趋肤效应和临近效应产生的交流损耗的一种新的计算模型
关于Ansoft maxwell中电机铁耗和涡流损耗计算的说明

考虑到最近很多人在问这个问题,因此专门整理出来,供新手参考。
先谈一下什么情况下需要做铁耗分析。
对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。
因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。
注意,B-P 曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。
设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。
此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。
后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。
再谈一下什么情况下需要做涡流损耗分析。
对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。
以上两种情况需要考虑做涡流损耗分析。
现以永磁电机为例,具体阐述。
对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。
注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。
简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。
后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。
最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。
以上方法,适用于Ansoft maxwell 13.0.0及以上版本,并适用于所有电机种类。
一、MAXWELL分析磁场时,电气设备或电气元件(无论是电机还是变压器)主要包括两个部分,一个是励磁线圈,另外一个是磁性材料。
全桥电力电子变压器的损耗研究

全桥电力电子变压器的损耗研究作者:游颖涛林阳姜燕春卢意金平来源:《机电信息》2020年第30期摘要:电力电子变压器(Power Electronic Transformer,PET)作为电力电子技术的核心元器件之一,因其简单可控、体积质量较小等优点,已经越来越多地被应用在电力系统领域。
然而,为减小器件体积,PET需运行在高频率下,其运行损耗会随着频率的升高而不断增加。
变压器铁芯损耗过大一方面会导致设备的寿命缩短,增加系统的运行成本;另一方面也会导致系统电能传输的效率下降。
因此,如何在不影响PET电压转换和电能传输两大功能的基础上,计算开关器件和变压器损耗,是目前研究的热点与重心。
现针对变换器损耗计算问题,对变换器中各个部分的损耗产生进行了原理分析。
关键词:电力电子变压器;MOSFET模块损耗;高频变压器损耗0 引言随着电力电子技术的高速发展,电力电子器件的性能越来越好,电力电子装置能够变换的电能范围也越来越广泛,小到几瓦,大到几百兆瓦[1-3]。
提高DC/DC变换器的工作频率,可以获得更大的功率密度、更高的可靠性以及更快的响应速度。
但是随着工作频率升高而来的是开关器件将产生更高的开关损耗,高频变压器将产生更高的磁芯损耗,这导致了变换器效率以及经济性的降低。
DC/DC变换器作为未来智能电网系统中的重要部件,具有高运行效率是基本要求,因此对其建立准确的损耗模型,是研究如何提高变换器效率的关键,也是进行准确的热分析的关键。
变换器的主要损耗可分为两个部分:MOSFET模块损耗、高频变压器模块损耗。
本文主要对变换器的MOSFET模块和高频变压器模块进行了损耗建模,并且对模型结果进行了分析,提出了一些提高工作效率的方法。
1 DC/DC变换器MOSFET模块损耗分析功率MOSFET是DC/DC变换器的核心部件,其性能直接影响着变换器的工作效率、运行可靠性等。
因此,对MOSFET进行损耗分析是设计高效率、高可靠性变换器的重要一步。
扁铜线电机交流损耗的计算方法

D设计分析esign and analysis 2019年第47卷第12期 姜华 扁铜线电机交流损耗的计算方法 32 收稿日期:2019-04-08扁铜线电机交流损耗的计算方法姜 华(上海大学,上海200135)摘 要:因集肤效应㊁邻近效应对扁铜线的影响,新能源汽车扁铜线电机的交流损耗计算越来越重要㊂扁铜线层数越来越多,单纯的2D模型仿真计算已经不能满足其精度要求,研究了一种利用外电路联合仿真的方法㊂仿真计算和样机实测对比结果表明,该方法能够满足工程应用要求㊂关键词:扁铜线电机;AC损耗;外电路;联合仿真中图分类号:TM303 文献标志码:A 文章编号:1004-7018(2019)12-0032-03Calculation of AC Loss of Hair-Pin Winding MotorJIANG Hua(Shanghai University,Shanghai200135,China)Abstract:Because of the influence of the skin effect and theproximity effect on the hair-pin winding,the calculation accuracy of the AC loss of the hair-pin winding motor of new energy vehicles becomes more and more important.With more and more layers of the hair-pin winding,the simple2D model can not meet the calculation accuracy requirements.A meth⁃od of joint simulation using external circuit was studied.The comparison between simulation and prototype showed that the method can meet the requirements of engineering application.Key words:hair-pin winding motor,AC loss,external circuit,joint simulation0 引 言对于新能源汽车来说,其驱动系统的核心就是驱动电机,驱动电机的性能优劣直接决定了新能源汽车性能好坏㊂随着新能源汽车的不断发展,新能源驱动电机呈现出向高功率㊁小体积㊁高转速方向发展㊂伴随电机工艺及设备的成熟,电机绕组由圆铜线设计逐渐向发卡式扁铜线绕组设计发展㊂发卡式扁铜线电机有以下优点:槽满率高,散热性好,绕组端部短,体积小㊂事物均有两面性,扁铜线电机也有一些缺点:集肤效应大,不利于系列化,对扁铜线漆膜要求高,对量产设备要求高㊂扁铜线电机在很多行业都有应用,如大功率异步电动机㊁矿山电机㊁风力发电机㊁火力发电机㊁大功率牵引电机㊁机车电机等㊂因为这些电机频率低,用基于等效电路的场计算方法能够满足工程应用㊂但随着新能源汽车电机频率的不断提高,基于等效电路的场计算方法完全不能满足其要求,单纯的2D有限元仿真计算方法已经不能准确计算其交流损耗[1]㊂因此,提高扁铜线电机绕组的交流损耗计算精度就显得尤为重要㊂本文以行业内最常用的ANSYS Maxwell仿真软件介绍扁铜线绕组交流损耗的计算方法㊂目前,行业内较准确的计算方法,是按照实物建立3D仿真模型,但3D仿真模型对计算机工作站配置性能要求高,计算时间长,对于一般工程应用来说不太适用㊂如果拥有小型的超级计算中心,那么方案的校核精确计算可以直接用3D模型完成㊂如何提高2D仿真模型的计算精度,以达到工程计算的要求,本文利用2D仿真模型和外电路的联合仿真方法实现交流损耗的计算㊂1 建立外电路用ANSYS RMxprt自动生成的2D模型,无论扁铜线绕组设置多少匝㊁多少根并绕,软件生成的都是等效两层的矩形导体,如图1所示,且导体类型均等效为 stranded”设置[2],如图2所示㊂图1 等效生成绕组2D 模型图2 绕组设置 直接利用ANSYS RMxprt生成的2D模型计算扁铜线交流损耗,当电源频率很低(f r≤50Hz)时,其准确性还能满足工程要求㊂但随着频率升高,负 2019年第47卷第12期D设计分析esign and analysis 姜 华 扁铜线电机交流损耗的计算方法33 载点的交流损耗计算精度越来越低,尤其是考虑控制器输出电源PWM 谐波含量时,交流损耗计算的精度完全不能满足工程要求㊂如果是两层绕组,且并联支路数a =1,将绕组类型设置更改成solid 后,可以提高其交流损耗的计算准确性㊂但需要注意的是,直接用ANSYS RMxprt 生成的2D 导体模型的长㊁宽尺寸与设计尺寸不相同㊂为了提高计算精度,直接在Maxwell 2D 中按设计尺寸建立绕组2D 模型㊂如果是多层扁铜线绕组,且并联支路数a ≥2时,直接用ANSYS RMxprt 自动生成的2D 模型即使将绕组设置改成solid 后,也不能准确地计算,因为ANSYS Maxwell 电源激励设置只能对一条并联支路进行电源设置㊂当2D 模型将每层绕组都按实物分布在槽中时(以激励为电压源㊁绕组为Y 接㊁并绕根数为2的4层绕组为例),等效模型如图3所示㊂图3 自建4层扁铜线绕组如果1层㊁2层绕组为独立的支路LA1,3层㊁4层绕组为独立的支路LA2,另外,B 相㊁C 相绕组以相同的规律分支路,此时需要利用外电路建立2D 模型㊂利用ANSYS Maxwell 直接建立外电路,如图4所示㊂图4 外电路模型只需要给每相绕组的电压源赋值,不需要单独给每条并绕根数组成的并绕支路(La1㊁La2)单独赋值,故联合外电路建立模型,如图5所示,该模型适图5 加电源谐波的外电路(以上电压源激励只添加了1倍和2倍开关频次PWM 谐波)用多根并绕的复杂绕组形式,或者多条并联支路数的仿真在需要考虑控制器PWM 谐波时,可以直接将电压源中各次谐波加入外电路激励中[3](为简化仿真,一般只添加幅值相对较大的电源谐波)㊂2 计算绕组端部AC /DC 电阻等效系数目前,Maxwell 2D 软件当绕组导体设置为solid时,只能对绕组直线部分进行损耗的有限元计算,对于绕组端部没有进行有限元仿真计算㊂绕组端部电阻值㊁端部电感值均是直接输入进行后处理计算,且输入的电阻值只是相应绕组温度下的直流电阻值,没有考虑扁铜线在不同频率下的交流电阻值㊂为了提高计算精度,在计算绕组总交流损耗时,绕组端部需要考虑交流损耗㊂在有㊁无铁心情况下,扁铜线绕组交流电阻系数相差很大,K bar ≫K end ,所以不能直接将直线部分的绕组交流电阻系数K bar 直接用于绕组端部的交流电阻系数K end ㊂绕组端部不用建立3D 端部模型计算,原因是3D 计算耗费时间太长㊂直接用绕组直线部分的2D模型等效计算绕组端部交流电阻随着频率变化的系数,此时的绕组模型只有电枢绕组,没有铁心㊂此种状态下与实物绕组端部在分相上是一样的,但空间分布不完全一样,通过理论计算与实测数据对比,这种等效计算方法能够满足工程应用要求㊂无铁心情况下扁铜线绕组2D 模型如图6所示(电枢绕组分相与实物一致)㊂图6 只保留绕组的2D 模型先计算扁铜线直线部分其直流电阻损耗,然后计算在不同频率下的交流电阻损耗,两者比值作为扁铜线电机端部绕组的AC /DC 电阻系数㊂扁铜线绕组端部AC /DC 电阻系数曲线如图7所示㊂图7 电枢绕组端部AC /DC 电阻系数3 仿真计算绕组总的AC 电阻损耗先计算出端部绕组的直流电阻值,然后通过端部绕组的等效AC /DC 电阻系数,计算出相应电源频 D设计分析esign and analysis 2019年第47卷第12期 姜 华 扁铜线电机交流损耗的计算方法 34 率下的绕组端部的每相交流电阻值,最后代入外电路R ac中进行联合仿真计算㊂因为Maxwell2D中,仿真结果中的solidloss只是扁铜线绕组直线部分的交流损耗值,故需后处理绕组的端部交流损耗值㊂即:p end=3I2rms R ac(1)式中:I rms为负载工况下的相电流有效值;R ac为负载工况下绕组端部的每相交流电阻㊂负载工况下整个扁铜线绕组的交流损耗等于端部绕组的交流损耗与直线部分的交流损耗之和㊂即:p ac=p end+p bar(2)式中:p bar为负载工况下绕组直线部分的交流损耗值,即仿真结果中绕组的solidloss㊂4 电机仿真和实测AC/DC电阻系数对比先计算出绕组直线部分的直流电阻R dc,然后在负载工况下仿真计算出相电流I rms,即可计算出直线部分直流电阻损耗值[4]:p bar=3I2rms R dc(3) 然后,计算负载工况下的直线部分交流损耗p bar,即可推出直线部分的AC/DC电阻系数㊂将绕组直线部分AC/DC电阻系数和端部AC/DC电阻系数按每相绕组直线部分和端部的长度之比,即可计算出整个绕组的AC/DC电阻系数㊂负载工况下(低频㊁中频㊁高频所对应的9个不同工况)仿真和实测对比结果如表1所示㊂通过仿真计算与实测数据的对比结果可以看出,仿真计算与实测结果偏差很小,最大相差7%㊂通过实验样机测试,电枢绕组温度为60℃时,得到电枢绕组在不同频率下AC/DC电阻系数,如图8所示㊂图8 60℃时实测AC/DC电阻系数表1 仿真和实测电枢绕组AC/DC电阻系数(60℃)转速n/(r㊃min-1)转矩T/(N㊃m)频率f/Hz仿真AC/DC电阻系数直线部分端部绕组实测绕组AC/DC电阻系数差值/%50017030.4 1.0098 1.0021 1.0058 1.0087-0.29 5006827.8 1.0094 1.0021 1.0021 1.0087-0.31 5001426.2 1.0096 1.0021 1.0056 1.0087-0.66 4610170236.1 1.3317 1.0964 1.2175 1.1830 2.91 461068233.3 1.3454 1.0964 1.2239 1.1830 3.346 461014233.3 1.3049 1.0963 1.2047 1.1830 1.83 1350055689.5 3.2664 1.4792 2.3550 2.19907.09 1350040683.5 3.1938 1.4791 2.3208 2.1990 5.54 1350010680 3.1676 1.4791 2.3084 2.1990 4.975 结 语对于发卡式扁铜线电机交流损耗的计算,此种利用ANSYS Maxwell2D仿真计算的方法能够在较短的时间内达到工程应用的要求㊂当然,如果需要更精确的模型校核计算,可以考虑建立3D模型,利用配置高的工作站校核计算㊂此方法可以加入电源部分PWM谐波进行仿真,但没有考虑电机参数对控制器PWM谐波的影响㊂如需考虑其影响,则需利用Simulink搭建控制器逆变电路进行联合仿真,并需要将控制器控制策略置入其中,目前对整个电机系统的联合仿真软件还不够成熟㊂参考文献[1] 唐任远.现代永磁电机理论与设计[M].1版.北京:机械工业出版社,1997.[2] 赵博,张洪亮.Ansoft12在工程电磁场中的应用[M].1版.北京:中国水利水电出版社,2010.[3] 黄俊,王兆安.电力电子变流技术[M].3版.北京:机械工业出版社,1994.[4] 陈世坤.电机设计[M].2版.北京:机械工业出版社,2000.作者简介::姜华(1984 ),男,硕士研究生,研究方向为特种电机及其控制系统㊂(上接第31页)[11] ZHU Z Q,HOWE D,BOLTE E,et al.Instantaneous magneticfield distribution in brushless permanent magnet dc motorspart1:Open-circuit field[J].IEEE Transactions on Magnetics,1993,29(1):124-135.[12] 詹琼华.开关磁阻电动机[M].武汉:华中理工大学出版社,1992.作者简介:周智庆(1979 ),男,讲师,研究方向为高性能电驱动系统,新能源以及智能机电一体化技术及其系统㊂。
考虑邻近效应的高速永磁无刷电机交流损耗

( col f l tcl nier ga dA tm t n abnIs tt o eh o g ,H ri 100 , hn ) S ho o e r a E g e n n uo a o ,H ri tue f c nl y ab 50 1 C ia E ci n i i ni T o n
tr ,a d t e n m b ro ta d n a re a i o s n h u e fsr n sa d c rirr t o.Th n lsss o h tt e widig c pp rl s a e e a a y i h wst a h n n o e o sc n b
sg fc n l e u e h o g h p r p ae c oc f so - p n n h p ini a ty r d c d t r u h te a p o r t h i e o lto e i g s a e,c n u tr d a t r ta ds i i o d co imee ,sr n
第 1 4卷
第 5期
电 机 与 控 制 学 报
ELECTRI MACHI C NES AND C0NTROL
Байду номын сангаас
Vo . 4 No 5 11 .
21 0 0年 5月
Ma 2 0 v 01
考 虑 邻 近效 应 的 高速 永磁 无刷 电机 交流 损 耗
邹 继斌 , 江 善林 , 梁 维 燕
c l t e s p r t r m ttr io o s oo d y l s n c a ia o s ut o b e a a e fo sa o r n l s ,r t re d o s a d me h nc ll s .Th e e tc iswe e c n— r e ts o l r o n ce o sa o n i g n s re .T e e p rme tv rf st a hewi di gl s sr l td t PW M a r— e t d t ttrwi d n si e i s h x e i n e i h tt n n o si ea e o S i e c ri
MCR-WPT发射接收线圈性能仿真建模分析

2020年12月第27卷第12期控制工程Control Engineering of ChinaD ec.2020Vol.27,N o.12文章编号:1671-7848(2020)12-2151-07 DOI: 10.14107/ki.kzgc.20180708M CR-W P T发射/接收线圈性能仿真建模分析范兴明,高琳琳,苏斌华,唐福鸿,张鑫(桂林电子科技大学电气工程及其自动化系,广西桂林541004)摘要:以两线圏等效电路模型为研究对象,重点考虑谐振线圈中通过的高频电流会受趋肤效应与邻近效应的影响,致使导体的有效截面积减小,增大线圈的高频损耗。
为了掌握 K:趋肤效应与邻近效应对系统传输的具体影响,在理论分析的基础上研究了线圏参数对系统 ^ 传输性能的影响规律,并利用M a x w e丨丨电磁场仿真软件对圆形导线横截面模型在不同频率情况下进行仿真分析,得到了趋肤效应与邻近效应各自产生的损耗随绕组厚度和频率的变丨化趋势,由此提出可用铜管来代替相同外径圆形实心导线,以提高材料的实际利用效率。
通过理论与仿真结果对比,验证了铜管替代实心导线提高无线电能传输线圈中导线有效截面利用率的可行性,此方法可减小导线在高频电流条件下产生的电阻损耗。
关键词:磁耦合谐振式无线能量传输:趋肤效应;邻近效应;效率分析中图分类号:TM724 文献标识码:APerformance Simulation Modeling Analysis ofMCR-WPT Transmit/Receive CoilsF A N X in g-m ing,G AO Lin-lin,S U B in-hua,TANG F u-hong,ZH A N G X in(Department of Electrical Engineering&Automation,Guilin University of Electronic Technology,Guilin541004, China) Abstract: This paper takes the two-coil equivalent circuit model as the research object, and focuses on the influence of skin effect and proximity effect on the high-frequency current passing through the resonant coil, which resu lt s in reduction of effective cross-sectional area of the conductor and increase of high frequency loss of the coil. In order to master the specific effects of skin effect and proximity effect, t h is paper uses Maxwell electromagnetic f ield simulation software to simulate and analyze circular cross-section model under different frequency conditions, and obtains the respective variation trend of loss caused by skin effect and proximity effect with winding thickness and frequency.I t i s proposed that copper tubes replace solid wires with the same outer diameter i n order to increase the effective rate of material use efficiency. The comparison of theory and simulation results verifies the f e as ib il it y of using copper tubes instead of solid wires to increase the utilizati on of effective cross section of conductor i n the wireless power transmission coils, and the resistance loss caused by the wires under high-frequency current conditions i s reduced.Key words: Magnetically coupled resonant wireless power transmission (M C R-W P T); skin effect; proximity effect;efficiency analysisi引言无线电能传输技术可以实现从电源到负载无电汽车、医疗电子设备、油田和矿井的开采等领域得 气接触输电,比传统接触式电能传输技术更加安全。
电源效率讨论系列二:磁性元件的损耗

电源中的磁性元件一般就是指电感与变压器,这里我们这种讨论初次级隔离的变压器,因为这种变压器在开关电源中应用最为广泛。
变压器的作用大致是提供初次级的电气隔离,使输出电压或升或降,传送能量;变压器设计的好坏直接关系到整个电源系统的安规,EMC,效率,温升,输出的电气性能参数,寿命,可靠性,甚至会导致系统的崩溃。
个人感觉变压器的工艺,是个大难题。
特别是漏感和分布电容的不兼容。
楼主能否讲讲升压变压器有何注意的地方。
升压的做过,但经验不多,说说个人的理解,不一定对,权作参考与讨论之用。
升压变压器的难点,楼上已经指出来了,因为绕组的圈数太多,漏感与分布电容很难两全其美;这个时候我觉得应该从以下几个方面着手:1、在选择变压器的时候,如果结构尺寸允许的话,我们尽量选择高长型(立式)或窄长(卧式)型的,因为这种变压器单层绕线圈数多,可以有效降低绕线的层数,增加初次级的耦合,减小层间电容。
2、优化绕线顺序,使初次级能增减耦合面积;曾经用过这种绕法:1/3次级--1/2初级--1/3次级--1/2初级--1/3次级,结果表明此种绕法漏感可以小很多。
当然这种变压器绕制工艺稍显复杂,成本稍高,但还是可以接受。
3、层间电容大家都知道,每层之间加黄胶带,便可减少层间电容。
当然这些措施都是在考虑安规与EMC的情况下,做出的改进;对于升压电源,漏感与层间电容如果处理不好很容易引起振荡,使电源的EMC不好过,效率不高,有时会莫名其妙的炸MOS管(我实际碰到过的情况)。
关于第一条:增加初次级的耦合,可以减小变压器的漏感,但会增加初次级间的分布电容。
老兄最后一句话,太对了。
升压变压器,最难搞的就是漏感和分布电容不好处理,很容易震荡。
兄弟第一条说得很对,如果升压比比较大,应该分槽绕制,这个是减低分布电容的最好办法,大家看一看电视机中的高压包就知道了,黑白电视机输入电压12V,高压应该是在12000左右,没有用倍压整流,一级搞定。
次级估计分槽在十个左右。
材料物理(李志林)名词解析答案

由电子近似:是指如下的近似方法:依据能带理论,可以认为固体内部电子不再束缚在单个原子周围,而是在整个固体内部运动,仅仅受到离子实势场的微扰。
状态密度:自由电子的能级密度费米能:又称费米势、费米能级。
在T=0K,电子所处的能量状态由两条基本原理确定:一是泡利不相容原理,二是能量最低原理,电子在能级上填充的最高位置,相应的能量称为费米能电子的费米-狄拉克统计分布:自由电子是费米子,自由电子的分布规律服从费米-狄拉克统计,能量为E的状态呗电子占据的几率是:f(E),式中,F为费米能,k是玻尔兹曼常熟,T为热力学温度,f(E)称为费米分布函数。
布洛赫定理:不管周期势场的具体函数形式如何,在周期场中运动的单电子波函数不再是平面波,而是调幅的平面波,其振幅不再是常数:允带和禁带统称为能带允带/禁带:在近自由电子近似下有些能量范围是允许/禁止电子占据的布拉格定律:,其中n为整数,λ为入射波的波长,d为原子晶格内的平面间距,而θ则为入射波与散射平面间的夹角布里渊区:指K空间中能量连续的区域等能面:三维布里渊区中能量相等的K值连接成的面称为等能面费米面:能量为费米能的等能面晶体:原子(或分子)在三维空间作有序规则的周期性重复排列的材料非晶体:原子(或分子)在三维空间作无规则排列的材料准晶体:一种介于晶体和非晶体之间的有序结构:为说明点阵排列的规律和特点,在点阵中取出一个具有代表性的基本单元作为点真的组成单元,称为晶胞同素异构现象:许多元素具有两种或者更多的晶体结构,这种现象称为元素的多晶型性或者同素异构转变合金:合金是两种或者两种以上的金属或者非金属,经熔炼、烧结或者其他方法组合而成的具有有金属特性的物质固溶体:固溶体是两种或多种元素混合所形成的单一结构的结晶相,其结构与某一组成元素相同,可以将固溶体看成固态的溶液中间相:中间相组元间形成的与任一单一组元结构都不同的新相间隙相和间隙化合物:是指过渡金属与H、B、C、N等非金属小原子形成的化合物。
集肤效应与邻近效应

3.1 集肤效应与邻近效应
为减少分布电感,图(a)最好,图(b)次之,图(c)最差。因此, 在布置印刷电路板导线时,流过高频电流的导线与回流导线 上下层最好。平行靠近放置在同一层最差,即使导线很宽, 实际上仅在导线靠近的边缘有高频电流流通,损耗很大,而 且层的厚度不应当超过穿透深度。
3.1 集肤效应与邻近效应
为了扩大电流,通常有几种选择:
1.加大线圈窗口高度
窗口宽一倍,因此, 磁场强度小一倍,则单位体积存
储的能量小4 倍。由于宽度增加,也许体积增加一倍, 总能量实际减少一半,漏感也减少一半。线圈宽度增加的 不利后果是增加了线圈之间的电容。
3.3 多层线圈
2. 交错 绕组交错可以减小涡流损耗,降低漏感。
对于多层线圈,流过导体表面的涡流将随线圈的层数呈指 数递增。
3.2 变压器的漏感 在实际变压器中,如果初级磁通不全部匝链次级就产生了 漏感。 图中为一双层绕组的 变压器,由于邻近效应的影响,在
两层线圈之间会存储一部分磁场能量,初级侧的磁通不能
完全匝链次级。这部分漏磁是漏感形成 的主要因素。 漏感与初级匝数N 的平方成正比,与窗口 的宽度l 成反比。因此减少匝数,选取大的 窗口宽度可减少漏感。还应当看到,线圈 之间的间隔越小,漏感也越小。
第三章 线圈
第三章 线圈
集肤效应和邻近效应 变压器的漏感
内 容 提 要
多层线圈
线圈电容
小结。
3.1 集肤效应与邻近效应
一、集肤效应
如果流过导线的电流是直流或低频电流I,在导线内和 导线的周围将产生磁场B,磁场从导体中心向径向方向扩 展开来。在导体中心点,磁场包围的电流为零,磁场也为 零;由中心点向径向外延伸时,包围的电流逐渐加大,磁 场也加强,当达到导体表面时,包围了全部电流,磁场也 最强(H=I/πd-d 为导线直径)。在导体外面,包围的电 流不变,离开导线中心越远,磁场也越弱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铜箔 圆铜线 多股线 扁平线 计算 Fl 和 h 选择电流波形
双极方波 单极方波
正弦波
按 N=50 展开傅立叶级数,根据 Dowell 方程式, 求得 Fn,再对 Fn求和,最终得到 。FR
END
三( ) 完全编程代码
Function AC_Factor(a, b, c, d, e, f, g, h, i, j, k, l) ' '*********************************************** ' Misc variables '*********************************************** Application.Volatile
Case "L" wire_dia = 0.3232979 * Exp(-0.11579 * awg) bund_dia = 1.21 * wire_dia * (ns ^ 0.49) porosity = tpl * bund_dia * nc / ww
eq_ht = 0.0254 * wire_dia * 0.8343
' Perform AC factor calculations
'***********************************************
∑N (Cn )2 ⋅ Fn
∑ FR
=
n=1 N
(Cn )2
n=1
( FR =交流电阻和直流电阻的比值)
(二) 流程图
开始
初始参数输入 选择导线类型
电流波形、占空比、工作频率、工作温度、 导线类型、导线相对磁导率、导线电阻率、 导线电阻温度系数、绕组层数、绕组交替系 数铜、箔绕厚度线、轴多宽股度线、股圆数线、线多径股、线扁同平层线匝厚数度、
(一) 原理: 趋肤效应和临近效应产生的交流损耗的一种新的计算模型 1、 趋肤效应和趋肤深度δ
δ
δ= ρ πµo µc f
(δ =趋肤深度; ρ =导体电阻率; µo =真空磁导率;
µc = 导体相对磁导率; f = 频率) 2、 邻近效应和交流电阻系数Q
dδ:=导趋体肤直深径度
Fl
=
Nl
d w
( Fl =铜层系数; Nl =每层匝数; w =层的宽度;d =导线直径 )
Mn
=
xn
sinh(2xn ) cosh(2xn )
− sin(2xn ) − cos(2xn )
Fn
=
Mn
+
Dn
⋅ ( P ⋅int l )2
3
−1
intl=卷数交替系数;当使用(一次卷数+二次卷数+一次卷数)或(二次卷数+一次卷数+二次卷数)夹
心卷时为 1,普通卷时为 0。
P= N Nl
' Constant definitions
'***********************************************
uo = 0.0000012566
rho = 1.724 * (1 + 0.0042 * (temp - 20)) * 0.00000001
'
'***********************************************
(N:总匝数; Nl :每层匝数;P:卷数层数)
4、 电流波形的傅立叶级数展开
∑ P(x)
=
Ao
+
N n=1
( An
⋅ cos( nπx ) L
+
Bn
⋅ sin( nπx )) L
( N : N 阶傅立叶级数; L = T (半周期);T = 1 (周期)
2
f
Cn = An2 + Bn2 (电流 n 级展开后的幅值)
temp = a freq = b ' '*********************************************** ' Structure variables '*********************************************** s_type = c nl = d tpl = e intl = f nc = g ww = h ' '*********************************************** ' Wire/Foil/Litz variables '*********************************************** awg = i th = j ns = k ' '*********************************************** ' Waveform variables '*********************************************** w_type = l ' '*********************************************** ' Perform porosity and eq_ht calculations '*********************************************** Select Case s_type
h Q=
Fl
δ
( h = 0.83d ;δ =趋肤深度; Fl =铜层系数) 3、 Dowell 方程式
设 xn = Q n 为 n 阶谐波数。
xn = h
Fl ⋅π ⋅ µo ⋅ µr ⋅ n ⋅ f ρ
卷线轴
Dn
=
2⋅
xn
sinh(xn ) − sin(xn ) cosh(xn ) + cos(xn )
Case &.0254 * th
Case "W" wire_dia = 0.3232979 * Exp(-0.11579 * awg) porosity = tpl * wire_dia * nc / ww eq_ht = 0.0254 * wire_dia * 0.8343
nl = nl * Sqr(ns)
Case "P"
porosity = 1
If th < 0.5 Then
eq_ht = 0.0254 * th
Else
eq_ht = 0.0254 * th * 0.0014
End If
End Select
'
'***********************************************