲线的标准方程。
4. 已知双曲线的实轴长为8,虚轴长为6,求双曲线的离心率。
5. 设双曲线的方程为 x^2/25 y^2/9 = 1,求:(1)焦点坐标;(2)离心率;(3)渐近线方程。
四、计算题1. 已知双曲线的一个焦点为(2, 0),且经过点P(4, 3),求双曲线的标准方程。
2. 设双曲线的方程为 4x^2 9y^2 = 36,求该双曲线与直线 y = (2/3)x + 1 的交点。
双曲线及其标准方程练习

∵0<a<c,∴令c2-a2=b2(b>0)
x 2 y2 2 1 (a 0,b 0, 2 a b a不一定大于b) y2 x 2 2 1 2 a b
【典例训练】
1.双曲线2x2-y2=k的焦距为6,则k的值为___________.
x2 y2 1 表示双曲线,则m的取值范围为_____. 2.方程 2m m 3 2 2 3.讨论方程 x y 1 表示何种圆锥曲线?它们有何共同特 25 k 9 k
(2)焦点F1、F2的位置,是双曲线定位的条件,它决定了双曲 线标准方程的类型.“焦点跟着正项走”:若x2项的系数为正,
则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时,ຫໍສະໝຸດ 双曲线的方程才具有标准形式.
求双曲线的标准方程 【技法点拨】 1.求双曲线标准方程的三个关注点
x 2 y2 2.若方程 1 表示焦点在x轴上的双曲线,那么m,n的符 m n
号怎样? 提示:m>0,n<0.
3.对双曲线标准方程的三点说明
x 2 y2 y2 x 2 双曲线的标准方程有两种不同类型: 2 2 1, 2 2(a>0,b>0), 1 a b a b
分别表示焦点在x轴上和焦点在y轴上的双曲线. (1)标准方程中的两个参数a和b确定了双曲线的形状和大小, 是双曲线的定形条件,这里b2=c2-a2,与椭圆中b2=a2-c2(a>b>0) 相区别,且椭圆中a>b>0,而双曲线中,a、b大小不确定.
②
③
一般地,在△PF1F2中,通过以上三个等式,所求问题就会顺利 解决.
焦点三角形SPF1F2 b cot 2
(完整版)双曲线基础练习题

(完整版)双曲线基础练习题
1. 引言
该练题旨在帮助读者巩固并提高对双曲线的理解。
通过一系列的基础练题,读者将能够熟悉双曲线的基本特征、图像以及相关的数学概念。
2. 练题
2.1 双曲线图像的分析
给定下列双曲线的方程,请绘制出相应的图像,然后回答相关问题。
1. 双曲线方程:$y = \frac{1}{x}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。
- 该双曲线是否对称于原点?解释原因。
2. 双曲线方程:$y = \frac{2}{x+1}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。
- 该双曲线是否对称于原点?解释原因。
2.2 数学概念的应用
回答下列问题,注意要用双曲线的相关概念来解释答案。
1. 为什么双曲线的渐近线可以帮助我们理解双曲线图像的特征?
2. 双曲线的离心率是什么?如何确定一个双曲线的离心率?
3. 通过改变双曲线方程中的参数,如何调整双曲线的形状?
3. 结论
通过完成上述练习题,读者应该能够更深入地理解双曲线的基
本概念和性质。
这些练习题不仅帮助读者熟悉双曲线的图像和方程,还能够加深对双曲线的数学概念的理解。
继续探索和练习双曲线,
将有助于读者在更高级的数学领域中应用这些概念。
双曲线曲线练习题含答案

双曲线曲线练习题含答案1. 求下列双曲线的渐近线方程:(1)$ x^2-4y^2+8x-32=0 $(2)$ x^2-9y^2=81 $(3)$ x^2+4y^2+4x+16=0 $答案:(1)$ y=\frac{x+4}{2} $ 或$ y=\frac{1}{2}x-4 $ (斜渐近线)(2)$ x+3\sqrt{y^2+1}=0 $ 或 $ x-3\sqrt{y^2+1}=0 $ (与 $ y $ 轴垂直的渐近线)、$ y=-\frac{x}{9} $ (斜渐近线)(3)$ y=-1 $ 或 $ y=-\frac{(x+2)^2}{16} $ (与 $ y $ 轴平行的渐近线)2. 求双曲线 $ \frac{x^2}{9}-\frac{y^2}{16}=1 $ 的离心率和焦距长度。
答案:离心率为 $ \sqrt{1+\frac{b^2}{a^2}}=\frac{5}{3} $,焦距长度为 $ c=\sqrt{a^2+b^2}=5 $。
3. 求双曲线 $ \frac{x^2}{25}-\frac{y^2}{9}=1 $ 与直线$ y=\frac{3}{5}x-2 $ 的交点坐标。
答案:设交点坐标为 $ (x_0, y_0) $,则 $ \frac{x_0^2}{25}-\frac{(\frac{3x_0}{5}-2)^2}{9}=1 $,解得 $ x_0=\frac{50}{7} $ 或$ x_0=-\frac{50}{7} $,代入方程即可得到交点坐标。
4. 判断曲线 $ \frac{x^2}{4}-\frac{y^2}{16}=1 $ 是否关于直线$ y=-x $ 对称。
答案:首先求出曲线关于直线 $ y=-x $ 对称的公式为$ y=\frac{y_0}{x_0}x $,其中 $ (x_0,y_0) $ 是曲线上任意一点。
假设 $ A(a, b) $ 是曲线上的一点,则 $ B(-b,-a) $ 是曲线上的对称点。
2024-2025年北师大版数学选择性必修第一册2.2.1双曲线及其标准方程(带答案)

§2 双曲线2.1 双曲线及其标准方程必备知识基础练知识点一 双曲线的定义1.动点P 到点M (1,0)及点N (5,0)的距离之差为2a ,则当a =1和a =2时,点P 的轨迹分别是( )A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条射线D .双曲线的一支和一条直线 2.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( ) A .抛物线 B .圆 C .双曲线的一支 D .椭圆 知识点二 双曲线的标准方程3.“m >1且m ≠2”是“方程x 22-m -y 2m -1=1表示双曲线”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.求适合下列条件的双曲线的标准方程:(1)焦点分别为(-2,0),(2,0),且经过点(2,3); (2)焦点在y 轴上,且经过点(2,-5),a =25 ;(3)以椭圆x 28+y 25=1的长轴端点为焦点,且经过点(3,10 );(4)经过点A (2,233),B (3,-22 );(5)与双曲线x 216-y 24=1有公共焦点,且经过点(32 ,2).知识点三 双曲线的定义及方程的应用5.若双曲线E :x 29 -y 2160=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=15,则|PF 2|=( )A .9B .21C .9或21D .186.已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( )A .8B .9C .16D .207.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.关键能力综合练一、选择题1.已知M (-2,0),N (2,0),|PM |-|PN |=4,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支2.双曲线x 225 -y 29=1上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .23.已知双曲线的一个焦点为F 1(-5 ,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的标准方程是( )A .x 24 -y 2=1B .x 2-y 24=1C .x22-y23=1 D .x23-y 22=1 4.已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5 ,0)和(-5 ,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )A .x 22-y 23=1 B .x 23-y 22=1C .x24 -y 2=1 D .x 2-y24=15.[易错题]已知O 为坐标原点,设F 1,F 2分别是双曲线x 2-y 2=1的左、右焦点,P 为双曲线上任一点,过点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH |=( )A .1B .2C .4D .12二、填空题6.[双空题]若方程y 24 -x 2m +1=1表示双曲线,则实数m 的取值范围是____________;若表示椭圆,则m 的取值范围是____________.7.已知双曲线与椭圆x 227 +y 236=1有相同的焦点,且与椭圆的一个交点的纵坐标为4,则双曲线的方程为________.8.[探究题]已知双曲线C :x 2-y 23=1的左焦点为F 1,点Q (0,23 ),P 是双曲线C右支上的动点,则|PF 1|+|PQ |的最小值为________.三、解答题9.在①m >0,且C 的右支上任意一点到左焦点的距离的最小值为3+23 ;②C 的焦距为43 ;③C 上一点到两焦点距离之差的绝对值为6,这三个条件中任选一个,补充在下面的问题中并解答.问题:已知双曲线C :x 23m -y 2m=1,________,求C 的方程.注:如果选择多个条件分别解答,则按第一个解答计分.学科素养升级练1.[多选题]已知点P 在双曲线C :x 216 -y 29=1上,F 1,F 2是双曲线C 的左、右焦点,若△PF 1F 2的面积为20,则下列说法正确的有( )A .点P 到x 轴的距离为203B .|PF 1|+|PF 2|=503C .△PF 1F 2为钝角三角形D .∠F 1PF 2=π32.[情境命题——生活情境]某地发生地震,为了援救灾民,救援员在如图所示的P 处收到一批救灾药品,现要把这批药品沿道路PA ,PB 运送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线,并求出其方程.2.1 双曲线及其标准方程必备知识基础练1.解析:由题意,知|MN |=4,当a =1时,|PM |-|PN |=2a =2<4,此时点P 的轨迹是双曲线的一支;当a =2时,|PM |-|PN |=2a =4=|MN |,点P 的轨迹为以N 为端点沿x 轴向右的一条射线.答案:C2.解析:由题意两定圆的圆心坐标分别为O 1(0,0),O 2(4,0),半径分别为1,2.设动圆圆心为C ,动圆半径为r ,则|CO 1|=r +1,|CO 2|=r +2,∴|CO 2|-|CO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.答案:C3.解析:若方程x 22-m -y 2m -1 =1表示双曲线,则(2-m )·(m -1)>0,解得1<m <2.当1<m <2时,可推出“方程x 22-m-y 2m -1 =1表示双曲线”,故“m >1且m ≠2”是“方程x 22-m-y 2m -1=1表示双曲线”的必要不充分条件.答案:B4.解析:(1)∵双曲线的焦点在x 轴上,∴设双曲线的标准方程为x 2a 2 -y 2b2 =1(a >0,b >0).由题知c =2,∴a 2+b 2=4 ①.又∵点(2,3)在双曲线上, ∴22a 2 -32b2 =1 ②. 由①②解得a 2=1,b 2=3,所求双曲线的标准方程为x 2-y 23=1.(2)因为双曲线的焦点在y 轴上,所以可设双曲线的标准方程为y 2a 2 -x 2b2 =1(a >0,b >0).由a =25 ,点(2,-5)在双曲线上,可得⎩⎪⎨⎪⎧a =25,25a 2-4b2=1, 解得b 2=16.故所求双曲线的标准方程为y 220 -x 216=1.(3)由题意得,双曲线的焦点在x 轴上,且c =22 .设双曲线的标准方程为x 2a 2 -y 2b2 =1(a >0,b >0),由点(3,10 )在双曲线上,可得⎩⎪⎨⎪⎧a 2+b 2=c 2=8,9a 2-10b2=1, 解得⎩⎪⎨⎪⎧a 2=3,b 2=5, 故所求双曲线的标准方程为x 23-y 25=1.(4)可设双曲线的方程为mx 2+ny 2=1(mn <0).因为点A ⎝⎛⎭⎪⎫2,233 ,B (3,-22 )在双曲线上,所以⎩⎪⎨⎪⎧4m +43n =1,9m +8n =1, 解得⎩⎪⎨⎪⎧m =13,n =-14,故所求双曲线的标准方程为x 23-y 24=1.(5)易知双曲线x 216 -y 24=1的焦点在x 轴上,且c 21 =16+4=20,则待求双曲线的焦点也在x 轴上,且c 22=c 21=20.设其标准方程为x 2a 22 -y 220-a 22=1(a 22 <20) ①,因为点(32 ,2)在双曲线上,所以将(32 ,2)代入①中,得18a 22 -420-a 22=1,得a 2=12或a 2=30(舍去),故所求双曲线的标准方程为x 212 -y 28=1.5.解析:由于|PF 1|=15<c +a =13+3=16,所以点P 在双曲线E 的左支上,所以由双曲线的定义,得|PF 2|-|PF 1|=2a =6,即|PF 2|-15=6,故|PF 2|=21.答案:B6.解析:由已知,得|AB |+|AF 2|+|BF 2|=20.因为|AB |=4,所以|AF 2|+|BF 2|=16.根据双曲线的定义,知2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.答案:B 7.解析:由双曲线定义,知|PF 1|-|PF 2|=22 ,a =b =2 .∵|PF 1|=2|PF 2|,∴|PF 2|=22 ,|PF 1|=42 ,|F 1F 2|=2c =2a 2+b 2=4,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2| =32+8-162×42×22=34 .答案:34关键能力综合练1.解析:因为|PM |-|PN |=4=|MN |,所以动点P 的轨迹是一条射线.故选C. 答案:C2.解析:因为a 2=25,所以a =5.设双曲线的左、右焦点分别为F 1,F 2,双曲线上一点为P . 由双曲线的定义可得||PF 1|-|PF 2||=10, 不妨设|PF 1|=12,所以|PF 1|-|PF 2|=±10, 所以|PF 2|=22或2.故选A. 答案:A3.解析:设双曲线的标准方程为x 2a 2 -y 2b 2 =1(a >0,b >0),因为c =5 ,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2 -y 25-a2 =1,因为线段PF 1的中点坐标为(0,2),所以点P 的坐标为(5 ,4),将P (5 ,4)代入双曲线方程,得5a 2 -165-a2 =1,解得a 2=1或a 2=25(舍去),所以双曲线的标准方程为x 2-y 24=1.故选B.答案:B4.解析:由题可得⎩⎨⎧|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(25)2,得(|PF 1|-|PF 2|)2=16,即2a =4,解得a =2,又因为c =5 ,所以b =1,所以双曲线的方程为x 24-y 2=1,故选C.答案:C5.解析:不妨在双曲线右支上取点P ,延长PF 2,F 1H ,交于点Q ,由角平分线性质可知|PF 1|=|PQ |,根据双曲线的定义得,|PF 1|-|PF 2|=2,从而|QF 2|=2,在△F 1QF 2中,OH 为其中位线,故|OH |=1.故选A.答案:A6.解析:若表示双曲线,则应有m +1>0,即m >-1;若表示椭圆,则有⎩⎪⎨⎪⎧m +1<0,m +1≠-4,解得m <-1且m ≠-5.答案:(-1,+∞) (-∞,-5)∪(-5,-1)7.解析:椭圆的焦点为F 1(0,-3),F 2(0,3),故可设双曲线方程为y 2a 2 -x 2b 2 =1(a >0,b >0),其中a 2+b 2=9,因为双曲线与椭圆的一个交点的纵坐标为4,所以该点的坐标为(15 ,4)或(-15 ,4),故16a 2 -15b2 =1.解方程组⎩⎪⎨⎪⎧a 2+b 2=9,16a 2-15b 2=1, 得⎩⎪⎨⎪⎧a 2=4,b 2=5,所以所求双曲线的方程为y 24-x 25=1.答案:y 24-x 25=18.解析:设双曲线的右焦点为F 2,如图,连接PF 2,QF 2.根据双曲线的定义可知|PF 1|-|PF 2|=2a =2,所以|PF 1|=|PF 2|+2,所以|PF 1|+|PQ |=|PF 2|+|PQ |+2≥|QF 2|+2,而Q (0,23 ),F 2(2,0),所以|QF 2|=22+(23)2 =4,所以|PF 1|+|PQ |的最小值为6.9.解析:选①:因为m >0,所以a 2=3m ,b 2=m ,c 2=a 2+b 2=4m , 则a =3m ,c =2m ,因为C 的右支上任意一点到左焦点的距离的最小值为3+23 ,所以3m +2m =(3 +2)m =3+23 ,解得m =3,C 的方程为x 29-y 23=1.选②:若m >0,则a 2=3m ,b 2=m ,c 2=a 2+b 2=4m ,c =2m ,因为C 的焦距为43 ,所以2c =4m =43 ,m =3,C 的方程为x 29-y 23=1;若m <0,则a 2=-m ,b 2=-3m ,c 2=a 2+b 2=-4m ,c =2-m ,因为C 的焦距为43 ,所以2c =4-m =43 ,m =-3,C 的方程为y 23-x 29=1,综上所述,C 的方程为x 29-y 23=1或y 23-x 29=1.选③:若m >0,则a 2=3m ,a =3m ,因为C 上一点到两焦点距离之差的绝对值为6,所以2a =23m =6,m =3,C 的方程为x 29-y 23=1;若m <0,则a 2=-m ,a =-m ,因为C 上一点到两焦点距离之差的绝对值为6,所以2a =2-m =6,m =-9,C 的方程为y 29-x 227=1,综上所述,C 的方程为x 29-y 23=1或y 29-x 227=1.学科素养升级练1.解析:因为在双曲线x 216-y 29=1中,a =4,b =3,所以c =16+9 =5,因为S △PF 1F 2=12·2c ·|y P |=5|y P |=20,所以|y P |=4,所以P 到x 轴的距离为4,故A 错误;不妨取P (203 ,4),又因为F 1(-5,0),F 2(5,0),则|PF 1|=(203+5)2+16 =373,|PF 2|= (203-5)2+16 =133 ,所以|PF 1|+|PF 2|=503 ,故B 正确;因为kPF 2=4-0203-5 =125>0,所以∠PF 2F 1为钝角,所以△PF 1F 2为钝角三角形,故C 正确;因为S △SS 1S 2=12|PF 1|·|PF 2|sin ∠F 1PF 2,即12 ×133 ×373 sin ∠F 1PF 2=20,则sin ∠F 1PF 2=360481 ,所以∠F 1PF 2≠π3,故D 错误.2.解析:灾民区ABCD中的点可分为三类,第一类沿道路PA送药较近,第二类沿道路PB送药较近,第三类沿道路PA和PB送药一样近.依题意,知界线是第三类点的轨迹.设M为界线上的任一点,则|PA|+|MA|=|PB|+|MB|,即|MA|-|MB|=|PB|-|PA|=50,因为|AB|=1002+1502-2×100×150×cos 60°=507>50,所以界线是以A,B为焦点的双曲线的右支的一部分.如图所示,以AB所在直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系.设所求双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),易知a=25,c=257,所以b2=c2-a2=3 750.故双曲线的标准方程为x2625-y23 750=1.注意到点C的坐标为(257,60),故y的最大值为60,此时x=35,故界线的曲线方程为x2625-y23 750=1(25≤x≤35,0≤y≤60).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(十)
[学业水平层次]
一、选择题
1.方程x 22+m -y 2
2-m =1表示双曲线,则m 的取值范围( )
A .-2<m <2
B .m >0
C .m ≥0
D .|m |≥2
【解析】 ∵已知方程表示双曲线,∴(2+m )(2-m )>0. ∴-2<m <2. 【答案】 A
2.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( )
A.x 29-y 2
16=1 B.y 29-x 2
16=1 C.x 29-y 2
16=1(x ≤-3)
D.x 29-y 2
16=1(x ≥3)
【解析】 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,a =3,知b 2=16,
∴P 点的轨迹方程为x 29-y 2
16=1(x ≥3). 【答案】 D
3.(2014·福州高级中学期末考试)已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )
A.x 22-y 2
3=1 B.x 23-y 2
2=1 C.x 24-y 2
=1 D .x 2
-y 2
4=1
【解析】
由⎩
⎨⎧
|PF 1|·
|PF 2|=2,|PF 1|2+|PF 2|2
=(25)2
,
⇒(|PF 1|-|PF 2|)2=16,
即2a =4,解得a =2,又c =5,所以b =1,故选C. 【答案】 C
4.已知椭圆方程x 24+y 2
3=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为( )
A.2
B. 3 C .2
D .3
【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a =1,c =2,所以双曲线的离心率为e =c a =2
1=2.
【答案】 C 二、填空题
5.设点P 是双曲线x 29-y 2
16=1上任意一点,F 1,F 2分别是其左、右焦点,若|PF 1|=10,则|PF 2|=________.
【解析】 由双曲线的标准方程得a =3,b =4. 于是c =
a 2+
b 2=5.
(1)若点P 在双曲线的左支上,
则|PF 2|-|PF 1|=2a =6,∴|PF 2|=6+|PF 1|=16; (2)若点P 在双曲线的右支上, 则|PF 1|-|PF 2|=6, ∴|PF 2|=|PF 1|-6=10-6=4. 综上,|PF 2|=16或4. 【答案】 16或4
6.(2014·河南省洛阳高一月考)已知F 1(-3,0),F 2(3,0),满足条件|PF 1|-|PF 2|=2m -1的动点P 的轨迹是双曲线的一支,则m 可以是下列数据中的________.(填序号)
①2;②-1;③4;④-3.
【解析】 设双曲线的方程为x 2a 2-y 2
b 2=1,则
c =3,∵2a <2c =6,∴|2m -1|<6,且|2m -1|≠0,∴-52<m <72,且m ≠1
2,∴①②满足条件.
【答案】 ①②
7.(2014·哈尔滨高二检测)已知△ABP 的顶点A 、B 分别为双曲线C :x 216-y 2
9=1的左、右焦点,顶点P 在双曲线C 上,则|sin A -sin B |sin P 的值等于________.
【解析】 由方程x 216-y 2
9=1知a 2=16,b 2=9,即a =4,c =16+9=5.
在△ABP 中,利用正弦定理和双曲线的定义知,|sin A -sin B |
sin P
=
||PB |-|P A |||AB |=2a 2c =2×42×5=45.
【答案】 4
5 三、解答题
8.求与双曲线x 24-y 2
2=1有相同焦点且过点P (2,1)的双曲线的方程.
【解】 ∵双曲线x 24-y 2
2=1的焦点在x 轴上. 依题意,设所求双曲线为x 2a 2-y 2
b 2=1(a >0,b >0). 又两曲线有相同的焦点, ∴a 2+b 2=
c 2=4+2=6.
①
又点P (2,1)在双曲线x 2a 2-y 2
b 2=1上, ∴4a 2-1
b 2=1.
②
由①、②联立,得a 2=b 2=3, 故所求双曲线方程为x 23-y 2
3=1.
9.已知方程kx 2+y 2=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的曲线类型.
【解】 (1)当k =0时,y =±2,表示两条与x 轴平行的直线;
(2)当k =1时,方程为x 2+y 2=4,表示圆心在原点,半径为2的圆;
(3)当k <0时,方程为y 24-x 2
-4k =1,表示焦点在y 轴上的双曲线;
(4)当0<k <1时,方程为x 24k +y 2
4=1,表示焦点在x 轴上的椭圆;
(5)当k >1时,方程为x 24k
+y 2
4=1,表示焦点在y 轴上的椭圆.
[能力提升层次]
1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2
2=1有相同的焦点,则a 的值为
( )
A .1 B. 2 C .2 D .3
【解析】 由题意知椭圆、双曲线的焦点在x 轴上,且 a >0.∵4-a 2=a +2,∴a 2+a -2=0, ∴a =1或a =-2(舍去).故选A. 【答案】 A
2.(2014·桂林高二期末)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )
A .2
B .4
C .6
D .8
【解析】 不妨设P 是双曲线右支上一点, 在双曲线x 2-y 2=1中,a =1,b =1,c =2,
则|PF 1|-|PF 2|=2a =2,|F 1F 2|=22,
∵|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2, ∴8=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·12, ∴8=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, ∴8=4+|PF 1||PF 2|, ∴|PF 1||PF 2|=4.故选B. 【答案】 B
3.(2014·福建省厦门一中期末考试)已知双曲线x 216-y 225=1的左焦点为F ,点P 为双曲线右支上的一点,且PF 与圆x 2+y 2=16相切于点N ,M 为线段PF 的中点,O 为坐标原点,则|MN |-|MO |=________.
【解析】 设F ′是双曲线的右焦点,连PF ′(图略),因为M ,O 分别是FP ,FF ′的中点,所以|MO |=1
2|PF ′|,
又|FN |=
|OF |2-|ON |2=5,且由双曲线的定义知|PF |-|PF ′|=
8,故|MN |-|MO |=|MF |-|FN |-12|PF ′|=12(|PF |-|PF ′|)-|FN |=1
2×8-5=-1.
【答案】 -1
4.已知双曲线x 216-y 2
4=1的两焦点为F 1、F 2.
(1)若点M 在双曲线上,且MF 1→·MF 2→
=0,求点M 到x 轴的距离; (2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.
【解】 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,
MF 1→·MF 2→=0, 则MF 1⊥MF 2,
设|MF 1|=m ,|MF 2|=n ,
由双曲线定义知,m -n =2a =8,
又m 2+n 2=(2c )2=80,
②
由①②得m ·n =8, ∴12mn =4=1
2|F 1F 2|·h , ∴h =255.
(2)设所求双曲线C 的方程为
x 216-λ-y 2
4+λ=1(-4<λ<16),
由于双曲线C 过点(32,2),
所以18
16-λ-4
4+λ=1,
解得λ=4或λ=-14(舍去).
∴所求双曲线C 的方程为x 212-y 2
8=1.。