高一数学变量间的相关关系3
高一数学变量间的相关关系

1、变量之间除了函数关系外,还有相关关系。
例:(1)商品销售收入与广告支出经费之间的关系
(2)粮食产量与施肥量之间的关系
(3)人体内脂肪含量与年龄之间的关系
相关关系与函数关系的异同点: 相同点:均是指两个变量的关系. 不同点:函数关系是一种确定的关系;而 相关关系是一种非确定关系.
2、两个变量之间产生相关关系的原因是受许多不确
定的随机因素的影响。 3、需要通过样本来判断变量之间是否存在相关关系
根据上述数据,人体的脂肪含量和年龄之间 有怎样的关系?
1、散点图
2、正相关 3、负相关
探究一的散点图
表示具有相关关系的两个变量的一组数据的图 形,叫做散点图.
“名师出高徒”可以理解为教师的水平越 两个变量成负相关时,散点图有什么 高,学生的水平也越高。那么,教师的水平 特点?请举一些生活中的变量成负相关的 与学生的水平成什么相关关系?你能举出更 例子。 多的描述生活中两个变量的相关关系的成语 吗?
(一)复习回顾
1、散点图 2、正相关 3、负相关
根据下表,作出散点图
(二)回归直线
1、变量间的线性相关 如果散点图中点的分布从总体上看大致在 一条直线附近,我们就称这两个变量之间具有 线性相关关系。 2、回归直线
上述直线称为回归直线。
(二)回归直线
3、如何求回归直线的方程
几何画板探究
实际上,求回归直线的关键是如何用数学的方 法来刻画”从整体上看,各点到此直线的距离最 小”.
吟の声音从传讯宝物中传出.秋阳王尪,觉得鞠言已经被啄日號杀死,所以鹿觉大公爵才会再传讯给他.呐位傲擎王国の王尪,当然想不到,鞠言能够杀死凶兽啄日號.听到秋阳王尪の话,鹿觉大公爵苦笑了笑,传讯说道:“陛下,鞠言善王与啄日號の战斗确实结束了.只是,结果却不是鞠言善王 被杀,而是啄日號被斩杀掉了.”“呵呵……嗯?你说哪个?”秋阳王尪眼珠子都都差点瞪出来.“陛下,凶兽啄日號被斩杀了.”鹿觉大公爵叠复了一遍.“怎么可能?以鞠言の实历,怎么可能杀死啄日號呐样の伍拾分凶兽?而且,你之前传讯给俺の事候,不是说鞠言尚未与啄日號交手吗?你,还 考虑是否提醒鞠言逃走の.”秋阳王尪瞪着眼珠子,传讯说道.“正是如此.那啄日號凶兽在鞠言善王面前,竟是不堪一击の样子.陛下,俺也不知具体是哪个原因,但呐都是俺亲眼目睹の.”鹿觉大公爵连连苦笑.反正他亲眼目睹の整个过程,都说明凶兽啄日號在鞠言面前委实是不堪一击.“不 可能!呐事间,最多半盏茶而已.没有人,能在界碑世界内,如此短の事间就斩杀啄日號.便是天庭大王,可能也做不到.界碑世界の凶兽,在那空间里恢复能历异常恐怖!”秋阳王尪还是不信任.但,他也知道鹿觉大公爵不可能对他说谎话.“鹿觉大公爵,俺命人查看一下黑月积分榜单,先呐样 吧!”秋阳王尪有些坐不住了.鹿觉大公爵给他の传讯信息,太过离奇,太过令人匪夷所思了.……界碑世界之外,庞大の界碑附近,聚集の善王,倒是越来越多了.“呵呵,俺就说,那鞠言战申开始の事候就是走运.他刚进入界碑世界,便是遇到了两头凶兽,而后将两头凶兽杀死,得到了三拾点黑 月积分.现在你们看看,呐都快三年事间了,他还是只有那可怜の三拾点黑月积分.”一名善王笑指着界碑说道.“一百年事间,他怎么可能进入榜单前拾!痴人说梦!”“等界碑世界关闭,他就等着自取其辱吧!”“不能呐么说吧?鞠言战申の实历,俺们也都看到了.他进入界碑世界内,接连 斩杀二拾分凶兽和拾分凶兽,也足以证明他实历强大.难道不进入黑月积分榜单前拾,就是自取其辱了?”也有人为鞠言说话.“没人说他实历不强,他实历确实很强,俺们都承认.可明明就只剩下拾分之一の事间,他还偏偏要进入界碑世界争一争,呐不是将其他强大善王视若无物吗?”有善王 流出鄙夷の表情冷哼说道.第三零七二章引发震动善王们,有尊敬鞠言の,也有看鞠言不顺眼の.大多数善王,就是看个热闹,鞠言如何,与他们又没直接の关系.“唰!”就在呐个事候,巨大界碑上,鞠言名字后面の积分数字,陡然变了.原本三拾点黑月积分,忽然间变成了八拾点.“怎么回 事?”“呐是……怎么变成八拾点积分了?方才,明明是三拾点积分.”在背后议论鞠言战申の善王,很多人都是盯着界碑看の,所以当积分发生变化,立刻就能看到.而界碑上の名字,一共就七拾多个而已,哪一个名字后面积分出现变化,都不可能被呐些善王遗漏.“伍拾积分凶兽?”有善王低 声说道,不敢确信の申态.积分从三拾点,一下子变成伍拾点,呐可不是拾分、二拾分の增加,而是忽然间增加伍拾点积分.似乎,也只有一种解释,就是鞠言战申在界碑世界刚刚斩杀了一头伍拾分凶兽.“不可能吧?伍拾分凶兽?界碑世界内の伍拾分凶兽,不是堪称无敌吗?据说,便是王国老祖级 の存在,也难以杀死伍拾分凶兽吗?”有一名顶级尪国の善王,皱眉说道.而方才那些诋毁鞠言战申の善王,则都不说话了,一个个脸色都很难看.每个人心中,都感到震惊.伍拾分凶兽!鞠言战申若能杀死伍拾分凶兽,呐得多强大の实历?难道,能与王国老祖相比?又或者说,比王国老祖还要强 大?……法辰王国,国都皇宫.仲零王尪,一脸兴奋表情,目中闪动着精光.他刚刚听说了一个消息,而在确定消息是真の后,他将王国多名高层人物都叫了过来,包括王国战申邴克.“陛下,你叫俺等过来,是有哪个事情吗?”邴克战申看向仲零王尪,困惑の表情问道.最近一段事间,没听说王国内 外有哪个大の事情发生.陛下,为何让他们呐些高层都过来?“也没哪个大事!”仲零王尪摆了摆手.“诸位都知道,鞠言战申进入了界碑世界吧?”仲零王尪转而说道.“嗯,听说了.”“知道,是近期才去の.”“鞠言战申由于使用修炼秘境,耽误了事间,他怕是没有机会进入前拾.”在场の众 人,陆续の开口.“呵呵,俺看未必.”仲零王尪却是笑了一声,意味琛长の说道.“就在方才,俺得到一则消息.鞠言战申在界碑世界,已经获得八拾黑月积分了.”仲零王尪目光望着在场の邴克战申等人.邴克战申等人,眼申都微微一凝.“鞠言战申进入界碑世界到现在,事间还不到三年吧?呐 么短事间,就得到了八拾点黑月积分.嗯,确实很厉害了.”一名大公爵出声说.“确实很强!如果能有一千年の事间,鞠言战申真有可能进入前拾,得到一个进入黑月遗址の机会.”邴克战申点头说道:“可惜,鞠言战申の事间太少了.”“是啊!现在得到了八拾点积分,可与前拾の差距仍然 非常巨大呢.”“还是没哪个希望啊!陛下,你叫俺们过来,就是告诉俺们呐个の?”一名大公爵苦笑了一声看着仲零王尪说道.鞠言战申进入界碑世界不到三年,得到八拾点黑月积分,呐效率确实非常高.可问题是,鞠言战申能使用の事の事间太少了.鞠言战
高中高中数学第二章统计2.3.1变量之间的相关关系2.3.2两个变量的线性相关课件新人教A版必修3

解:(1)画出散点图.
(2)判断变量x,y是否具有相关关系?如果具有相关关系,那么是正相关还是 负相关?
解:(2)具有相关关系.根据散点图,左下角到右上角的区域,变量x的值由小 变大时,另一个变量y的值也由小变大,所以它们具有正相关关系.
方法技巧 两个随机变量x和y是否具有相关关系的确定方法: (1)散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断 (如本题); (2)表格、关系式法:结合表格或关系式进行判断; (3)经验法:借助积累的经验进行分析判断.
4
4
解:(2)由表中的数据得: xi yi =52.5, x =3.5, y =3.5, xi2 =54,
i 1
i 1
n
所以 b =
xi yi n x y
i 1
n
xi2
2Hale Waihona Puke nx=52.5 4 3.5 3.5 54 4 3.52
=0.7,
i 1
a = y - b x =3.5-0.7×3.5=1.05,
年份x
储蓄存款 y(千亿元)
2013 5
2014 6
2015 7
2016 8
2017 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2 012,z=y-5 得到表2:
时间代号t
1
2
3
4
5
z
0
1
2
3
5
(1)求z关于t的线性回归方程;
5
5
解:(1) t =3, z =2.2, ti zi=45, ti2 =55,
知识探究
1.相关关系与函数关系不同 函数关系中的两个变量间是一种确定性关系,相关关系是一种不确定性关系. 2.正相关和负相关 (1)正相关 在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关 关系,我们就称它为正相关. (2)负相关 在散点图中,点散布在从左上角到右下角的区域,对于两个变量的这种相关 关系,我们就称它为负相关.
高一数学必修3课件:2-3-1、2变量之间的相关关系和两个变量的线性相关

人教A版 ·必修3
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修3
第二章
统 计
第二章
统计
成才之路 ·数学 ·人教A版 · 必修3
第二章
2.3 变量间的相关关系
第二章
统计
成才之路 ·数学 ·人教A版 · 必修3
第二章
2.3.1 2.3.2 变量之间的相关关系 两个变量的线性相关
由图可见,具有线性相关关系.
第二章
2.3
2.3.1 2.3.2
成才之路 ·数学 ·人教A版 · 必修3
对变量x,y有观测数据(xi,yi)(i=1,2,„,10),得散点 图(1);对变量u,v有观测数据(ui,vi)(i=1,2,„,10),得散 点图(2).由这两个散点图可以判断( )
第二章
2.3
)
D.①④
[答案] D
第二章
2.3
2.3.1 2.3.2
成才之路 ·数学 ·人教A版 · 必修3
^ [解析] ^=bx+a表示y与x之间的函数关系,而不是y与x y ^ ^ 之间的函数关系.但它所反映的关系最接近y与x之间的真实 关系.故选D.
第二章
2.3
2.3.1 2.3.2
成才之路 ·数学 ·人教A版 · 必修3
[答案] ①④
第二章
2.3
2.3.1 2.3.2
成才之路 ·数学 ·人教A版 · 必修3
[解析]
①是确定的函数关系;②中的点大都分布在一
条曲线周围;③中的点大都分布在一条直线周围;④中点的 分布没有任何规律可言,x,y不具有相关关系.
第二章
2.3
2.3.1 2.3.2
高中数学 第2讲变量的相关性、回归分析及独立性检验

第2讲 变量的相关性、回归分析及独立性检验一、知识回顾1.如何判断两个变量的线性相关:如果在散点图中,2个变量数据点分布在一条直线附近,则这2个变量之间具有线性相关关系。
2.所求直线方程 ˆy=bx +a 叫做回归直线方程;其中 ⋅∑∑∑∑nnii i ii=1i=1nn222iii=1i=1(x-x)(y -y)x -nx yb ==,a =y -bx (x-x)x-nxy回归直线方程必过中心点(,)x y3.相关系数的∑nii (x-x)(y -y)r =性质• (1)|r|≤1.(2)|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.4. ˆˆ=-i i y y i 残差e=实际值-预测值2^^211()===-∑∑nniiii i e y y 总残差平方和:残差平方和越小,即模型拟合效果越好5. 两个分类变量的独立性检验:(1)假设结论不成立,即“两个分类变量没有关系”.(2)在此假设下计算随机变量 22n(ad -bc)K =(a +b)(c +d)(a +c)(b +d)(3) 根据随机变量K 2查表得“两个分类变量没有关系”的概率,用1减去此概率即得有联系的概率 典型例题:例1.(宁夏海南卷)对变量x, y 有观测数据理力争(,)(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(,)(i=1,2,…,10),得散点图2. 由这两个散点图可以判断( )。
(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关1x 1y 1u 1v变式1. (韶关一模文、理)甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,)()A 甲 ()B 乙 ()C 丙 ()D 丁 例2.一系列样本点(,)(1,2,,)=⋅⋅⋅i i x y i n 的回归直线方程为23,∧=-y x 若117==∑nii X则1==∑ni i y变式1.某地第二季各月平均气温(℃)与某户用水量(吨)如下表,根据表中数据,用最小二乘法求得用水量关于月平均气温的线性回归方程是( )A B. C. D. 例3.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)例4.(惠州一模)对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪x y y x 5.115ˆ-=x y5.115.6ˆ-=x y 5.112.1ˆ-=x y5.113.1ˆ-=x y0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距 第2讲 变量的相关性、回归分析及独立性检验课后作业:姓名: 学号:1.若施化肥量x 与小麦产量y 之间的回归直线方程为ˆ2504yx =+,当施化肥量为50kg 时,预计小麦产量为2.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1 2 3 4用水量y5.443 5.2由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是a x y +-=∧7.0,则=a3.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .57.2 3.6B .57.2 56.4C .62.8 63.6D .62.8 3.64.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x ,已知这组数据的平均数为6,则这组数据的方差为( ) A .6B .6C .66D .6.55.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是( ) A.5,10,15,20,25 B.2,4,8,16,32 C.1,2,3,4,5 D.7,17,27,37,476.(广州调研文、理)某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是 人.7. (韶关一模文、理)一个社会调查机构就某地居民的 月收入调查了10000人,并根据所得数据画了样本的频率分 布直方图(如下图)。
变量正相关

正相关是指两个变量变动方向相同,一个变量由大到小或由小到大变化时,另一个变量亦由大到小或由小到大变化。
具体来说,当一个变量随着另一个变量的变化而发生相同方向的变化(两个变量同时变大或变小)时,我们说这两个变量之间存在正相关关系。
在统计学中,常用相关系数r来表示两变量之间的相关关系。
当r为正时,表示两变量正相关,即当一个变量增加(或减少)时,另一个变量也相应增加(或减少)。
相关系数r的值介于-1与1之间,其绝对值越大,说明两变量之间的相关程度越高。
请注意,以上内容仅供参考,如需更专业的解释,建议咨询统计学专业人士。
2017学年数学必修三:2.3.1-变量之间的相关关系~2.3.2 两个变量的线性相关2

(2)问题2中,从表里数据能得出小麦的产量y与施肥量x之间的 函数关系式吗? 提示:从表格里我们很容易发现施肥量越大 ,小麦的产量就越高. 但是,施肥量并不是影响小麦产量的唯一因素 ,小麦的产量还受 土壤的质量、降雨量、田间管理等诸多因素影响 ,这时两个变
量之间就不是确定性的函数关系,因此不能得到y和x的函数关
1.两个变量的线性相关 左下角 到_______. 右上角 (1)正相关:点散布的方向:从_______ 左上角 到_______. 右下角 (2)负相关:点散布的方向:从_______ (3)回归直线:如果散点图中点的分布从整体上看在一条直线附
线性相关 关系,这条直线叫做 近,就称这两个变量之间具有_________
【解析】(1)作出散点图如图所示,
(2)由散点图可知,各点并不在一条直线附近,所以两个变量是
非线性相关关系.
类型二
求回归方程
1.(2013·锦州高一检测)已知一组观测值具有线性相关关系,
bx a ,求得 b =0.51, x =61.75, y =38.14, 则回归方 若对于 y
【探究总结】
1.散点图的作用
(1)判断两个变量之间有无相关关系,一种常用的简便可行的方
法是绘制散点图.
(2)根据散点图很容易看出两个变量之间是否具有相关关系,是
不是线性相关关系,是正相关还是负相关,相关关系强还是弱.
2.利用散点图判断变量间的关系的方法 (1)如果所有的样本点都落在某一函数的曲线上,就用该函数来 描述变量间的关系,即变量具有函数关系. (2)如果所有的样本点都落在某一函数曲线附近,变量之间就有 相关关系. (3)如果所有的样本点都落在某一条直线附近,变量之间就有线 性相关关系.
变量间的相关关系讲义

变量间的相关关系讲义变量间的相关关系讲义一、基础知识梳理知识点1:变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。
注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系。
点睛:两个变量相关关系与函数关系的区别和联系相同点:两者均是两个变量之间的关系,不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。
知识点2.散点图.1.在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。
2.从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合。
3.对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到由上角的区域内。
如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散步在从左上角到右下角的区域。
高一数学人教A版必修3课件:2.3变量间的相关关系(一、二)

思考 1:观察上表中的数据,大体上看,随着 年龄的增加,人体脂肪含量怎样变化?
知识探究(二) :散点图
年龄 脂肪 年龄 脂肪 23 9.5 53 29.6 27 17.8 54 30.2 39 21.2 56 31.4 41 25.9 57 30.8 45 27.5 58 33.5 49 26.3 60 35.2 50 28.2 61 34.6
问题提出
1. 函数是研究两个变量之间的依存关系的一种 数量形式.对于两个变量, 如果当一个变量的取值 一定时,另一个变量的取值被唯一确定,则这两 个变量之间的关系就是一个函数关系.
问题提出
1. 函数是研究两个变量之间的依存关系的一种 数量形式.对于两个变量, 如果当一个变量的取值 一定时,另一个变量的取值被唯一确定,则这两 个变量之间的关系就是一个函数关系.
知识探究(三) :回归直线
思考 1:一组样本数据的平均数是样本数据的 中心,那么散点图中样本点的中心如何确定? 它一定是散点图中的点吗?
脂肪含量 40 35 30 25 20 15 10 5 0
(x , y )
20 25 30 35 40 45 50 55 60 65 年龄
知识探究(三) :回归直线 思考 2:在各种各样的散点图中,有些散点图中 的点是杂乱分布的,有些散点图中的点的分布有 一定的规律性,年龄和人体脂肪含量的样本数据 的散点图中的点的分布有什么特点?
自变量取值一定时,因变量的取值带有 一定随机性的两个变量之间的关系,叫做相 关关系.
知识探究(一) :变量之间的相关关系
思考 4:函数关系与相关关系之间的区别与联系.
知识探究(一) :变量之间的相关关系
思考 4:函数关系与相关关系之间的区别与联系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( x x)( y y) x y n x y
i 1 i i
n
n
( x x)
i 1 i
n
2
i 1 n
i
i
x nx
i 1 2 i
2
,
a y bx
以上公式的推导较复杂,故不作推导,但它的原 理较为简单:即各点到该直线的距离的平方和最 小,这一方法叫最小二乘法。
根据上述数据,人体的脂肪含量与年龄之间有什么样的关系?
分析:从总体上看随着年龄的增长,脂肪含量也在增加,为了 确定这一关系的细节,我们需要对数据进行分析,我们可以通 过前面的做统计图表的方法分析,我们可以对两个变量间的 关系有一个直观上的影响和判断.我们也可以通过下面的图 (散点图(scatter plot))来分析:
2.3.1-2
前面我们学习了怎样对收集来的数据进行分析: 集中趋势 频率分布图 离散程度 下面我们来介绍一中更为常见的分析方法:
小明,你数学成绩不太好, 学不好数学 ,物理 物理怎么样 ? 也是学不好的
?????... . 也不太好啊
你认为老师的说法对吗?
事实上,我们在考察数学成绩对物理成绩影响的同时,还 必须考虑到其他的因素:爱好,努力程度 数学 成绩 学习 兴趣 物理成绩
1. 测量法:移动直线l使所有点到它的距离之和最小
(1)
(2)
(3)
2.两点确定法:选取两点作直线,使其两边点个数一样
3.分组法:将点进行分组点,分别求其斜率和截距,求平均值
我们上面给出的几种方案可靠性都不是很强, 人们经过长期的实践与研究,已经找到了 计算回归方程的斜率与截距的一般公式:
b
在寻找变量间的相关关系时,统计同样发挥了非常重 要的作用,我们是通过收集大量的数据,对数据进行统 计分析的基础上,发现其中的规律,才能对它们之间的 关系作出判断.下面我们通过具体的例子来分析
在一次对人体脂肪含量和年龄的关系研究中,研究人员获得 了一份样本数据:
说明:各个年龄阶段的脂肪数据是这个年龄样本的平均数
例.下表是某小卖部6天卖出热茶的杯数(y)与当天气温(x)的对比表:
(1)试用最小二乘法求出线性回归方程; (2)如果某天的气温是-3℃,请预测这天可能会卖出热茶多少杯 解 (1)作散点图如图所示
由散点图知两个变量是线 性相关的,计算各种数据 如下表
分步计算 减少出错
于是: 则:
于是,线性回归方程为 y=57.557-1.648x
flp493bej
父亲的脸由晴转阴,深深的皱纹间流露出内心的愁思,“是啊,她的阿爹过世了,只靠一个女人支撑着这个家,也不知道她们的日子 究竟怎么过,你也该去看看她们把荷花领回家了„„” 深秋,走在较为宽阔的川道上,这里的沟壑不再深险,各种农作物在这儿茁壮成长,为广袤的黄土高原披上了五彩缤纷的盛装。玉米 长的似牛角,山坳那片高粱像团火,黄橙橙的谷子在微风里向你弯腰致意,土豆花、荞麦花、葵花点缀着整个山坡。 在一片荞麦地边,一户农家正在喂养着羊群,一个小男孩手拿皮鞭帮他的父亲看护着,顽皮的脸上流露着自然的满足和幸福。 “老乡——,借问一下去和川镇怎么走?”隔着这片荞麦地我大声地向他们喊了起来。小孩的父亲指了指山坡的另一边,“翻过这个 岭再走二里地就到了。”他的声音很洪亮,“你到谁家去?” “我是从山东来的,要到一个叫苏荷花的女孩家去。” “客人,你走错路了,我们村没有一家是姓苏的。”他站在山坡上毫不犹豫 地回答。 “老乡,十多年前我来过这儿,他家就住在附近山坡的窑洞里,也是从山东来的„„他家有七个姑娘一个儿子,有个叫五妮子六丫头 的„„” “我知道了,他家不姓苏姓刘,刘荷花是他家的第七个女儿„„”他看着我们笑了,红红的面色露出庄稼人特有的憨厚与质朴。 “现在的条件好了,农村实行了房屋规划,他家已搬到镇上的村子里去了。”他一边说一边吩咐身边的小男孩,“让我家的狗娃带你 们去吧。” 小男孩听了他父亲的话一蹦一跳地向我们跑来„„在小男孩地带领下,我们来到了一所爱心小学。院子不大,房屋很陈旧,高高升起 的五星红旗迎风飘扬。 我们悄悄地凑到教室门前,透过玻璃门窗依稀地可以看到教室里的摆设十分简陋。从背影我看得出来,教师是一个女孩,她一手扶着 讲桌一手用教鞭指着黑板,背对着我们有声有色地读着,“母亲,祖国,祖国就是母亲,母亲养育了我们,我爱我的祖国„„” 孩子们异口同声地朗诵起来,“母亲,祖国,祖国就是母亲,母亲养育了我们,我爱我的祖国„„” “同学们,我们每个人都爱自己 的母亲,热爱我们的祖国,下面请你们每个人说出一句赞美母亲热爱祖国的话。” 孩子们争先恐后地举起手来。 “世上只有妈妈好!”一个男孩喊了起来 。紧接着是一个女孩的声音:“咱们的祖国像花园。” “祖 国妈妈,我爱你!” “祖国万岁!”„„„„ “报告老师,小石头没有了妈妈,他该说些什么?”教室的气氛宁静下来,所有的目光投向了最前排墙角 处的男孩身上。 后来,我才知道,他是一个不幸的弃儿,几年前,他的父母离异,没有人领养他。他只能与他那年过半百的爷爷奶奶生活在一起,失 去了母爱父爱的他从此变得性格内向,不愿意和其他小朋友在一起玩耍。 “老师„„我想妈妈了„„”小石头哭了起来。 “小石头„„你的遭遇使我想起了一个女孩儿的经历,老师给你们讲一个鲜为人知 的故事好吗?” 孩子们点点头聚精会神地听起来。 “故事„„就从这儿讲起吧。”她整理了一下思绪讲了起来。
花费 时间
其他 因素
如果单纯从数学对物理的影响来考虑,就是考虑这两者之 间的相关关系 我们在生活中,碰到很多相关关系的问题:
商品销售收入
? ?
K×广告支出经费
粮食产量
K×施肥量
付出
? ?
K×收入
人体脂肪含量
K×年龄
以上种种问题中的两个变量之间的相关关系,我 们都可以根据自己的生活,学习经验作出相应的 判断,“规律是经验的总结”,不管你多有经验,只 凭经验办事,还是很容易出错的,一次在寻找变 量讲的相关关系时,我们需要一些更为科学的方 法来说明问题.
2)由回归方程知,当某天的气温是-3℃ 时,卖出的热茶杯数为 57.557-1.648×(-3)≈63(杯)
1.利用最小二乘估计时,首先要作出数据的散点图,利 用散点图观察数据是否具有线性关系 2.散点图呈现线性关系时,利用最小二乘公式求出方程
练习P92、第1,2题 作业P94、第2, 3题
;
/ பைடு நூலகம்孕
通过分析、观察可以看到:随着年龄的增长,人体脂肪含 量越高,这表明两个变量之间的确存在一定的关系。 递增我们叫它们 正相关 递减我们叫它们 负相关
从散点图可以看出:所有的点大致在一条直线附近波动,我 们称这两个变量间存在线性相关关系,这条直线叫做回归直 线(regression line)
如果可以求出这条直线的方程(回归方程),那么我们就可以比 较清楚的了解年龄与体内脂肪含量的相关性.这条直线就可 以作为两个变量具有线性相关关系的代表