人教B版数学必修一 《集合的概念》

合集下载

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。

其中的各事物叫作集合的元素或简称元。

集合的元素具有三个特性:确定性、互异性和无序性。

确定性指元素是明确的,如世界上最高的山。

互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。

无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。

集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。

集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。

集合的表示方法有列举法和描述法。

常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。

2.集合间的关系集合间有包含关系和相等关系。

包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。

如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。

如果A和B是同一集合,则称A是B的子集,记作A⊆B。

反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。

相等关系表示两个集合的元素完全相同,记作A=B。

真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。

如果XXX且B⊆C,则A⊆C。

如果XXX且B⊆A,则A=B。

空集是不含任何元素的集合,记为Φ。

规定空集是任何集合的子集,空集是任何非空集合的真子集。

3.集合的运算集合的运算包括交集、并集和补集。

交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

补集是由S中所有不属于A的元素所组成的集合,记作A的补集。

如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。

人教B版数学高一版必修1学案集合的概念

人教B版数学高一版必修1学案集合的概念

数学人教B必修1第一章1.1.1 集合的概念1.了解集合的含义,会使用符号“∈”或“∉”表示元素与集合之间的关系.2.理解集合中元素的特性,重点理解其确定性与互异性.3.熟悉常用数集的符号,尤其要注意空集的含义及表示.1.集合的有关概念一般地,把一些能够____的____的对象看成一个整体,就说这个整体是由这些对象的全体构成的____(或____),常用英语大写字母A,B,C,…表示.构成集合的每个对象叫做这个集合的____(或____),常用英语小写字母a,b,c,…表示.集合是现代数学中不加定义的基本概念,学习这个概念应注意以下两点:(1)集合是一个“整体”;(2)构成集合的对象必须是“确定”且“不同”的.【做一做1】下列各组对象不能构成集合的是()A.著名的中国数学家B.所有的负数C.清华大学招收的2011级新本科生D.2011年11月第十九届APEC(亚太经合组织)会议将在夏威夷檀香山举行,所有APEC 的成员国2.元素与集合的关系知识点关系概念记法读法元素与集合的关系属于如果____________,就说a属于A____a属于A不属于如果____________,就说a不属于A____a不属于A 元素与集合的联系与区别如下表:【做一做2】已知集合M只含有两个元素2 011a,2 013-a,且2 011∈M,求a的值.3.集合中元素的性质特征(1)______,(2)______,(3)______.在处理集合中有关元素的问题时,求得其中元素(或字母)的值以后,要充分考虑集合元素的互异性与分类讨论思想的应用,要进行代入检验,舍去不符合要求的值.【做一做3-1】若a,a,b,b,a2,b2构成集合M,则M中的元素最多有() A.6个B.5个C.4个D.3个【做一做3-2】方程x2-2x+1=0的解集中有__________个元素.4.集合的分类【做一做4】指出下列集合是有限集还是无限集.(1)满足2 011<x<2 013的整数构成的集合;(2)平面α内所有直线构成的集合.5.常用数集及表示符号名称自然数集正整数集整数集有理数集实数集符号________________ 【做一做5】下列关系表示正确的是()A.0∈N+B.π∉R C.1∉Q D.0∈Z一、集合中元素的特性剖析:确定性:集合中的元素是确定的,即任何一个对象都能明确它是或不是某个集合的元素,两者必居其一,它是判断一组对象是否形成集合的标准.互异性:一个给定集合的元素中,任何两个元素都是不同的,因而在同一个集合中,不能重复出现同一个元素,这一点很容易被大家忽视,在解题中要切记这一性质.无序性:集合中的元素没有顺序,在表示集合时先写哪个元素都可以.二、特殊集合——空集剖析:我们把不含任何元素的集合叫做空集,记作.空集是一个实实在在的集合,只不过此集合中无任何元素,故称之为空集.如“方程x2+2=0的实数根”组成的集合,因为没有适合该集合的元素,故它是空集.要谨防①0={0},②{0}=,③{}=的错误,实际上,①0是集合{0}的一个元素,可记为0∈{0};②表示空集,而{0}表示含一个元素0的集合;③{}表示含有一个元素的集合.三、教材中的“思考与讨论”1.你能否确定,你所在班级中,高个子同学构成的集合?并说明理由.剖析:不能构成集合.原因是对高个子同学高的程度没有确定的标准,所以无法判定哪些同学符合要求,因此不能构成集合.2.你能否确定,你所在班级中,最高的3位同学构成的集合?剖析:能构成集合.因为班里最高的3位同学是确定的(只要按身高从高到低取前三名即可),将他们作为元素放在一起即构成所要求的集合.题型一集合中元素的确定性【例1】下列各组对象能构成集合吗?(1)你所在班级的男生;(2)参加2010年广州亚运会的高大运动员;(3)关于x 的方程ax 2+1=0的实数解;(4)从1988年到2012年举办奥运会的城市;(5)所有小的正数;(6)到两定点距离的和等于两定点间的距离的点.分析:“高大”和“小”没有确定的标准,因此(2)(5)的对象不能构成集合,(3)中的方程可能有实数解,也可能没有实数解,当a 给定后,其方程解的情况就是确定的.反思:看一组对象能否构成一个集合,只要看这组对象是否是确定的,即任何一个对象,要么在这一组对象中,要么不在这组对象之中,而没有第三种情况出现.题型二 集合中元素的互异性【例2】由元素3,x ,x 2-2x 构成集合M ,则x 应满足的条件是__________.反思:互异性是集合中元素的重要性质,在解决集合中有关元素的问题时,一定要注意利用互异性进行验证.题型三 元素与集合的关系【例3】已知集合P 中有三个元素a -3,2a -1,a 2+4,且-3∈P ,求实数a 的值. 分析:利用-3是集合P 中的元素,可列方程求a 的值,最后需验证集合中元素的互异性.反思:在根据元素与集合的关系解题时,一定要注意最后代入检验,看是否符合题意及元素的互异性等性质.1下列各组对象,能构成集合的是( )A .平面直角坐标系内x 轴上方的y 轴附近的点B .平面内两边之和小于第三边的三角形C .新华书店中有意义的小说D .π(π=3.141…)的近似值的全体2由a 2,2-a ,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .23集合A 是由点(2 011,2 012)和点(2 012,2 011)构成的,则A 中有__________个元素. 4设L (A ,B )表示直线AB 上所有点组成的集合,“P 是直线AB 上的一个点”这句话就可以简单地写成P __________L (A ,B ).5判断下列说法是否正确,并说明理由.(1)1,32,64,⎪⎪⎪⎪-12,12这些数组成的集合有5个元素; (2)方程(x -3)(x -2)2=0的解组成的集合有3个元素.答案:基础知识·梳理1.确定 不同 集合 集 元素 成员【做一做1】A 因为选项B ,C ,D 中所给的对象都是确定的,从而可以构成集合;而选项A 中所给对象不确定,原因是没有具体的标准来衡量一位数学家怎样才算著名,故不能构成集合.2.a 是集合A 的元素 a ∈A a 不是集合A 的元素 a ∉A【做一做2】解:∵2 011∈M ,∴2 011a =2 011或2 013-a =2 011.解得a =1或a =2.∴a 的值为1或2.3.(1)确定性 (2)互异性 (3)无序性【做一做3-1】C 由集合元素的互异性,知集合M 中的元素最多为a ,b ,a 2,b 2,且4个元素互不相等.【做一做3-2】14. 有限集 无限集【做一做4】解:(1)满足2 011<x <2 013的整数仅有2 012一个,故此集合是有限集.(2)无限集.5.N N +或N * Z Q R【做一做5】D典型例题·领悟【例1】解:(1)(3)(4)(6)可以构成集合;(2)(5)不能构成集合.【例2】x ≠3且x ≠0且x ≠-1 由集合中元素的互异性可得出3,x ,x 2-2x 互不相等,由此可求出x 应满足的条件.即由⎩⎪⎨⎪⎧ x ≠3,x 2-2x ≠3,x 2-2x ≠x ,解得x ≠3且x ≠0且x ≠-1.【例3】解:∵-3∈P ,a 2+4≥4,∴a -3=-3或2a -1=-3,解得a =0或a =-1.经检验a =0时,P 中三个元素为-3,-1,4,满足集合中元素的互异性;a =-1时,P 中三个元素为-4,-3,5,也满足集合中元素的互异性.综上,a 的值为0或-1.随堂练习·巩固1.B 选项A ,C ,D 中的对象不具有确定性,故不能构成集合;而选项B 为,故能构成集合.2.C 代入验证如下:当a =1时,a 2=2-a ;当a =-2时,a 2=2-a =4;当a =2时,a 2=4,所以1,-2,2均不能满足集合A 中元素的互异性,而a =6时,a 2=36,2-a =-4,故选C.3.2 因为点的坐标是有顺序性的,所以集合A 中有2个点,即A 中有2个元素.4.∈5.解:(1)不正确.对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,而32与64相同,⎪⎪⎪⎪-12与12相同,故此集合是由3个元素组成的集合. (2)不正确.方程(x -3)(x -2)2=0的解是x 1=3,x 2=x 3=2,因此此集合只有3和2两个元素.。

高中数学教材人教B版目录(详细版).doc

高中数学教材人教B版目录(详细版).doc

数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。

人教版高中数学必修1《集合的概念》PPT课件

人教版高中数学必修1《集合的概念》PPT课件

• 题型二 元素与集合的关系 • 【学透用活】
• 元素与集合的关系解读
a∈A与a∉A取决于a是不是集合A中的元素,只 唯一性
有属于和不属于两种关系 符号“∈”“∉”具有方向性,左边是元素, 方向性 右边是集合
[典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N ”,有且只有 2
名称 自然数集 正整数集 整数集 有理数集 实数集
记法
N _________
_N_*_或N_+_
_Z__
_Q__
_R__
• [微思考] N与N*有何区别?
• 提示:N*是所有正整数组成的集合,而N是由0和所有的 正整数组成的集合,所以N比N*多一个元素0.
(二)基本知能小试
1.给出下列关系:①13∈R ;② 5∈Q ;③-3∉Z ;④- 3∉N ,其中正确的个
数为
()
A.1
B.2
C.3
D.4
解析:13是实数,①正确; 5是无理数,②错误;-3 是整数,③错误;- 3
是无理数,④正确.故选 B. 答案:B
2.已知集合 M 有两个元素 3 和 a+1,且 4∈M,则实数 a=________.
解析:由题意可知 a+1=4,即 a=3. 答案:3
• 知识点三 集合的表示方法
• [方法技巧] • 用列举法表示集合的3个步骤
• (1)求出集合的元素.
• (2)把元素一一列举出来,且相同元素只能列举一次.
• (3)用花括号括起来.
• 提醒:二元方程组的所有实数解组成的集合、函数图象 上的所有点构成的集合都是点的集合,一定要写成实数对 的形式,元素与元素之间用“,”隔开,如{(2,3),(5,- 1)}.

人教版高中数学B版必修一《第一章 集合——第1课时 集合》课件

人教版高中数学B版必修一《第一章 集合——第1课时 集合》课件

课前篇 自主预习




2.填空 (1)集合:把一些能够确定的、不同的对象看成一个整体,就说这个 整体是由这些对象组成的集合(有时简称为集).集合通常用英文大 写字母A,B,C,…来表示. (2)元素:组成集合的每个对象叫做这个集合的元素.集合中的元素 通常用英文小写字母a,b,c,…来表示. 3.做一做:下列各组对象能构成集合的有( ) ①2019年1月1日之前,在腾讯微博注册的会员;②不超过10的非负 奇数;③立方接近零的正数;④高一年级视力比较好的同学. A.1个 B.2个 C.3个 D.4个 答案:B
-12-
探究一
探究二
探究三 思维辨析 当堂检测
课堂篇 探究学习
延伸探究 若集合A中含有两个元素a-3和2a-1,已知-3是A中的元素, 如何求a的值? 解:∵-3是A中的元素, ∴-3=a-3或-3=2a-1. 若-3=a-3,则a=0. 此时集合中含有两个元素-3,-1,符合要求; 若-3=2a-1,则a=-1, 此时集合中含有两个元素-4,-3,符合要求. 综上所述:满足题意的实数a的值为0或-1.
-14-
探究一
探究二
探究三 思维辨析 当堂检测
课堂篇 探究学习
反思感悟解决此类问题的通法是:根据元素的确定性建立分类讨论 的标准,求得参数的值,然后将参数值代入检验是否满足集合中元 素的互异性.
探究一
探究二
探究三 思维辨析 当堂检测
变式训练用符号“∈”和“∉”填空.
(1) 2-1 (2)23 (3)-4
课前篇 自主预习




知识点四、常用数集及其表示
1.思考
我们曾经学习了哪些常见的数集?

人教高中数学必修一B版《集合及其表示方法》集合与常用逻辑用语说课教学课件复习(集合的表示方法)

人教高中数学必修一B版《集合及其表示方法》集合与常用逻辑用语说课教学课件复习(集合的表示方法)

所以集合 A=x1x=0
是空集.
D.正确,x2 =0,可得 x=0,故选 B.]
栏目导航
2.把集合{x|x2-3x+2=0}用列举法表示为( )
课件
课件
课件
课件
A.{x=1,x=2}课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
B.{x|x=1,x=2}
C.{ x2-3x+2=0}
第一章 集合与常用逻辑用语
1.1 集合 1.1.1 集合及其表示方法 第2课时 集合的表示方法
课件
学习目标
核心素养
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
1. 掌 握 集 合 的 两 种 表 示 方 课件课件
课件 课件
课件
课件
1.借助空集,区间的概念,培养数学抽
法.(重点)
0,因此,用描述法表示为A={x∈R|x2-2=0}.方程x2-2=0有两
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
个实数根 2,- 2,因此,用列举法表示为A={ 2,- 2}.
(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20.因
(2)坐标轴上的点(x,y)的特点是横、纵坐 标中至少有一个为 0, 即 xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.

最新人教版高一数学必修1(B版)全册完整课件


阅读与欣赏
聪明在于学习,天才由于积累
2.1 函数
2.1.1 函数
2.1.3 函数的单调性
2.1.5 用计算机作函数的图象(选学)
2.2.3 待定系数法
2.4 函数与方程
2.4.1 函数的零点
本章小结
第三章 基本初等函数(Ⅰ)
3.1.2 指数函数
3.2.2 对数函数
3.3 幂函数
本章小结
附录1 科学计算自由软件——SCILAB简介
后记
第一章 集合
最新人教版高一数学必修1(B版)全 册完整课件
1.1 集合与集合的表示方法 1.1.1 集合的概念
最新人教版高一数学必修1(B版)全 册完整课件
最新人教版高一数学必修1(B版) 全册完整课件目录
0002页 0019页 0052页 0105页 0130页 0161页 0206页 0251页 0332页 0378页 0404页 0430页 0447页 0449页 0467页 0485页 0487页
ቤተ መጻሕፍቲ ባይዱ
第一章 集合
1.1.2 集合的表示方法
1.2.2 集合的运算

高中数学集合的概念教案1 新课标 人教版 必修1(B)

集合的概念(1)教学目标(一)教学知识点1、集合的概念和性质.2、集合的元素特征.3、有关数的集合.教学重点1、集合.的概念.2、集合.元素的三个特征.教学过程Ⅱ新课讲授:实例:⑴数组 1,3,5,7.⑵到两定点距离的和等于两定点间距离的点.⑶满足的全体实数3x-2> x+3.⑷所有直角三角形.⑸高一(3)班全体男同学.⑹所有绝对值等于6的数的集合.⑺所有绝对值小于3的整数的集合..⑻中国足球男队的队员.⑼参加2008年奥运会的中国代表团成员.⑽参与中国加入WTO谈判的中方成员.1、定义一般地,某些指定对象集在一起就成为一个集合(集).集合中每个对象叫做这个集合的元素.一般地来讲,用大括号表示集合.2、集合元素的三个特征问题及解释⑴A={1,3}问3,5哪个是A的元素?⑵A={所有素质好的人}能否表示为集合?⑶A={2,2,4}表示是否准确?⑷A={太平洋,大西洋},B={大西洋,太平洋}是否表示为同一集合?教师指导由此可知,集合元素具有以下三个特征:⑴确定性集合中的元素必须是确定的,也就是说,对于一个给定的集合,其元素的意义是明确的.⑵互异性集合中的元素必须是互异的,也就是说,对于一个给定的集合,它的任何两个元素都是不同的.⑶无序性集合中的元素是无先后顺序,也就是说,对于一个给定集合,它的任何两个元素都是可以交换的.元素与集合的关系有“属于∈”及“不属于∈”(∈也可表示为∈)两种.如A={2,4,8,16}4_____A 8______A 32________A.请同学们考虑:A={2,4},B={{1,2},{2,3},{2,4},{3,5}}.A与B的关系如何?虽然A本身是一个集合.但相对B来讲,A是B的一个元素.故A∈B.3、常见数集的专用符号N:非负整数集(或自然数集)N*或N+:正整数集(非负整数集N内排除0的集合)Z:整数集(全体整数的集合)Q:有理数集(全体有理数的集合)R:实数集(全体实数的集合)请同学们熟记上述符号及其意义.Ⅲ课堂练习:课本P51、(口答)说出下面集合中的元素.⑴{大于3小于11的偶数}⑵{平方等于1的数}⑶{15的正约数}2、用符号∈或∈填空1_____N 0______N -3_____N 0.5______N1_____Z 0______Z -3______Z 0.5_____Z1_____Q 0______Q -3______Q 0.5_____Q1_____R 0_______R -3______R 0.5______R。

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)

(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为

4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;

ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c

人教B版高中数学必修一ppt课件全集


能构成一个集合;②③④中的对象都满足确定性,所以 能构成集合. [答案] B
判断一组对象能否组成集合的标准 判断一组对象能否组成集合,关键看该组对象是否满 足确定性,如果此组对象满足确定性,就可以组成集合; 否则, 不能组成集合. 同时还要注意集合中元素的互异性、 无序性.
[活学活用] 给出下列说法:
“多练提能·熟生巧”见“课时跟踪检测(一)” (单击进入电子文档)
1.1.2
集合的表示方法
预习课本 P5~7,思考并完成以下问题
集合有哪两种表示方法?它们各自是如何规定的?它们的 使用条件各是什么?
[新知初探]
1.列举法
有限集 , 如果一个集合是_______ 元素又不太多, 常常把集合 花括号“{ }”内表示这个集 列举 出来, 的所有元素都_____ 写在____________
集合通常用英语大写字母 A, B,C,…来表示.
每个对象 叫做这个集合的元素 (或 (2)元素:构成集合的 _________
成员 ). 元素通常用英语小写字母 a, b, c,…来表示.
[点睛]
在解决集合问题时, 首先要明确集合中的元素是
什么.集合中的元素可以是点,也可以是一些人或一些物.
2.元素与集合的关系
(3)集合 A={x|x-1=0}与集合 B={1}表示同一个集合.
x+ y= 1, 2.方程组 x- y=- 3
( √ )
的解集是 B. (1,- 2) D. {(1,- 2)}
(
)
A. (- 1,2) C. {(- 1,2)}
答案:C
3.不等式 x-3<2 且 x∈N+的解集用列举法可表示为( A.{0,1,2,3,4} C.{0,1,2,3,4,5}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 (5)由第一象限所有的点组成的集合为
(x, y) | x 0, y 0 .
高教社
运用知识 强化练习
教材练习1.1.2
1.用列举法表示下列各集合: (1)方程 x2 3x 4 0 的解集; (2)由小于 20 的自然数组成的集合; (3)由数 1,4,9,16,25 组成的集合; (4)正奇数的集合. 2.用描述法表示下. 列各集合: (1)大于 3 的所有实数所组成的集合;(2)小于 20 的所有自然数组成的集合; (3)大于 5 的所有偶数所组成的集合.(4)不等式 2x 5 3的解集.
(4)不等式x-2>0的解.
动脑思考 探索新知
元素与集合的关系
元素与集合
元素a是集合A 的. 元素,
记作a∈A, 读作a属于A.
高教社
元素a不是集合A 的元素,
记作a A,
读作a不属于A.
巩固知识 典型例题
用符号“ ”或“ ”填空:
0 N; 0.6 Z;π R;
1
3
Q; 0
.
元素a是集合A的元素, a∈A,属于
高教社
巩固知识 典型例题
例4 用适当的方法表示下列集合:
(1)方程x+5=0的解集;
观察你的文具盒,什么是集合?什么是元素 ?
.
操作
一般采用大写英文字母A,B,C…表示集合,
小写英文字母a,b,c… 表示集合的元素.
高教社
集合的类型
动脑思考 探索新知
解集 A
空集 E
关集合注
B 有限集、无限集
数集 D
C 平面点集
高教社
数集
集合 自然数集 整数集 有理数集 实数集
字母 N
ZQ
R
元素的性质
高教社
理论升华 整体建构
1 集合的表示有哪几种方法?各自有什么特点?
2
如何选择集合的表示法?
列举法、描述法.
用列举法表示集合,元素清晰明了;
表示集合用.时描,述要法针表对示实集际合情,况特,征选性用质合直适观的明方确法;.
例如,不等式(组)的解集,一般采用描述法来表示,
方程(组)的解集,一般采用列举法来表示
列举法{0,1,2,3,4,5}
元素是可以一一列举的
高教社
描述法 {x R | x 5}
元素无法一一列举但特征明显
巩固知识 典型例题
例2 用列举法表示下列集合: ⑴ 大于-4且小于12的全体偶数;
⑵ 方程 x2 5x的 6解集0 .
用列举法表示集合时,不必考虑
分析 这两. 个元集素合的都排是列有顺序限,集但是.列举的元素 (1)题的元素不可能以出现直重接复列.举出来;{-2,0,2,4,6,8,10}; (2)题的元素需要解方程 x2 5x 6 0 得到.{-1,6}.
动脑思考 探索新知
确定性
无序性
互异性
一个给定的 集合中的. 元 素必须是确 定的
高教社
一不个能给确定定的的对象,不能一组个成给集定合的
例1集合判中断的下元列对象是否可集以合组中成的集元合: (1)素小都于是10互的不自然数; 素排列无顺 (2)相某同班的个子高的同学; 序 (3) 方程x2-1=0的解;
元素a不是集合A的元素,
a A,不属于
高教社
运用知识 强化练习
教材练习1.1.1
1.用或 填空:
(1)-3
N ,0.5
N ,3
N;
(2)1.5
Z ,-5
Z ,3
Z;
(3)-0.2 .
(4)1.5
Q,π R ,-1.2
Q ,7.21
Q;
R,π
R.
2.指出下列各集合中,哪个集合是空集?
(1)方程 x2 1 0 的解集; (2)方程 x 2 2 的解集
高教社
巩固知识 典型例题 例 3 用描述法表示下列各集合: (1)小于 5 的整数组成的集合; (2)不等式 2x 1≤0的解集; (3)所有奇数组成的集合;
.
(4)在直角坐标系中,由 x 轴上所有的点组成的集合; (5)在直角坐标系中,由第一象限所有的点组成的集合.
高教社
巩固知识 典型例题 例3 用描述法表示下列各集合: (1)小于5的整数组成的集合; 分析 第(1)题元素的取值范围是整数,需要标出;
解 (1)小.于 5 的整数组成的集合为x Z | x 5 .
高教社
巩固知识 典型例题
例3 用描述法表示下列各集合: (2)不等式2x+1≤0的解集;
分析 第(2)题通过解不等式可以得到
解 (2)解. 不等式 2x 1≤0得 x ≤ - 1 , 2
所以不等式 2x 1≤0的解集为
高教社
x
|
x
列举法.把集合的元素一一列举出来,写在大括号 1 内,元素之间用逗号隔开 .
描述法. .在花括号中画一条竖线.竖线的左侧写上集合的 2 代表元素x,并标出元素的取值范围,竖线的右边侧写出
元素所具有的特征性质.
高教社
动脑思考 探索新知
问题 不大于5的自然数所组成的集合中有哪些元素? 小于5的实数所组成的集合中有哪些元素?
第一章 集合与充要条件 1.1 集合的概念
高教社
创设情景 兴趣导入
问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、
水笔、橡皮、果冻、薯片、裁纸刀、尺子.
那么如何将这些商品放在指定的篮筐里:
食品篮筐
.
文具篮筐
.
高教社
操作
动脑思考 探索新知
集合与元素
将某些确定的对象看成一个整体就构成一个集合(简称集). 组成集合的对象叫做这个集合的元素.
1 2

巩固知识 典型例题 例3 用描述法表示下列各集合: (3)所有奇数组成的集合;
分析 第(3)题是奇数都能写成 2k 1(k Z) 的形式 解 (3)所有奇数组成的集合为
.
x | x 2k 1, k Z .
高教社
巩固知识 典型例题 例3 用描述法表示下列各集合: (4)在直角坐标系中,由x轴上所有的点组成的集合;
分析 第(4)题是 x 轴上点的纵坐标都是 0; 解 (4)x x R, y 0
高教社
巩固知识 典型例题 例3 用描述法表示下列各集合: (5)在直角坐标系中,由第一象限所有的点组成的集合;
分析 第(5)题是第一象限内点的横坐标与纵坐标 都是正数.
.
高教社
创设情景 兴趣导入
问题 不大于5的自然数所组成的集合中有哪些元素? 小于5的实数所组成的集合中有哪些元素?
只有0、1、2、3、4、5这6个元素
元素是可以一一列举的 元素有无穷多个,特征: • 集合的元素都是实数; (2)集合的元素都小于5.
元素无法一一列举但特征明显
高教社
动脑思考 探索新知
相关文档
最新文档