文科数学高考模拟试题份含详细答案

合集下载

高考数学(文科)模拟试卷及答案3套(20210411043625)

高考数学(文科)模拟试卷及答案3套(20210411043625)
高考数学(文科)模拟试卷及答案
3套
模拟试卷一
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)
1.已知集合 U { x N | 0 x 7} ,A {2,5} ,B 1,3,5 ,则 (C u A) B(

A . {5}
B . 1,5
C. {2,5}
D . 1,3
2.已知复数 z 满足 z 1 i
当f x
g x 时, log 4 2x x a
log 4
4x 2x
1
,得
2x
xa
4x 1 2x
0,
整理得 a
x
1
x,
2
因为当 x
x
x
2,2 时,函数 y 1
x 单调递减,所以 7 1
x 6,
2
42
所以使方程有唯一解时 a 的取值范围是
7 ,6 .
4
21.【详解】解: (Ⅰ)设
∴动点
的轨迹是以

,则
.
又 PBD 为正三角形, PB PD BD 2 2 ,又 Q AB 2 , PA 2 3 ,
PBA , AB PB ,又 Q AB AD ,BC / / AD , AB
2
AB 平面 PBC ,又 Q AB 平面 PAB ,
BC ,PBI BC B ,
平面 PAB 平面 PBC .
( 2)如图,设 BD , AC 交于点 O ,Q BC / / AD ,
bn 1 1 1 1 1 L 2 33 5
1
1
2n 1 2n 1
1
1
n
1

2 2n 1 2n 1
c2
18.【详解】证明: ( 1)据题意,得

高三文科数学模拟试题含答案

高三文科数学模拟试题含答案

高三文科数学模拟试题含答案高三文科数学模拟试题本试卷共150分,考试时间120分钟。

第Ⅰ卷(选择题,共50分)一、选择题(共10小题,每小题5分,共50分。

在每小题中,只有一项是符合题目要求的)1.复数3+ i的虚部是()。

A。

2.B。

-1.C。

2i。

D。

-i2.已知集合A={-3,-2,0,1,2},集合B={x|x+2<0},则A∩(CRB) =()。

A。

{-3,-2,0}。

B。

{0,1,2}。

C。

{-2,0,1,2}。

D。

{-3,-2,0,1,2}3.已知向量a=(2,1),b=(1,x),若2a-b与a+3b共线,则x=()。

A。

2.B。

11/22.C。

-1.D。

-24.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()。

A。

4π/3.B。

π。

C。

3π/2.D。

2π5.将函数f(x)=sin2x的图像向右平移π/6个单位,得到函数g(x)的图像,则它的一个对称中心是()。

A。

(π/6,0)。

B。

(π/3,0)。

C。

(π/2,0)。

D。

(π,0)6.执行如图所示的程序框图,输出的s值为()。

开始是否输出结束A。

-10.B。

-3.C。

4.D。

57.已知圆C:x^2+2x+y^2=1的一条斜率为1的切线l1,若与l1垂直的直线l2平分该圆,则直线l2的方程为()。

A。

x-y+1=0.B。

x-y-1=0.C。

x+y-1=0.D。

x+y+1=08.在等差数列{an}中,an>0,且a1+a2+⋯+a10=30,则a5⋅a6的最大值是()。

A。

4.B。

6.C。

9.D。

369.已知变量x,y满足约束条件2x-y≤2,x-y+1≥0,设z=x^2+y^2,则z的最小值是()。

A。

1.B。

2.C。

11.D。

3210.定义在R上的奇函数f(x),当x≥0时,f(x)=2,当x<0时,f(x)=1-|x-3|,则函数F(x)=f(x)-a(0<a<1)的所有零点之和为()。

高考文科数学模拟试题

高考文科数学模拟试题

高考文科数学模拟试题一、选择题:本大题共12小题,每小题5分,共60分.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( ) A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a )3.如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S =TD.S ≠T7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么 A.S T B.T S C.S=T D.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132- E F DO C B A二、填空题:本大题共4小题,每小题4分,共16分.13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________. 14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

高考数学文科模拟试卷及答案

高考数学文科模拟试卷及答案

高考数学文科模拟试卷及答案摒弃侥幸之念,必取百炼成钢;厚积分秒之功,始得一鸣惊人。

长风破浪会有时,直挂云帆济沧海。

待到高考过后时,你在花丛中笑。

祝高考顺当啊!下面就是我给大家带来的高考数学文科模拟试卷及答案,盼望大家喜爱!第I卷(选择题部分共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合=A.B.C.D.2.已知i为虚数单位,若复数在复平面上对应的点在虚轴上,则实数a的值是A.B.C.2D.-23.设,则“a=l”是“函数为偶函数”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,则输出的s值是A.-1B.C.D.45.为三条不重合的直线,为三个不重合的平面,给出下列五个命题:①②③④⑤。

其正确命题的个数是A.1个B.2个C.3个D.4个6.已知D是由不等式组所确定的平面区域,则圆在区域D内的弧长为A.B.C.D.7.已知某四棱锥的三视图(单位:cm)如图所示,则该四棱锥的体积是A.B.C.D.8.某次数学测试中,学号为i(i=1,2,3)的三位同学的考试成果则满意的同学成果状况的概率是A.B.C.D.9.在△ABC中,角A,B,C所对的边分别为a,b,c,若=A.B.C.D.10.已知点F1,F2分别是椭圆为C:的左、右焦点,过点作x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2的垂线交直线于点Q,若直线PQ与双曲线的一条渐近线平行,则椭圆的离心率为A.B.C.D.第Ⅱ卷(非选择题部分共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.函数的零点有个.12.设样本的平均数为,样本的平均数为,若样本的平均数为.13.已知数列为等差数列,则=.14.△ABC外接圆的半径为1,圆心为O,且,则的值是.15.过直线2x—y+3=0上点M作圆(x-2)2+y2=5的两条切线,若这两条切线的夹角为90°,则点M的横坐标是.16.设函数,则实数a的取值范围是。

高考数学(文科)模拟试卷及答案3套

高考数学(文科)模拟试卷及答案3套

高考数学(文科)模拟试卷及答案3套(一)第Ⅰ卷 选择题(60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,}02{B }3,2,1,0,1{A ≤-=-=x x |x 2则A B =I A .}2,1{ B.}2,0,1{- C .}2,1,0{ D.}3,2,1,0{3.已知πlog ,c 9.0,b π9.0π1.0===a ,则c b a ,,的大小关系是A.c a b >>B.b c a >>C.a c b >>D.c b a >>4.为考察A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:药物A 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91药物B 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91根据图中信息,在下列各项中,说法最佳的一项是 A .药物A 的预防效果优于药物B 的预防效果 B .药物B 的预防效果优于药物A 的预防效果 C .药物A 、B 对该疾病均有显著的预防效果 D .药物A 、B 对该疾病均没有预防效果5.定义在R 上的奇函数)(x f 满足)3()(x f x f +=-,2)2020(=f ,则)1(f 的值是 A .-1 B .-2 C .1 D . 26.设n m ,是两条不同的直线,βα,是两个不同的平面,,平面直线平面且直线βn αm ⊂⊂,下列命题为真命题的是A.“n m ⊥”是“αn ⊥”的充分条件B.“n m //”是“βm //”的既不充分又不必要条件C.“βα//”是“n m //”的充要条件D.“n m ⊥”是“βα⊥”的必要条件7.已知等差数列}{n a 的前n 项和为n S ,11=a ,若151m m 1m =++-+a a a ,且27S =m ,则m 的值是A .7B .8C . 9D . 10 8.函数)0(3cos y <-=b x b a 的最大值为23,最小值为21-,则]π)4[(sin x b a y -=的周期是A.31 B.32 C.3π D.3π2 9.在ABC ∆中,已知向量AB 与AC 满足AB AC()BC |AB||AC|+⊥u u u r u u u ru u u r u u ur u u u r 且21=•|AC ||AB |,则是ABC ΔA.三边均不相同的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形10.在△ABC 中,若115031tan ===︒BC C A ,,,则△ABC 的面积S 是A.833- B.433- C.833+ D.433+ 11. 正方体1111D C B A ABCD -中,11Q D C 点是线段的中点,点P 满足1113A P A A =u u u r u u u r ,则异面直线PQ AB 与所成角的余弦值为A.210 B.210 C.210- D.3712.众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y 轴右侧部分的边界为一个半圆.给出以下命题: ①在太极图中随机取一点,此点取自黑色阴影部分的概率是12; ②当43a =-时,直线(2)y a x =-与黑色阴影部分有公共点; ③黑色阴影部分中一点()y x ,,则y x +的最大值为2.其中所有正确结论的序号是( ) A .① B .② C .①③ D .①②第Ⅱ卷 非选择题(90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 若向量a ,b 满足:(a -b )⋅(2a +b )=-4,且|a |=2,|b |=4,则a 与b 的夹角是__________.14.按照程序框图(如图所示)执行,第4个输出的数是__________.15.已知双曲线1222=-y ax (a >0)的左、右焦点分别为F 1,F 2,离心率为2,开始输出A结束是否1A =1S =5?S ≤2A A =+1S S =+第12题图P 为双曲线右支上一点,且满足4||||2221=-PF PF ,则△PF 1F 2的周长为 .16.已知直线l 与曲线x x f sin )(=切于点)sin (A α α,,且直线l 与曲线x x f sin )(=交于点)sin (B β β,,若π=β-α,则的值为α tan ________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的频率分布直方图如图所示.记事件A 为“从这200人中随机抽取一人,其年龄不低于35岁”,已知P (A )=0.75. (1)求b a,的值;(2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.18.(本小题满分12分)已知等差数列}{n a 的首项为6,公差为d ,且4312,2,a a a +成等比数列.(1)求}{n a 的通项公式;(2)若0<d ,求||a ...||a ||a ||a n ++++321的值.19.(本小题满分12分)如图,多面体ABCDEF 中,12===AD DE AB ,,平面CDE ⊥平面ABCD ,四边形ABCD 为矩形,BC ∥EF ,点G 在线段CE 上,且AB GC EG 3222==. (1) 求证:DE ⊥平面ABCD ;(2) 若BC EF 2=,求多面体ABCDEF 被平面BDG 分成的大、小两部分的体积比.20.(本小题满分12分)已知函数()()()()21112ln 02f x ax a x a x a =+-+->. (1)若2x =是函数的极值点,求a 的值及函数()f x 的极值; (2)讨论函数的单调性.21.(本小题满分12分)已知抛物线C 的顶点为坐标原点O ,焦点F 在y 轴的正半轴上,过点F 的直线l 与抛物线相交于A ,B 两点,且满足.43-=⋅OB OA (Ⅰ)求抛物线C 的方程;(Ⅱ)若P 是抛物线C 上的动点,点N M ,在x 轴上,圆1122=-+)(y x 内切于PMN ∆,求PMN ∆面积的最小值.选考题:共10分.请考生在第22、23题中任选一题作答. 22.[选修4-4:坐标系与参数方程](10分).在平面直角坐标系xoy 中,曲线C 的参数方程为为参数),,(θθθ⎩⎨⎧+=+=sin 24y cos 23x 以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)在平面直角坐标系xOy 中,A (﹣2,0),B (0,﹣2),M 是曲线C 上任意一点,求△ABM 面积的最小值.23.[选修4-5:不等式选讲](10分).设函数.|2|||5)(+---=x a x x f (1)当1=a 时,求不等式0)(≥x f 的解集; (2)若1)(≤x f ,求a 的取值范围.答案一、选择题: CBDAB BCBDA DD 二、填空题:13.120° 14.7 15. 3310 16.2π三、解答题:17.解:(1)由题意知P(A)=10×(a +0.030+0.010)=0.75,解得a =0.035,又10×(b +0.010)=0.25,所以b =0.015. ……4分(2)在第二组、第四组中用分层抽样的方法抽取6人,则第二组中应抽取2人,分别记为21a a ,,第四组中应抽取4人,分别记为4321b b b b ,,,. ……5分从这6人中抽取2人的所有可能情况有)(11b ,a , )(21b ,a ,)(31b ,a ,)(41b ,a ,)(12b ,a ,)(22b ,a ,)(32b ,a ,)(42b ,a ,)(21a ,a ,)(21b ,b ,)(31b ,b ,)(41b ,b ,)(32b ,b ,)(42b ,b ,)(43b ,b ,共15种. ……8分其中从这6人中抽取的2个人恰好都在第四组中的情况有)(21b ,b ,)(31b ,b ,)(41b ,b ,)(32b ,b ,)(42b ,b ,)(43b ,b ,共6种. ……9分所以所求概率为52156=. ……10分18. 解:(1) d.a d a d a 36266431+=+=∴=,,,公差为Θ Θ又43122a a a ,,+成等差数列,.21)2(22341=-=+=⋅∴d d a a a 或,解得 .42271n n +==-==n a d n a -d 时,;当时,当故.427}{+==n a n -a a n n n 或的通项公式为·······5分 (2)∵d <0,∴d =-1,此时.n 7n -=a.2132.......07n n -a a a |a ||a ||a |a n 2n 21n 21n +=+++=+++≥≤,时,当·······7分 )....(.......07n 98721n 21n a a a a a a |a ||a ||a |a n +++-+++=+++<>,时,当 .422n 132n 2)n 71)(7n (26072+-=-+---+=)(·······11分 故⎪⎩⎪⎨⎧>+-≤+=+++.422137213 (7)n n 2n n n 2n -|a ||a ||a |22n 21,, ·······12分 19. 解:(1)因为四边形ABCD 为矩形,所以CD=AB.因为AB=DE=2,所以CD=DE=2.因为点G 在线段CE 上,且EG=2GC=322AB ,所以EC=2AB=2CD=22所以.CD DE ,EC CD DE 222⊥=+即又平面CDE ⊥平面ABCD ,平面CDE ⋂平面ABCD=CD,DE ⊂平面CDE , 所以DE ⊥平面ABCD.·······5分(2)方法1:由(1)知,//,,BC AD DC DA DE DC AD ABCD DE 两两垂直,又,所以,且平面⊥⊥ 所以易知.CDE BC 平面⊥设,,222,1=====BC EF DE AB BC,,34323231====∆∆∆∆CDE EDG CDE CDG S S S S .9431,9231=⨯==⨯=∆-∆-BC S V BE BC S V EDG GDE B CDG CDE B ,则连接所以因为,平面所以易知所以ADEF AB EF AD AD BC EF BC ⊥,//,//,// 2313)(2=⨯==+⋅=∆-∆AB S V EF AD DE S ADEF ADEF B ADEF ,所以922=+--ADEF B DEG B V V 所以 故多面体ABCDEF 被平面BDG 分成的大、小两部分的体积比为11:1 方法2:设三棱锥G-BCD 的体积为1,连接EB,AE. 因为EG=2GC,所以CG=31EC,所以3V 3V BCD G BCD E ==--.易知.3V V ABD E BCD E ==--又EF=2BC,BC ∥EF ,所以.V V 2S S 2AEF B ABD B EFA ABD --∆∆==,故 又6,3===---AEF B ABD E ABE B V V V 所以, 故.111336=-++=++---BDG E ABD E AFE B V V V故多面体ABCDEF 被平面BDG 分成的大、小两部分的体积比为11:1.·······12分20.解:(1∴()()()10f x ax a x=++'->,···········1分14a =,···········2分当01x <<和2x >时,()0f x '>,()f x 是增函数, 当12x <<时,()0f x '<,()f x 是减函数,···········4分 所以函数()f x 在1x =和2x =处分别取得极大值和极小值.故函数()f x 的极大值为()1351848f =-=-, 极小值为()13112ln2ln212222f =-+=-.···········6分(2)由题意得()()121a f x ax a x-=+-+'()()2112ax a x a x +-+-=()()1210a a x x a x x-⎛⎫-- ⎪⎝⎭=>,···········7分01x <<时,()0f x '<,()f x 单调递减; 当1x >时,()0f x '>,()f x 单调递增.···········8分②当1201a a -<<,即1132a <<时, 则当120ax a-<<和1x >时,()0f x '>,()f x 单调递增;当121a x a -<<时,()0f x '<,()f x 单调递减.···········9分 ③当121a a ->,即103a <<时,则当01x <<和12ax a->时,()0f x '>,()f x 单调递增;当121ax a -<<时,()0f x '<,()f x 单调递减.···········10分④当121a a -=,即13a =时,()0f x '≥,所以()f x 在定义域()0,+∞上单调递增.···········11分 综上:①当103a <<时,()f x 在区间121,a a -⎛⎫⎪⎝⎭上单调递减,在区间()0,1和12,a a -⎛⎫+∞ ⎪⎝⎭上单调递增; ②当13a =时,()f x 在定义域()0,+∞上单调递增; ③当1132a <<时,()f x 在区间12,1a a -⎛⎫ ⎪⎝⎭上单调递减,在区间120,a a -⎛⎫⎪⎝⎭和()1,+∞上单调递增;()f x 在区间()0,1上单调递减,在区间()1,+∞上单调递增.······12分21.解:(1)由题意,设抛物线C 的方程为)0(22>=p py x ,则焦点F 的坐标为),(20p . 设直线l 的方程为,,,,,)()(22211y x B y x A pkx y +=·······1分 联立方程得,得消去044,0222222222>+=∆=--⎪⎩⎪⎨⎧+==p k p p pkx x y p kx y py x 所以.4222122121p y y p x x pk x x =-==+,,·······3分因为.1432121=-=+=⋅p y y x x OB OA ,所以故抛物线的方程为y x 22=.·······5分(2)设)0()0()0)((0000,,,,,n N m M y x y x P ≠易知点M ,N 的横坐标与P 的横坐标均不相同.不妨设m>n.易得直线PM 的方程为)(00m x mx y y --=化简得0)(000=---my y m x x y ,又圆心(0,1)到直线PM 的距离为1,所以,1)(||202000=-++-m x y my m x 所以2020*******)(2)()(y m m x my m x y m x +-+-=+-不难发现,,故上式可化为02)2(200200=-+->y m x m y y 同理可得,02)2(0020=-+-y n x n y所以m ,n 可以看作是02)2(0020=-+-y t x t y 的两个实数根,则,,2220000--=--=+y y mn y x n m 所以.)2(8444)()(200202022--+=-+=-y y y x mn n m n m 因为)(00y x P ,是抛物线C 上的点,所以0202y x =则,2022)2(4)(-=-y y n m 又20>y ,所以,2200-=y y n m -从而 84)24)(2(2424222)(2100000200000=+--≥+-+-=-=⋅-=-=∆y y y y y y y y y y n m S PMN当且仅当4)2(20=-y 时取得等号,此时22,400±==x y故△PMN 面积的最小值为8.·······12分 22.解:(1)∵曲线C 的参数方程为,(θ为参数),∴曲线C 的直角坐标方程为(x ﹣3)2+(y ﹣4)2=4, 将,代入得曲线C 的极坐标方程为:ρ2﹣6ρcos θ﹣8ρsin θ+21=0.(2)设点M (3+2cos θ,4+2sin θ)到直线AB :x +y +2=0的距离为d ,2|9)4sin(2|2|9cos 2sin 2|+π+θ=+θ+θ=d 则,当sin ()=﹣1时,d 有最小值, 所以△ABM 面积的最小值S ==9﹣2.23解:(1)当1=a 时,⎪⎩⎪⎨⎧>+-≤≤--<+=142122262)x x x x x f(x ,,,可得0)(≥x f 的解集为}23-{≤≤a |x .(2)1)(≤x f 等价于.4|2||≥++-x |a x而|a |x |a x 2|2||+≥++-,当且仅当0)2)((≤+-x a x 时等号成立.故1)(≤x f 等价于42≥+|a |.由42≥+|a |可得26≥-≤a a 或.所以a 的取值范围是(-∞,-6]∪[2,+∞)文科数学模拟试卷二一、选择题:本题共12小题,每小题5分,共60分。

高三下学期数学(文科)模拟考试卷(带参考答案与解析)

高三下学期数学(文科)模拟考试卷(带参考答案与解析)

高三下学期数学(文科)模拟考试卷(带参考答案与解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答选择题时,则选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,则将答案写在答题卡上。

写在本试卷上无效。

3.本试卷共22题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中只有一项是符合题目要求的。

1.已知向量(2,1)a =和(3,2)b =,则()a a b ⋅-=( ) A .-5 B .-3C .3D .52.不等式312x >+的解集为( ) A .{1,2}x x x <≠- B .{1}x x >C .{21}x x -<<D .{21}x x x <->或3.直线x +ay -3=0与直线(a +1)x +2y -6=0平行,则a =( )A .-2B .1C .-2或1D .-1或24.古希腊科学家阿基米德发明了享誉世界的汲水器,称为阿基米德螺旋泵,两千多年后的今天,左图所示的螺旋泵,仍在现代工农业生产中使用,其依据是“阿基米德螺线”.在右图所示的平面直角坐标系xOy 中点A 匀速离开坐标系原点O ,同时又以固定的角速度绕坐标系原点O 逆时针转动,产生的轨迹就是“阿基米德螺线”,该阿基米德螺线与坐标轴交点依次为A 1(-1,0),A 2(0,-2),A 3(3,0),A 4(0,4),A 5(-5,0),…按此规律继续,若四边形123n n n n A A A A +++的面积为220,则n =( )A .7B .8C .9D .105.△ABC 中AC =,BC =和60A =︒,则cos B =( )A .2±B .12±C .12D .26.设函数()f x 满足(1)()0f x f x ++=,当0≤x <1时,则1()2xf x -=,则()0.5log 8f =( ) A .-2B .12-C .12D .27.若cos 0,2(sin 2)1cos2αααα≠+=+,则tan2α=( ) A .43-B .34-C .34D .438.设函数()y f x =由关系式||||1x x y y +=确定,函数(),0,()(),0.f x xg x f x x -≥⎧=⎨-<⎩,则( )A .g (x )为增函数B .g (x )为奇函数C .g (x )值域为[1,)-+∞D .函数()()y f x g x =--没有正零点二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。

高三数学模拟试卷文科答案

高三数学模拟试卷文科答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c之间的关系为()A. a+b+c=0B. a+b+c=1C. 2a+b=0D. 2a+b=1答案:C解析:因为函数f(x) = ax^2 + bx + c在x=1时取得极值,所以f'(1)=0,即2a+b=0。

2. 已知等差数列{an}的公差为d,首项为a1,第n项为an,则an = ()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A解析:等差数列的通项公式为an = a1 + (n-1)d。

3. 下列各式中,等式成立的是()A. sin(α+β) = sinαcosβ + cosαsinβB. cos(α+β) = cosαcosβ - sinαsinβC. tan(α+β) = tanαtanβD. cot(α+β) = cotαcotβ答案:B解析:根据三角函数的和角公式,cos(α+β) = cosαcosβ - sinαsinβ。

4. 已知复数z = a + bi(a,b∈R),若|z| = 1,则复数z的实部a和虚部b之间的关系为()A. a^2 + b^2 = 1B. a^2 - b^2 = 1C. a^2 + b^2 = 0D. a^2 - b^2 = 0答案:A解析:复数z的模|z| = √(a^2 + b^2),由|z| = 1,得a^2 + b^2 = 1。

5. 已知函数f(x) = x^3 - 3x,则f(x)的图像关于点()A. (0,0)B. (1,0)C. (-1,0)D. (0,1)答案:B解析:由f(1) = 1^3 - 31 = -2,f(0) = 0^3 - 30 = 0,得f(x)的图像关于点(1,0)。

6. 下列各式中,正确的是()A. loga(b^2) = 2logabB. loga(b^3) = 3logabC. loga(ab) = 1D. loga(a^2) = 2答案:B解析:根据对数的运算法则,loga(b^3) = 3logab。

高三数学文科模拟试卷答案

高三数学文科模拟试卷答案

一、选择题(每小题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. y = √(x+1)B. y = 1/xC. y = |x|D. y = x^2 - 4x + 4答案:C解析:选项A的定义域为x≥-1,选项B的定义域为x≠0,选项D的定义域为R。

只有选项C的定义域为实数集R。

2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an=()A. 19B. 20C. 21D. 22答案:C解析:根据等差数列的通项公式an = a1 + (n-1)d,代入a1=3,d=2,n=10,得an = 3 + (10-1)×2 = 3 + 18 = 21。

3. 下列命题中,正确的是()A. 函数y = x^2在定义域内单调递增B. 等差数列的任意三项成等比数列C. 函数y = log2x在定义域内单调递减D. 平面向量a与b垂直,则a·b=0答案:D解析:选项A错误,函数y = x^2在x<0时单调递减;选项B错误,等差数列的任意三项不一定成等比数列;选项C错误,函数y = log2x在定义域内单调递增;选项D正确,根据向量点积的性质,a·b=|a||b|cosθ,当a与b垂直时,cosθ=0,故a·b=0。

4. 若复数z满足|z-1|=|z+1|,则z的实部为()A. 0B. 1C. -1D. 不存在答案:A解析:设复数z=a+bi,则|z-1|=|a-1+bi|,|z+1|=|a+1+bi|。

根据复数的模的定义,有(a-1)^2+b^2=(a+1)^2+b^2,化简得a=0,即z的实部为0。

5. 已知函数f(x) = x^3 - 3x,则f(x)的图像在x轴上交点的个数是()A. 1B. 2C. 3D. 4答案:B解析:令f(x) = 0,得x^3 - 3x = 0,因式分解得x(x^2 - 3) = 0,解得x=0或x=±√3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013届广东高考数学(文科)模拟试题(一)满分150分,考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设复数z 满足2z i i ⋅=-,i 为虚数单位,则=z ()A 、2i -B 、12i +C 、12i -+D 、12i --2、集合2{|20}A x x x =-≤,{|lg(1)}B x y x ==-,则A B I 等于()A 、{|01}x x <≤B 、{|12}x x ≤<C 、{|12}x x <≤D 、{|01}x x ≤< 3、已知向量,a b r r满足||1,||1a b a b ==⋅=r r r r ,则a r 与b r的夹角为()A 、3πB 、34π C 、4π D 、6π4、函数()()()f x x a x b =--(其中a b >)的图象如下面右图所示,则函数()x g x a b =+的图象是()5、已知x ,y 满足不等式组22y xx y x ≤⎧⎪+≥⎨⎪≤⎩,则2z x y =+的最大值与最小值的比值为()A 、12 B 、2 C 、32 D 、43 6、右边程序执行后输出的结果是S =() A 、1275 B 、1250C 、1225D 、1326 7、已知x 、y 取值如下表:俯视图正视图从所得的散点图分析可知:y 与x 线性相关,且ˆ0.95yx a =+,则a =()A 、1.30B 、1.45C 、1.65D 、1.808、已知方程221221x y k k +=--表示焦点在y 轴上的椭圆,则实数k 的取值范围是()A 、1,22⎛⎫ ⎪⎝⎭B 、(1,)+∞C 、(1,2)D 、1,12⎛⎫⎪⎝⎭9A 10个端点)有(1,)n n n N *>∈个点,相应的图案中总的点数记为n a ,则233445201220139999a a a a a a a a ++++=L L () A 、20102011B 、20112012C 、20122013D 、20132012二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

(一)必做题(11-13题)11、若a ,b ,c 成等比数列,则函数c bx ax x f ++=2)(的图像与x 轴交点的个数为_______.12、如图,一不规则区域内,有一边长为1内随机地撒1000黄豆数为375的面积为平方米.(用分数作答)13、已知函数)(x f y =)(R x ∈满足)()2(x f x f =+,且[1,1]x ∈-时,2)(x x f =,则)(x f y =与5()log g x x =的图象的交点个数为.(二)选做题(14(1)和14(2)题,考生只能从中选做一题,若两题都做,则只能计算14(1)题的得分)14(1)、(坐标系与参数方程选做题)已知直线l 的参数方程为:214x ty t =⎧⎨=+⎩(t 为参数),圆C的极坐标方程为ρθ=,则直线l 与圆C 的位置关系为14(2)、(几何证明选讲选做题)如图所示,过O e 外一点P 作一条直线与O e 交于,A B 两点,己知弦6AB =,点P 到O e 的切线长4,PT =则PA =三、解答题:本大题共6小题,满分80证明过程和演算步骤。

16、(12分)已知向量2(2cos ,)m x =u u u r,n u u r()f x m n=⋅u u u r u u r(1)求函数()f x 的最小正周期;(2)在∆ABC 中,c b a ,,分别是角C B A ,,的对边,且3)(=C f ,1=c ,32=ab ,且b a >,求,a b 的值.17、(13分)某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在7.95米及以上的为合格。

把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7. (1)求这次铅球测试成绩合格的人数;第14(2)题图(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a 、b 的成绩均为优秀,求两人至少有1人入选的概率.18、(13分)如图,直三棱柱111ABC A B C -中,90ABC ∠=o,4AB =,4BC =,13BB =,M 、N 分别是11B C 和AC 的中点.(1)求异面直线1AB 与1C N 所成的角的余弦; (2)求三棱锥1M C CN -的体积. 19、(14分)已知椭圆2222:1(0)x y C a b a b+=>>的右顶点A 为抛物线28y x =的焦点,上顶点为B ,离心率为32(1)求椭圆C 的方程; (2)过点2)且斜率为k 的直线l 与椭圆C 相交于,P Q 两点,若线段PQ 的中点横坐标是25-,求直线l 的方程。

20、(14分)已知2()3,(),()ln f x x x m x R g x x =-+∈=(1)若函数()f x 与()g x 的图像在0x x =处的切线平行,求0x 的值; (2)求当曲线()()y f x y g x ==与有公共切线时,实数m 的取值范围;并求此时函数()()()F x f x g x =-在区间1,13⎡⎤⎢⎥⎣⎦上的最值(用m 表示)。

21、(14分)已知数列{}n a 是各项均不为0的等差数列,公差为d ,nS 为其前n 项和,且满足221n n a S -=,n *N ∈.数列{}n b 满足11n n n b a a +=⋅,n *N ∈,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式n a 和数列{}n b 的前n 项和n T ; (2)若对任意的n *N ∈,不等式8(1)n nT n λ<+⋅-恒成立,求实数λ的取值范围;(3)是否存在正整数,m n (1)m n <<,使得1,,mn T T T 成等比数列?若存在,求出所有,m n 的值;若不存在,请说明理由.2013届广东高考数学(文科)模拟试题(一)参考答案一、选择题:1-10:DDCABABCDB 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

(一)必做题(11-13题)11、012、8313、414(1)相交14(2)2三、解答题:本大题共6小题,满分80分。

解答需写出文字说明、证明过程和演算步骤。

15、(12分)已知向量2(2cos ,)m x =u u u r,(1,sin 2)n x =u u r,函数()f x m n=⋅u u u r u u r(1)求函数()f x 的最小正周期;(2)在∆ABC 中,c b a ,,分别是角C B A ,,的对边,且3)(=C f ,1=c ,32=ab ,且b a >,求b a ,的值.解:(1)22()(2cos ,(1,sin 2)2cos 2f x m n x x x x =⋅=⋅=+u u u r u u r (2)分cos 2122sin(2)16x x x π=+=++………4分∴函数()f x 的最小周期22T ππ== (5)分(2)31)62sin(2)(=++=πC C f ∴1)62sin(=+πCΘC 是三角形内角,∴262ππ=+C 即:6π=C ………7分 ∴232cos 222=-+=ab c a b C 即:722=+b a . (9)分将32=ab 代入可得:71222=+aa ,解之得:432或=a ∴23或=a ,∴32或=b ………11分Θb a >,∴2=a ,3=b . (12)分16、(13分)某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在7.95米及以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7. (1)求这次铅球测试成绩合格的人数;(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a 、b 的成绩均为优秀,求两人至少有1人入选的概率. 解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,……1分 ∴此次测试总人数为7500.14=(人).……2分∴第4、5、6组成绩均合格,人数为(0.28+0.30+0.14)×50=36(人).………4分(2)直方图中中位数两侧的面积相等,即频率相等,……6分而前三组的频率和为0.28,前四组的频率和为0.56,∴中位数位于第4组内.……8分(3)设成绩优秀的9人分别为,,,,,,,,,a b c d e f g h k 则从中任意选出2人所有可能的情况为:PNMA1AC 1CB,,,,;de df dg dh dk ,,,;ef eg eh ek ,,;fg fh fk ,;gh gk hk ,共36种……10分其中a 、b 至少有1人入选的情况有15种,……12分 ∴a 、b 两人至少有1人入选的概率为155.3612P ==…………13分17、(13分)如图,直三棱柱111ABC A B C -中,90ABC ∠=o,4AB =,4BC =,13BB =,M 、N 分别是11B C 和AC 的中点.(1)求异面直线1AB 与1C N 所成的角的余弦; (2)求三棱锥1M C CN -的体积.解:(1)过A 作AQ ∥1C N 交11A C 于Q ,连结Q B 1,∴∠B 1AQ 为异面直线AB 1与C 1N 所成的角(或其补角).……2分根据四边形C C AA 11为矩形,N 是中点,可知Q 为11A C 中点计算17,22,511===AQ Q B AB ……3分 由已知条件和余弦定理可得517cos 1=∠AQ B ……5分∴异面直线AB 1与C 1N 17…6分(2)方法一:过M 作11C A MH ⊥于H ,面⊥111C B A 面C C AA 11于11C A∴⊥MH 面C C AA 11……9分由条件易得:2=MH ……11分1NCC M V -MH C C NC ⨯⨯⨯=12131223222131=⨯⨯⨯⨯=……13分 方法二:取BC 的中点P ,连结MP 、NP ,则MP ∥1BBMNQC 1BH∴MP ⊥平面ABC ,……9分又NP ABC ⊂平面,∴MP NP ⊥ 又∵//NP AB ,∴NP BC ⊥ ∴NP ⊥平面11BCC B ……11分122PN AB ==, CM C N NCC M V V 11--=NP C C MC ⨯⨯⨯=11213122322131=⨯⨯⨯⨯=……13分18、(14分)已知椭圆2222:1(0)x y C a b a b+=>>的右顶点A 为抛物线28y x =的焦点,上顶点为B ,离心率为2(1)求椭圆C 的方程; (2)过点且斜率为k 的直线l 与椭圆C 相交于,P Q 两点,若线段PQ 的中点横坐标是,求直线l 的方程解:(1)抛物线28y x =的焦点为(2,0)A ,依题意可知2a = …………2分因为离心率c e a ==,所以c = …………3分 故2221b a c =-= …………5分所以椭圆C 的方程为:2214x y +=…………6分 (2)设直线:l y kx =+由2244y kx x y ⎧=⎪⎨+=⎪⎩,消去y可得22(41)40k x +++= (8)分因为直线l 与椭圆C 相交于,P Q 两点, 所以2212816(41)0k k ∆=-+> 解得1||2k > …………9分又1212224,4141x x x x k k -+==++ ……10分设1122(,),(,)P x y Q x y ,PQ 中点00(,)M x y 因为线段PQ的中点横坐标是5-所以12022415x x x k +-===-+……12分解得1k =或14k =……13分 因为1||2k >,所以1k =因此所求直线:l y x =+ …………14分19、(14分)已知2()3,(),()ln f x x x m x R g x x =-+∈=(1)若函数()f x 与()g x 的图像在0x x =处的切线平行,求0x 的值; (2)求当曲线()()y f x y g x ==与有公共切线时,实数m 的取值范围;并求此时函数()()()F x f x g x =-在区间1,13⎡⎤⎢⎥⎣⎦上的最值(用m 表示)。

相关文档
最新文档