必修1-01集合的概念学案
人教B版数学高一版必修1学案集合的概念

数学人教B必修1第一章1.1.1 集合的概念1.了解集合的含义,会使用符号“∈”或“∉”表示元素与集合之间的关系.2.理解集合中元素的特性,重点理解其确定性与互异性.3.熟悉常用数集的符号,尤其要注意空集的含义及表示.1.集合的有关概念一般地,把一些能够____的____的对象看成一个整体,就说这个整体是由这些对象的全体构成的____(或____),常用英语大写字母A,B,C,…表示.构成集合的每个对象叫做这个集合的____(或____),常用英语小写字母a,b,c,…表示.集合是现代数学中不加定义的基本概念,学习这个概念应注意以下两点:(1)集合是一个“整体”;(2)构成集合的对象必须是“确定”且“不同”的.【做一做1】下列各组对象不能构成集合的是()A.著名的中国数学家B.所有的负数C.清华大学招收的2011级新本科生D.2011年11月第十九届APEC(亚太经合组织)会议将在夏威夷檀香山举行,所有APEC 的成员国2.元素与集合的关系知识点关系概念记法读法元素与集合的关系属于如果____________,就说a属于A____a属于A不属于如果____________,就说a不属于A____a不属于A 元素与集合的联系与区别如下表:【做一做2】已知集合M只含有两个元素2 011a,2 013-a,且2 011∈M,求a的值.3.集合中元素的性质特征(1)______,(2)______,(3)______.在处理集合中有关元素的问题时,求得其中元素(或字母)的值以后,要充分考虑集合元素的互异性与分类讨论思想的应用,要进行代入检验,舍去不符合要求的值.【做一做3-1】若a,a,b,b,a2,b2构成集合M,则M中的元素最多有() A.6个B.5个C.4个D.3个【做一做3-2】方程x2-2x+1=0的解集中有__________个元素.4.集合的分类【做一做4】指出下列集合是有限集还是无限集.(1)满足2 011<x<2 013的整数构成的集合;(2)平面α内所有直线构成的集合.5.常用数集及表示符号名称自然数集正整数集整数集有理数集实数集符号________________ 【做一做5】下列关系表示正确的是()A.0∈N+B.π∉R C.1∉Q D.0∈Z一、集合中元素的特性剖析:确定性:集合中的元素是确定的,即任何一个对象都能明确它是或不是某个集合的元素,两者必居其一,它是判断一组对象是否形成集合的标准.互异性:一个给定集合的元素中,任何两个元素都是不同的,因而在同一个集合中,不能重复出现同一个元素,这一点很容易被大家忽视,在解题中要切记这一性质.无序性:集合中的元素没有顺序,在表示集合时先写哪个元素都可以.二、特殊集合——空集剖析:我们把不含任何元素的集合叫做空集,记作.空集是一个实实在在的集合,只不过此集合中无任何元素,故称之为空集.如“方程x2+2=0的实数根”组成的集合,因为没有适合该集合的元素,故它是空集.要谨防①0={0},②{0}=,③{}=的错误,实际上,①0是集合{0}的一个元素,可记为0∈{0};②表示空集,而{0}表示含一个元素0的集合;③{}表示含有一个元素的集合.三、教材中的“思考与讨论”1.你能否确定,你所在班级中,高个子同学构成的集合?并说明理由.剖析:不能构成集合.原因是对高个子同学高的程度没有确定的标准,所以无法判定哪些同学符合要求,因此不能构成集合.2.你能否确定,你所在班级中,最高的3位同学构成的集合?剖析:能构成集合.因为班里最高的3位同学是确定的(只要按身高从高到低取前三名即可),将他们作为元素放在一起即构成所要求的集合.题型一集合中元素的确定性【例1】下列各组对象能构成集合吗?(1)你所在班级的男生;(2)参加2010年广州亚运会的高大运动员;(3)关于x 的方程ax 2+1=0的实数解;(4)从1988年到2012年举办奥运会的城市;(5)所有小的正数;(6)到两定点距离的和等于两定点间的距离的点.分析:“高大”和“小”没有确定的标准,因此(2)(5)的对象不能构成集合,(3)中的方程可能有实数解,也可能没有实数解,当a 给定后,其方程解的情况就是确定的.反思:看一组对象能否构成一个集合,只要看这组对象是否是确定的,即任何一个对象,要么在这一组对象中,要么不在这组对象之中,而没有第三种情况出现.题型二 集合中元素的互异性【例2】由元素3,x ,x 2-2x 构成集合M ,则x 应满足的条件是__________.反思:互异性是集合中元素的重要性质,在解决集合中有关元素的问题时,一定要注意利用互异性进行验证.题型三 元素与集合的关系【例3】已知集合P 中有三个元素a -3,2a -1,a 2+4,且-3∈P ,求实数a 的值. 分析:利用-3是集合P 中的元素,可列方程求a 的值,最后需验证集合中元素的互异性.反思:在根据元素与集合的关系解题时,一定要注意最后代入检验,看是否符合题意及元素的互异性等性质.1下列各组对象,能构成集合的是( )A .平面直角坐标系内x 轴上方的y 轴附近的点B .平面内两边之和小于第三边的三角形C .新华书店中有意义的小说D .π(π=3.141…)的近似值的全体2由a 2,2-a ,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .23集合A 是由点(2 011,2 012)和点(2 012,2 011)构成的,则A 中有__________个元素. 4设L (A ,B )表示直线AB 上所有点组成的集合,“P 是直线AB 上的一个点”这句话就可以简单地写成P __________L (A ,B ).5判断下列说法是否正确,并说明理由.(1)1,32,64,⎪⎪⎪⎪-12,12这些数组成的集合有5个元素; (2)方程(x -3)(x -2)2=0的解组成的集合有3个元素.答案:基础知识·梳理1.确定 不同 集合 集 元素 成员【做一做1】A 因为选项B ,C ,D 中所给的对象都是确定的,从而可以构成集合;而选项A 中所给对象不确定,原因是没有具体的标准来衡量一位数学家怎样才算著名,故不能构成集合.2.a 是集合A 的元素 a ∈A a 不是集合A 的元素 a ∉A【做一做2】解:∵2 011∈M ,∴2 011a =2 011或2 013-a =2 011.解得a =1或a =2.∴a 的值为1或2.3.(1)确定性 (2)互异性 (3)无序性【做一做3-1】C 由集合元素的互异性,知集合M 中的元素最多为a ,b ,a 2,b 2,且4个元素互不相等.【做一做3-2】14. 有限集 无限集【做一做4】解:(1)满足2 011<x <2 013的整数仅有2 012一个,故此集合是有限集.(2)无限集.5.N N +或N * Z Q R【做一做5】D典型例题·领悟【例1】解:(1)(3)(4)(6)可以构成集合;(2)(5)不能构成集合.【例2】x ≠3且x ≠0且x ≠-1 由集合中元素的互异性可得出3,x ,x 2-2x 互不相等,由此可求出x 应满足的条件.即由⎩⎪⎨⎪⎧ x ≠3,x 2-2x ≠3,x 2-2x ≠x ,解得x ≠3且x ≠0且x ≠-1.【例3】解:∵-3∈P ,a 2+4≥4,∴a -3=-3或2a -1=-3,解得a =0或a =-1.经检验a =0时,P 中三个元素为-3,-1,4,满足集合中元素的互异性;a =-1时,P 中三个元素为-4,-3,5,也满足集合中元素的互异性.综上,a 的值为0或-1.随堂练习·巩固1.B 选项A ,C ,D 中的对象不具有确定性,故不能构成集合;而选项B 为,故能构成集合.2.C 代入验证如下:当a =1时,a 2=2-a ;当a =-2时,a 2=2-a =4;当a =2时,a 2=4,所以1,-2,2均不能满足集合A 中元素的互异性,而a =6时,a 2=36,2-a =-4,故选C.3.2 因为点的坐标是有顺序性的,所以集合A 中有2个点,即A 中有2个元素.4.∈5.解:(1)不正确.对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,而32与64相同,⎪⎪⎪⎪-12与12相同,故此集合是由3个元素组成的集合. (2)不正确.方程(x -3)(x -2)2=0的解是x 1=3,x 2=x 3=2,因此此集合只有3和2两个元素.。
必修1-1.1.1集合的概念学案

学习案 1.1.1:集合的概念编写张秀芬伊振徐涛涛一、课标点击(一)学习目标:1、了解集合的概念,了解集合元素与集合的从属关系.2、了解集合元素的特性3、知道常用数集及其记法,及符号∈(二)教学重、难点:对集合元素的特性及“∈”关系的理解二、学习探究(一)问题导引问题我们在座的每一个同学组成了我们这个班集体,这是一个集合,每一个同学都是这个集合的元素。
我们教室的所有桌子也组成了一个整体,这也是一个集合,每张桌子都是这个集合的一个元素。
那么什么是集合?集合的元素?它们的关系是什么?有什么特性?(二)知识点梳理1、集合的概念1)对象:;2)集合:;3)元素:。
思考与讨论:你能否举出一个集合的例子,并指出这个集合的元素?2、元素与集合的关系(1)属于:;(2 )不属于:。
3、集合中元素的特性(1);(2);(3)。
思考与讨论:1、(1)我们班高个子的同学能否组成一个集合?(2)我们班180cm以上的同学能否组成一个集合?(3)我们班最高的三位同学能否组成一个集合?2、若a,1,a-1能组成一个集合,则a的取值范围是什么?3、{1,2}和{2,1}是否表示同一个集合?4、集合分类根据集合所含元素个数不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做;(2)含有有限个元素的集合叫做;(3)含有无穷个元素的集合叫做。
5、常用数集及其表示方法(1)非负整数集(自然数集):(2)正整数集:(3)整数集:(4)有理数集:(5)实数集:(三) 典例探讨题型一集合的判断例1、下面的各组对象能组成集合的是_____-_ (1)正三角形的全体(2)血压很高的人(3)鲜艳的颜色(4)某校2009级高一新生(5)所有数学难题(6)所有不大于3,不小于0的整数(7)充分接近100的全体实数变式训练:课本4页练习A第1题。
题型二元素与集合之间的关系例2、用“∈”、“∉”填空(1)3.14 Q;(2;(3)0 *N;(4;(5)π 3.14;(6)0 N;(7)0 φ;变式训练:完成课后练习B第1题。
新课标人教A版高中数学必修一第一章第一节《集合》学案

课题集合年级高一授课对象编写人胥勋彪时间2018.2.3 学习重点、难点集合的基本运算、集合的基本关系上课内容:集合的含义及其表示、基本关系、基本运算知识点总结1、集合的含义(1)含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(2)表示方法:集合通常用大写拉丁字母A,B,C…表示,元素用小写拉丁字母a,b,c…表示。
(3)元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
(4)常用的数集及其记法N:非负整数集(自然数集),包括0 N*或N+:正整数集Z:整数集Q:有理数集R:全体实数的集合2、集合元素的三个特征:(1)确定性:给定的集合,它的元素必须是确定的。
(2)互异性:一个给定集合中的元素是互不相同的。
(3)无序性:集合中的元素是没有先后顺序的。
3.一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作: ()A BB A ⊆⊇或 读作:A 包含于B(或B 包含A).4.集合相等:如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作.A B =即,A B B A A B ⊆⊆⇔=且.5.真子集如果集合B A ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,即如果A B ⊆且A B ≠,那么集合A 是集合B 的真子集,记作A B(或B A). 6.空集∅我们把不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集,是任何非空集合的真子集. 7.并集⋃一般的,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作:B A ⋃(读作:A 并B )8.交集⋂一般的,由属于集合A 且属于集合B 的元素组成的集合,称为A 与B 的交集。
高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3. 集合相等:构成两个集合的元素完全一样。
4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。
人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计

人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计一、教材内容分析教学内容为人教版高中数学必修1第一章第一节集合的含义与表示的第一课时。
集合的含义与表示是高中数学生活的开始。
通过学习能够提高同学们对高中数学的学习兴趣。
二、学情分析在初中的时候有基本的数学功底,对知识有一定的积累。
但本节课是高中数学的第一课,这节课同学们要掌握许多新的名词,以及之前没后见过的数学符号,本节课要提高同学们对高中数学生活的兴趣。
三、教学目标1.能够初步掌握集合的概念,感知元素和集合的关系。
2.能够清楚的知道集合中常用的表示符号。
3.了解集合元素的特征:确定性、互异性、无序性。
四、教学重、难点1.教学重点:集合的含义与表示2.教学难点:能够选择准确的表示方法。
五、学法指导以学生的自主学习为主,教师引导为辅。
六、教学用具多媒体七、教学过程的设计(一)创设情境,揭示所学教师引入问题:初中的时候,我们已经接碰到过一些集合,大家能够说一说吗?接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。
(设计意图:温故而知新。
)(二)引入新知同学们,我们班所有同学站起来。
同学们做动作。
老师提问:老师口令的对象是谁,是全班的同学还是某些同学?老师总结:这些是一个集合,他们是一个整体而不是个体。
所以,今天我们要学习新的一个概念:集合。
多媒体出示课件:1)20以内的所有的偶数;2)我国都有哪些省份;3)所有的三角形;同学们讨论,这些例子有什么共同的特征?概括这些例子的共同特征:一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.老师强调全体我们称为集合,整体中的部分就是集合的元素。
老师指出:集合常用大写字母A,B,C,D,。
表示,元素常用小写字母a,b,c,d。
表示.(设计意图:通过自己的发现,让同学们对集合的概念有明确的认识。
知道正确的区分集合和元素两个概念。
)(三)根据资料,探索集合中元素的特点(1)阅读教材中的相关内容,集合中元素有什么特点?注意个别同学的指导,解答学生疑难.让学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.(2)判断以下元素的全体是否组成集合,并说明理由:(1)大于5小于18的偶数;(2)我国的直辖市。
2021年高中数学1.1.1《集合的概念》学案 新人教B版必修1

,记作
,读作
,记作
,读作
,记作
。
。 。
6. 集 合的 分类 :含 有有限 个 元素 的集 合叫 做
做
。
,含有无限个元素的集合叫
7.常用的数集及其记号: (1)自然数集: (2)正整数集: (3)整数集:
实用文档
,记作 ,记作 ,记作
。 。
。[
(4)有理数集: (5)实数集:
,记作 ,记作
。 。
实用文档
这些对象的全体构成的
(或
(或
)。
对象看成一个整体,就说这个整体是由 )。构成集合的每个对象叫做这个集合的
2.集合中元素的性质:
、
、
。
3.集合与元素的表示:集合通常用 通常用
来表示。
来表示,它们的元素
4.元素与集合的关系: 如果 a 是集合 A 的元素,就说 如果 a 不是集合 A 的元素,就说
5.空集:
2021 年高中数学 1.1.1《集合的概念》学案 2 新人教 B 版必修 1
学科 数学 编制人
教学案编号
1
课型
新授 课
课题
1.1.1 集合的概念
课标要求 初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法。
重点难点
集合的概念与集合中元素的性质 教学过程设计
实用文档
一、 知识要点 1. 集合:一般地,把一些能够
二、 典例解析 例1. 你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。
你能否确定,你所在班级中,最高的 3 位同学构成的集合?
变式训练பைடு நூலகம்教材第 4 页练习 A 第 1 题
例 2. (1) -3 N; (2)3.14 Q; (3) Q; (4)0 (5) Q; (6) R; (7)1 N+; (8) R。
高中数学 1-1 集合 集合的概念教案 新人教A版必修1

广东省湛江二中港城中学高中数学 1-1 集合 集合的概念教案 新人教A 版必修1教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法(1)自然数集:全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合R ,{}数数轴上所有点所对应的=R3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a ∈A 颠倒过来写二、讲解新课: (二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只 有一个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条 件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或 23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集 (三) 有限集与无限集1、 有限集:含有有限个元素的集合2、 无限集:含有无限个元素的集合3、 空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x 三、练习题:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b =0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合: (1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集2.集合的表示方法:列举法、描述法、文氏图五、课后作业:六、板书设计(略)七、课后记:。
集合的概念教案数学必修一

集合的概念教案数学必修一这是集合的概念教案数学必修一,是优秀的数学教案文章,供老师家长们参考学习.集合的概念教案数学必修一第1篇教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的属于和不属于关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的根本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训发动;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体.阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集.3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生.对学生的解答予以讨论、点评,进而讲解下面的问题.4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:给定一个集合与集合里面元素的顺序无关.(4)集合相等:构成两个集合的元素完全一样.5. 元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:aA(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA例如,我们A表示1~20以内的所有质数组成的集合,则有3A4A,等等.6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示.7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:例1.用或符号填空:(1)8 N; (2)0 N;(3)-3 Z; (4) Q;(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A.例2.集合P的元素为, 假设3P且-1P,求实数m的值.(三)课堂练习:课本P5练习1;归纳小结:本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法.作业布置:1.习题1.1,第1- 2题;2.预习集合的表示方法.集合的概念教案数学必修一第2篇教学目标:1.理解子集、真子集概念;2.会判断和证明两个集合包含关系;3.理解? 、?的含义;4.会判断简单集合的相等关系;5.渗透问题相对的观点.教学重点:子集的概念、真子集的概念教学难点:元素与子集、属于与包含间区别、描述法给定集合的运算教学过程:观察下面几组集合,集合A与集合B具有什么关系?(1) A={1,2,3},B={1,2,3,4,5}.(2) A={x|x3},B={x|3x-60}.(3) A={正方形},B={四边形}.(4) A=?,B={0}.(5)A={银川九中高一(11)班的女生},B={银川九中高一(11)班的学生}.1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A?B(或B?A),即假设任意x?A,有x?B,则A?B(或A?B).这时我们也说集合A是集合B的子集(subset).如果集合A不包含于集合B,或集合B不包含集合A,就记作A?B(或B?A),即:假设存在x?A,有x?B,则A?B(或B?A)说明:A?B与B?A是同义的,而A?B与B?A是互逆的.规定:空集?是任何集合的子集,即对于任意一个集合A都有??A.(2)除去?与A本身外,集合A的其它子集与集合A的关系如何?3.真子集:由包含与相等的关系,可有如下结论:(1)A?A (任何集合都是其自身的子集);(2)假设A?B,而且A?B(即B中至少有一个元素不在A中),则称集合A是集合B的真子集(proper subset),记作A B.(空集是任何非空集合的真子集)(3)对于集合A,B,C,假设A?B,B?C,即可得出A?C;对A? B,B? C,同样?有A C, 即:包含关系具有传递性.4.证明集合相等的方法:?第3 / 7页(1) 证明集合A,B中的元素完全相同;(具体数据)(2) 分别证明A?B和B?A即可.(抽象情况)对于集合A,B,假设A?B而且B?A,则A=B.集合的概念教案数学必修一第3篇教学目标: 1、理解集合的概念和性质.2、了解元素与集合的表示方法.3、熟记有关数集.4、培养学生认识事物的能力.教学重点: 集合概念、性质教学难点: 集合概念的理解教学过程:1、定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集). 元素:集合中每个对象叫做这个集合的元素.由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x-2 x+3的实数x,例(4)的元素为所有直角三角形,例(5)为高一六班全体男同学.一般用大括号表示集合,{ ? }如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}.则上几例可表示为??为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5} (1)确定性;(2)互异性;(3)无序性.3、元素与集合的关系:隶属关系元素与集合的关系有属于及不属于?(? 也可表示为)两种. 如A={2,4,8,16},则4A,8A,32 ? A.集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作a?A ,相反,a不属于集A 记作a?A (或)注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??元素通常用小写的拉丁字母表示,如a、b、c、p、q??2、的开口方向,不能把aA颠倒过来写.4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0. (2)非负整数集内排除0的集.记作N__或N+ .Q、Z、R等其它数集内排除0 的集,也是这样表示,例如,整数集内排除0的集,表示成Z__请答复:a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页
学案内容
阅读记录
6.集合可以怎样分类?能分成几类?
7.常用数集有哪些?分别怎么表示?(加强记忆)
8.下列关系是否正确?
(1) (2) (3)
(4) (5) (6)
9.下列语句能否确定一个集合?
(1)班里体重超过65kg的同学构成的全体;
2.设集合M中的元素m满足 ,其中 ,试判断 , 与集合M的关系.
自我反思:
1、你觉得你本节课的效率怎样(给自己画个分数,写出需改进的地方)?
2、本节课你从知识,方法方面学到了什么?
第4页
(5) R(6) (7) R
课堂训练:
1.用符号 填空:
(1) N (2)3.14Q(3) Z(4) Q
(5) R(6)1 (7) R
2.已知集合 中的三个元素是 的三边长,那么 一定不是()
A.锐角三角形 B.直角三角形C.钝角三角D.等腰三角形
第3页
学案内成一个集合,求 应满足的条件.
5
学生笔记(教师点拨)
学案内容
师生互动探究
总结规律方法
典例剖析:
例1:判断下列语句是否正确:
(1)2015年末世界上的人构成一个无限集;
(2)某一时刻,地球的所有卫星构成的集合是无限集;
(3)所有三角形构成的集合是无限集;
(4)周长为20cm的三角形构成的集合是有限集.
例2:用符号 填空:
-9N (2) Q(3)1.2Z(4) Q
山东省2017级
高一数学翻转课堂课时学案
课题
集合的概念
编制
修改
审核
审批
目标
导学
学习目标
1.了解集合的含义,知道常用数集及其表示方法。
2.学会使用符号 表示元素与集合之间的关系。
重点难点
重点:明确集合的含义,知道常用数集的概念及其表示方法;
难点:集合中元素的性质及对空集概念的理解.
自学质疑学案
阅读记录
(2)大于5的数的全体;
(3)英语字母的全体。
合作互学:
请同学们相互讨论,解决自学过程中的疑问.小组长汇总,将合作讨论中没有解决的问题和新生成的问题提交课代表.
请记录你或你们小组对此解决问题好的思路和办法。
自学
反思
第2页
训练展示学案
知识点
识记
理解
应用
集合的概念、元素与集合的判断
1
集合中元素的性质
2
3,4
学案内容
说明:
先根据学案上的问题有目的阅读课本,然后可以先做学案再看微课.
教材自学(阅读课本第3页-第4页,了解集合的相关概念.
1.集合中的对象是指什么?
2.集合可以怎样表示?元素怎样表示?
3.元素与集合的关系怎样表示?符号是什么?
4. 和 , 和 之间的区别是什么?
5.怎样理解集合当中元素的确定性、互异性、无序性?(可举例说明)