2019届江苏高考数学冲刺突破专项训练:函数(含答案)
2019年高考数学冲刺卷01(江苏卷)答案

高考数学精品复习资料2019.5高考数学冲刺卷01(江苏卷)答案数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题..卡相应位置上....... 1.【命题意图】本题考查集合的运算,解题关键是掌握集合并集的概念. 【答案】2【解析】由题意,得2B ∉,则2A ∈,则2a =.2.【命题意图】本题考查复数的运算与复数的几何意义,考查运算求解能力. 【答案】一【解析】因为()11z i i i =-=+,所以复数z 在复平面上对应的点位于第一象限.3.【命题意图】本题考查算法中的循环结构、伪代码等知识,考查学生阅读图表能力与运算求解能力. 【答案】17【解析】第一次循环,I=1,S=1+1=2;第二次循环,I=3,S=2+3=5;第三次循环,I=5,S=5+5=10;第四次循环,I=7,S=10+7=17,结束循环输出S=17.4.【命题意图】本题考查抽样方法中的分层抽样,考查学生的数据处理能力与运算求解能力. 【答案】200【解析】男学生占全校总人数为80012008006002=++,那么1001,2002n n ==5.【命题意图】本题考查复合函数的单调性、函数的定义域与一元二次不等式的解法,考查学生的运算求解能力. 【答案】],[326.【命题意图】本题考查古典概型的基本计算方法,考查用列举法求事件的个数,考查运算求解能力. 【答案】25【解析】从5个数中,随机抽取2个不同的数共有10种情况,其中满足2个数的和为偶数共有1+3,1+5,2+4,3+5这4种,则这2个数的和为偶数的概率是42105=.7.【命题意图】本题考查双曲线的标准方程、抛物线与双曲线的几何性质,考查运算求解能力.【答案】2211122x y -=. 【解析】设双曲线的标准方程为22221x y a b -=,y 2=4x 的焦点为()1,0,则双曲线的焦点为()1,0;y =±x为双曲线的渐近线,则1b a =,又因222a b c +=,所以2211,22a b ==,故双曲线标准方程为2211122x y -=. 8.【命题意图】本题考查向量的数量积运算,考查向量的线性运算,考查运算求解能力. 【答案】3【解析】设正ABC ∆边长为a ,11()22DC AC AD AC AB AC AC AB =-=-+=-, 所以22214DC AC AC AB AB =-⋅+2221cos 43a a a π=-+,即2334a =,即2a =,则11()()22DA DC AB AC AC AB ⋅=-+⋅-22213344AB AC a =-==. 9.【命题意图】本题考查三角恒等变换中的两角和与差的余弦公式、同角三角函数关系,考查对公式的灵活运用能力以及配角法等方法. 【答案】1310.【命题意图】本题考查用基本不等式求最值,考查对数的运算性质及配方法.考查学生的推理论证能力. 【答案】4【解析】由已知222log log log 1xy x y =+=,2xy =,又0x y ->,所以222()2x y x y xy x y x y+-+=-- 4()x y x y =-+-4≥=(当且仅当2x y -=时取等号),所以最小值为4.11.【命题意图】本题考查棱锥的体积,考查空间想象能力和运算求解能力. 【答案】245【解析】因为平面DAC ⊥平面BAC ,所以D 到直线BC 距离为三棱锥ABC D -的高,134123412346,,25555ABC S h h ∆⨯⨯=⨯⨯=====11122463355D ABC ABC V S h -∆=⋅=⨯⨯=.12.【命题意图】本题考查直线与圆相交问题、点到直线的距离、直线方程等基础知识,考查运算求解能力. 【答案】340x y ±+=【解析】如果直线l 与x 轴平行,则(1(1A B ,A 不是PB 中点,则直线l 与x 轴不平行;设:4l x my =-,圆心C 到直线l 的距离d =,令AB 中点为Q ,则3AQ PQ AQ ===,在Rt CPQ ∆中222PQ CQ PC +=,得2252521d m==+,解得3m =±,则直线l 的方程为340x y ±+=.13.【命题意图】本题考查等差数列的前n 项和公式,考查推理能力与运算求解能力. 【答案】35.14.【命题意图】本题考查含绝对值的二次函数的图象与性质,以及函数与方程、零点等知识,考查学生运用分类讨论思想、数形结合思想、函数与方程思想等综合解决问题的能力. 【答案】(0,1)∪(9,+∞)【解析】由()|1|0f x a x --=,得()|1|f x a x =-,作出函数()y f x =,()|1|y g x a x ==-的图象,当0a ≤,两个函数的图象不可能有4个交点,不满足条件,则0a >,此时(1),1()|1|(1),1a x x g x a x a x x -≥⎧=-=⎨--<⎩,当30x -<<时,2()3f x x x =--,()(1)g x a x =--,当直线和抛物线相切时,有三个零点,此时23(1)x x a x --=--,即2(3)0x ax a +-+=,则由2(3)40a a ∆=--=,即21090a a -+=,解得1a =或9a =,当9a =时,()9(1)g x x =--,(0)9g =,此时不成立,∴此时1a =,要使两个函数有四个零点,则此时01a <<,若1a >,此时()(1)g x a x =--与()f x 有两个交点,此时只需要当1x >时,()()f x g x =有两个不同的零点即可,即23(1)x x a x +=-,整理得2(3)0x a x a +-+=,则由2(3)40a a ∆=-->,即21090a a -+>,解得1a <(舍去)或9a >,综上a 的取值范围是(0,1)(9,)+∞.二、解答题 :本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分)【命题意图】本题考查正弦定理、余弦定理,等差数列的性质,考查运算求解能力.16.(本小题满分14分)【命题意图】本题考查平面的基本性质,线面垂直的判断与性质. 【解析】(1)连接AC ,因为E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线, 所以EF∥AC. ………………………2分由直棱柱知1AA 1CC ,所以四边形11C AAC 为平行四边形,所以AC ∥11AC .……5分 所以EF∥11AC ,故1A ,1C ,F ,E 四点共面.……………7分17.(本小题满分14分)【命题意图】本题考查函数的应用题,用基本不等式求函数的最值等数学知识,考查学生阅读理解能力、数学建模能力与运算求解能力.渗透了数形结合思想与数学应用意识.【解析】(1)当0<x ≤40,W =xR (x )-(16x +40)=-6x 2+384x -40;........ 2分当x >40,W =xR (x )-(16x +40)=-40000x-16x +7360............4分 所以,W =26384400404000016736040.x x x x x x ⎧<≤⎪⎨>⎪⎩-+-,,--+,....................................6分(2)①当0<x ≤40,W =-6(x -32)2+6104, 所以W max =W (32)=6104;.............10分 ②当x >40时,W =-40000x-16x +7360, 由于40000x +16x1600, 当且仅当40000x=16x ,即x =50∈(40,+∞)时,W 取最大值为5760...........12分 综合①②知,当x =32时,W 取最大值为6104..................14分 18.(本小题满分16分)【命题意图】本题考查椭圆的方程与几何性质、直线与椭圆相交问题、直线的位置关系等基础知识,,考查运算求解能力和数形结合思想的应用.联立方程得:2200022002221x y cx x y ab ⎧+=⎪⎨+=⎪⎩,消去0y 得:222222002()0c x a cx a a c -+-=解得:0()a a c x c +=或 0()a a c x c-= …………14分0a x a -<< 0()(0,)a a c x a c-∴=∈ 20a ac ac ∴<-< 解得:12e >综上,椭圆离心率e 的取值范围为1(,1)2. …………16分19.(本小题满分16分)【命题意图】本题考查等比数列的通项公式与前n 项和公式,等差数列的判断与通项公式,函数与方程思想,考查代数推理、转化与化归以及综合运用数学知识解决问题的能力.(3)由(2)得1n n c n+=, 对于给定的*n N ∈,若存在*,,,k t n k t N ≠∈,使得n k t c c c =⋅,只需111n k t n k t +++=⋅, 即1111(1)(1)n k t +=+⋅+,即1111n k t kt =++,则(1)n k t k n+=-, …………12分取1k n =+,则(2)t n n =+,∴对数列{}n c 中的任意一项1n n c n +=,都存在121n n c n ++=+和2222212n n n n c n n+++=+使得212n n n n c c c ++=⋅. …………16分 20.(本小题满分16分)【命题意图】本题考查利用导数研究函数的极值、单调性以及零点等知识,考查综合运用数学方法分析与解决问题的能力.①当1122a--≤-,即102a <≤时,()g x 在[2,2]-上单调增,min ()(2)10g x g ∴=-=> 102a ∴<≤………8分 ②当12102a -<--<,即12a >时,()g x 在1[2,1]2a ---上单调减,在1[1,2]2a--上单调增,2(21)120a a ∴∆=+-≤ 解得:11a -≤≤ 112a ∴<≤+综上,a 的取值范围是(0,1+. ………10分 (3)1,a = 设2()(2)4x h x x x e x =++-- ,'2()(33)1x h x x x e =++- 令2()(33)1x x x x e ϕ=++- ,'2()(56)x x x x e ϕ=++ 令'2()(56)0,2,3得x x x x e x ϕ=++==--33()(3)10极大值=x e ϕϕ∴-=-< ,21()(2)10极小值=x e ϕϕ-=-< ………13分 1(1)10,(0)20eϕϕ-=-<=>,∴存在0(1,0)x ∈-,0(,)x x ∈-∞时,()0x ϕ<,0(,)x x ∈+∞时,()0x ϕ>.()h x ∴在0(,)x -∞上单调减,在0(,)x +∞上单调增 又43148(4)0,(3)10,(0)20,(1)450h h h h e e e-=>-=-<=-<=-> 由零点的存在性定理可知:()0h x =的根12(4,3),(0,1)x x ∈--∈,即4,0t =-. ………16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多答,则按作答的前两小题给分.解答时应写出文字说明、证明过程或演算步骤. A .【选修4-1:几何证明选讲】(本小题满分10分)【命题意图】本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力与推理论证能力.B .【选修4-2:矩阵与变换】(本小题满分10分)【命题意图】本题考查矩阵的特征值与特征向量的概念、矩阵乘法等基础知识,考查运算求解能力. 【解析】矩阵A 的特征多项式为()2125614f λλλλλ--==--+, ……………2分 由()0f λ=,解得12λ=,23λ=. …………………………………………4分当12λ=时,特征方程组为20,20,x y x y -=⎧⎨-=⎩故属于特征值12λ=的一个特征向量121α⎡⎤=⎢⎥⎣⎦;………………………………7分当23λ=时,特征方程组为220,0,x y x y -=⎧⎨-=⎩故属于特征值23λ=的一个特征向量211α⎡⎤=⎢⎥⎣⎦. …………………………10分C .【选修4-4:坐标系与参数方程】(本小题满分10分)【命题意图】本题考查极坐标系与极坐标的概念、圆与直线的极坐标方程、极坐标方程与直角坐标方程的互化、点到直线的距离公式,考查转化与化归能力与运算求解能力.D .【选修4-5:不等式选讲】(本小题满分10分)【命题意图】本题考查基本不等式的应用,考查转化与化归能力和推理论证能力. 【解析】因为正实数,,a b c 满足231a b c ++=,所以1≥23127ab c ≤, …………………………5分 所以23127ab c ≥因此,24611127a b c ++≥≥ ……………………10分【必做题】第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)【命题意图】本题考查空间向量、二面角和直线垂直的应用等基础知识,考查应用向量法解决空间角和距离的能力与运算求解能力.【解析】(1)如图,以A 为原点建立空间直角坐标系A -xyz , 则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为,,)x y z n =(,则11100A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,即34040y z x -=⎧⎨=⎩, 令3z =,则0x =,4y =,所以(0,4,3)n =.同理可得,平面BB 1C 1的法向量为(3,4,0)m =, 所以16cos 25⋅==n m n,m |n ||m |. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. ………5分23.(本小题满分10分)【命题意图】本题考查分类讨论思想、归纳推理能力,考查对有一定难度和新颖性问题的进行分析与解决的能力.【解析】(1)由题意,取121,2a a ==,126a a <,满足题意,若33a ∃≥,则必有236a a ≥,不满足题意,综上所述:m 的最大值为2,即(6)2f =. ………………4分(2)由题意,当(1)(1)(2)n n k n n +<≤++时,设1{1,2,A =…,}n ,2{1,2,3,A n n n =+++…}, 显然,∀11,i i a a A +∈时,满足1(1)(1)i i a a n n n n k +≤-<+<,∴从集合1A 中选出的i a 至多n 个,∀12,j j a a A +∈时,1(1)(2)j j a a n n k +≥++≥,∴从集合2A 中选出的j a 必不相邻,又∵从集合1A 中选出的i a 至多n 个,∴从集合2A 中选出的j a 至多n 个,放置于从集合1A 中选出的i a 之间,∴()2f k n ≤, ………………6分(ⅱ)当(1)(2)n n k n n +<≤+时,从1A 中选出的n 个i a :1,2,…,n ,考虑数n 的两侧的空位,填入集合2A 的两个数,p q a a ,不妨设p q na na >,则(2)p na n n k ≥+≥,与题意不符,∴()21f k n ≤-,取一串数i a 为:1,21,2,22,3,23,n n n ---…,2,2,1,1,n n n n n -+-+(写出(ⅰ)、(ⅱ)题的结论但没有证明各给1分.)。
2019届高考数学(江苏卷)模拟冲刺卷(4)(含附加及详细解答)

2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(四)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 复数2+i1+i (i 为虚数单位)的模为________.2. 函数f (x )=12-x+ln(x +1)的定义域为________ . 3. 某公司生产A ,B ,C 三种药品,产量分别为1 200箱,6 000箱,2 000箱.为检验该公司的药品质量,现用分层抽样的方法抽取46箱进行检验,则A 药品应抽取________箱.4. 如图是一个算法的程序框图,当输入的x 值为5时,则输出的y 的值为________.5. 已知集合A =⎩⎨⎧⎭⎬⎫0, π6, π4, π3, π2, 2π3, 3π4, 5π6, π.现从集合A 中随机选取一个元素,则该元素的余弦值为正数的概率为________. 6. “α=π4”是“cos 2α=0”的________条件.7. 已知α∈(0,π2),β∈(π2,π),cos β=-13,sin(α+β)=79.则sin α的值为________.8. 若函数f (x )=⎩⎪⎨⎪⎧x +1(x ≥1),kx -x 2(x <1)是R 上的单调增函数,则实数k 的取值范围是________.9. 如图,正四棱柱ABCDA 1B 1C 1D 1的体积为36,点E 为棱B 1B 上的点,且B 1E =2BE ,则三棱锥A 1AED 的体积为________.10. 若直线l :2x +y =0与圆C :(x -a )2+(y -b )2=5相切,且a >0,b >0则ab 的最大值为________.11. 在等比数列{a n }中,a n >0且a 1a 3a 5a 7a 9=32,则a 2+a 8的最小值是________. 12. 已知函数f (x )=x 2-cos x ,x ∈[-π2,π2],则满足f (x 0)>f (π6)的x 0的取值范围是________.13. 已知向量a ,b 是单位向量,若a ·b =0,且|c -2b |=2|c -a |,则|c +2a |的最小值是________. 14. 已知a ≠0,函数f (x )=e x -a (x +1)的图象与x 轴相切.若x >1时,f (x )>mx 2,则实数m 的取值范围是__________________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在四面体ABCD 中,AD =BD ,∠ABC =90°,点E ,F 分别为棱AB ,AC 上的点,点G 为棱AD 的中点,且平面EFG ∥平面BCD .求证:(1)EF =12BC ;(2)平面EFD ⊥平面ABC .16. (本小题满分14分)已知向量m =(sin x ,3sin x ),n =(sin x ,-cos x ),设函数f (x )=m ·n .(1)求函数f (x )在区间[-π4,π6]上的最大值;(2)设g (x )=12-f (x ),若sin(2θ-π6)=13,0<θ<π4,求g (θ)的值.一个游戏盘由一个直径为2 m的半圆O和一个矩形ABCD构成,AB=1 m,如图所示.小球从A点出发以5v的速度沿半圆O轨道滚到某点E处后,经弹射器以6v的速度沿与点E切线垂直的方向弹射到落袋区BC内,落点记为F.设∠AOE=θ弧度,小球从A到F所需时间为T.(1)试将T表示为θ的函数T(θ),并写出定义域;(2)求时间T最短时cos θ的值.18. (本小题满分16分)在平面直角坐标系xOy中,设椭圆C:x2a2+y2b2=1(a>b>0)的焦距为26,且过点(2, 2).(1)求椭圆C的方程;(2)设点P是椭圆C上横坐标大于2的一点,过点P作圆(x-1)2+y2=1的两条切线分别与y轴交于点A,B,试确定点P的坐标,使得△P AB的面积最小.若存在非零常数p ,对任意的正整数n ,a 2n +1=a n a n +2+p ,则称数列{a n }是“容数列”.(1)若数列{a n }的前n 项和S n =n 2(n ∈N *),求证:{a n }是“容数列”; (2)设{a n }是各项均不为0的“容数列”. ① 若p <0,求证:{a n }不是等差数列;② 若p >0,求证:当a 1,a 2,a 3成等差数列时,{a n }是等差数列.20. (本小题满分16分)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x <0,ax 3+(b -4a )x 2-(4b +14)x +1, 0≤x ≤4,a (log 4x -1), x >4(a ,b 为常数,且a ≠0).(1)若b =0且f (8)=1,求f (x )在x =0处的切线方程;(2)设a ,b 互为相反数,且f (x )是R 上的单调函数,求a 的取值范围; (3)若a =1,b ∈R .试讨论函数g (x )=f (x )+b 的零点的个数,并说明理由.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修42:矩阵与变换)设矩阵M =⎣⎢⎡⎦⎥⎤a 021的一个特征值为2,若曲线C 在矩阵M 变换下的方程为x 2+y 2=1,求曲线C 的方程.B. (选修44:坐标系与参数方程)在极坐标系中,已知点P (23,π6),直线l :ρcos(θ+π4)=22,求点P 到直线l 的距离.C. (选修45:不等式选讲)已知函数f (x )=|x +1|+|x -2|-|a 2-2a |,若函数f (x )的图象恒在x 轴上方,求实数a 的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在多面体ABCDEF中,ABCD为正方形,ED⊥平面ABCD,FB∥ED,且AD=DE =2BF=2.(1)求证:AC⊥EF;(2)求二面角CEFD的大小.23. 已知k,m∈N*,若存在互不相等的正整数a1,a2,…,a m,使得a1a2,a2a3,…,a m-1a m,a m a1同时小于k,则记f(k)为满足条件的m的最大值.(1)求f(6)的值;(2)对于给定的正整数n(n>1),①当n(n+2)<k≤(n+1)(n+2)时,求f(k)的解析式;②当n(n+1)<k≤n(n+2)时,求f(k)的解析式.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(四) 1. 102 解析: 2+i 1+i =3-i 2,⎪⎪⎪⎪⎪⎪2+i 1+i =⎪⎪⎪⎪3-i 2=94+14=102. 2. (-1,2) 解析:由题知⎩⎪⎨⎪⎧2-x >0,x +1>0,解得-1<x <2.3. 6 解析:461 200+6 000+2 000×1 200=6.4. 2 解析:由程序框图可知,第一次运行时,输入x =5,不满足x ≤0,故x =5-3=2;第二次运行时,x =2不满足x ≤0,故x =2-3=-1;第三次运行时,x =-1满足x ≤0,故y =⎝⎛⎭⎫12-1=2,输出y =2.5. 49 解析:当余弦值为正数时,x =0,π6, π4, π3,概率为49. 6. 充分不必要 解析:由cos 2α=0,得2α=k π+π2,α=k π2+π4(k ∈Z ),∴ “α=π4”是“cos 2α=0”的充分不必要条件.7. 13 解析:∵ β∈⎝⎛⎭⎫π2,π,cos β=-13,∴ sin β=1-cos 2β=1-⎝⎛⎭⎫-132=223.又α∈⎝⎛⎭⎫0,π2,故α+β∈⎝⎛⎭⎫π2,3π2,从而cos(α+β)=-1-sin 2(α+β)=-1-⎝⎛⎭⎫792=-429, ∴ sin α=sin [(α+β)-β]=79×⎝⎛⎭⎫-13-⎝⎛⎭⎫-429×223=13.8. [2,3] 解析:由题知⎩⎪⎨⎪⎧k 2≥1,k -1≤2,∴ 2≤k ≤3.9. 6 解析:VA 1AED =VEA 1AD =13S △A 1AD ·AB =16SA 1ADD 1·AB =16×36=6.10. 258 解析:|2a +b |5=5,且a >0,b >0,从而2a +b =5,∴ 5=2a +b ≥22ab ,∴ ab ≤258,当且仅当2a =b ,即a =54,b =52时等号成立,从而ab 的最大值为258. 11. 4 解析:∵ a 1a 3a 5a 7a 9=32,a n >0,∴ a 5=2,∴ a 2+a 8≥2a 2a 8=4.12. ⎣⎡⎭⎫-π2,-π6∪⎝⎛⎦⎤π6,π2 解析:函数f (x )=x 2-cos x ,x ∈⎣⎡⎦⎤-π2,π2为偶函数,其图象关于y 轴对称,故考虑函数在区间⎣⎡⎦⎤0,π2上的情形,利用导数可得函数在⎣⎡⎦⎤0,π2上单调递增,故在⎣⎡⎦⎤0,π2上f (x 0)>f ⎝⎛⎭⎫π6的x 0的取值范围是⎝⎛⎦⎤π6,π2,利用对称性质知,在⎣⎡⎦⎤-π2,π2上, x 0的取值范围是[-π2,-π6)∪⎝⎛⎦⎤π6,π2.13. 20-10 解析:设OA →=a =(1,0),OB →=b =(0,1),OP →=c =(x ,y ),则由|c -2b |=2|c -a |,得x 2+(y -2)2=2[(x -1)2+y 2],即(x -2)2+(y +2)2=10.又|c +2a |=(x +2)2+y 2,∴ |c +2a |min =20-10.14. (-∞,e -2] 解析:f ′(x )=e x-a ,依题意,设切点为(x 0,0),则⎩⎪⎨⎪⎧f (x 0)=0,f ′(x 0)=0,即⎩⎪⎨⎪⎧ex 0-a (x 0+1)=0,ex 0-a =0.又a ≠0,∴ ⎩⎪⎨⎪⎧x 0=0,a =1,f (x )=e x -x -1.由题意,得e x -x -1>mx 2,即e x-x -1x 2>m 在(1,+∞) 上恒成立.设h (x )=e x -x -1x 2,x >1,则h ′(x )=(x -2)e x +x +2x 3,x >1.设s (x )=(x -2)e x +x +2,x >1, ∴ s ′(x )=(x -1)e x +1,x >1,∴ s ′(x )>0在(1,+∞)上恒成立,∴ s (x )在(1,+∞)上单调递增. ∵ s (1)=3-e >0,∴ s (x )>0即h ′(x )>0在(1,+∞)上恒成立,故h (x )在(1,+∞)上单调递增. ∵ h (1)=e -2,∴ m ≤e -2,即实数m 的取值范围是(-∞,e -2]. 15. 证明:(1) 因为平面EFG ∥平面BCD ,平面ABD ∩平面EFG =EG ,平面ABD ∩平面BCD =BD ,所以EG ∥BD .又G 为AD 的中点,故E 为AB 的中点,同理可得F 为AC 的中点,所以EF =12BC .(7分)(2) 因为AD =BD ,由(1)知,E 为AB 的中点, 所以AB ⊥DE .又∠ABC =90°,即AB ⊥BC . 由(1)知,EF ∥BC ,所以AB ⊥EF .又DE ∩EF =E ,DE ,EF ⊂平面EFD , 所以AB ⊥平面EFD .又AB ⊂平面ABC ,故平面EFD ⊥平面ABC .(14分)16. 解:(1) 由题意,得f (x )=sin 2x -3sin x cos x =1-cos 2x 2-32sin 2x =12-sin ⎝⎛⎭⎫2x +π6.∵ -π3≤2x +π6≤π2,∴ f (x )∈⎣⎢⎡⎦⎥⎤-12,1+32, ∴ f (x )max =1+32.(7分)(2) 由(1)知g (x )=12-f (x )=sin ⎝⎛⎭⎫2x +π6,∵ sin ⎝⎛⎭⎫2θ-π6=13,0<θ<π4,∴ -π6<2θ-π6<π3,∴ cos ⎝⎛⎭⎫2θ-π6=223,∴ g (θ)=sin ⎝⎛⎫2θ+π6=sin ⎝⎛⎭⎫2θ-π6+π3=26+16.(14分)17. 解:(1) 过O 作OG ⊥BC 于G ,则OG =1,OF =OG sin θ=1sin θ,EF =1+1sin θ,AE ︵=θ,∴ T (θ)=AE ︵5v +EF 6v =θ5v +16v sin θ+16v ,θ∈⎣⎡⎦⎤π4,3π4.(6分)(2) ∵ T (θ)=θ5v +16v sin θ+16v,∴T ′(θ)=15v -cos θ6v sin 2θ=6sin 2θ-5cos θ30v sin 2θ=-(2cos θ+3)(3cos θ-2)30v sin 2θ, 记cos θ0=2,θ0∈[π,3π],- +故当cos θ=23时,时间T 最短.(14分)18. 解:(1) 由题意得2c =26,且4a 2+4b2=1.又c 2=a 2-b 2,故a 2=12,b 2=6,所以椭圆C 的方程为x 212+y 26=1.(6分)(2) 设点P (x 0,y 0),其中x 0∈(2,23],且x 2012+y 206=1,又设A (0,m ),B (0,n ),不妨令m >n ,则直线P A 的方程为(y 0-m )x -x 0y +x 0m =0,则圆心(1,0)到直线P A 的距离为|y 0-m +x 0m |(y 0-m )2+x 20=1,化简得(x 0-2)m 2+2y 0m -x 0=0,(8分) 同理,(x 0-2)n 2+2y 0n -x 0=0,所以m ,n 为方程(x 0-2)x 2+2y 0x -x 0=0的两根,则(m -n )2=(2y 0)2+4x 0(x 0-2)(x 0-2)2,又△P AB 的面积为S =12(m -n )x 0,所以S 2=y 20+x 0(x 0-2)(x 0-2)2x 20=(x 0-2)2+82(x 0-2)2x 20,令t =x 0-2∈(0,23-2],记f (t )=(t 2+8)(t +2)22t 2,则f ′(t )=t (t +2)(t 3-16)t 4<0在(0,23-2]上恒成立,所以f (t )在(0, 23-2]上单调递减,故t =23-2,即x 0=23时,f (t )最小,此时△P AB 的面积最小,当x 0=23时,y 0=0,即P (23,0).(16分) 19. 证明:(1) 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 所以a n =2n -1,n ∈N *,则{a n }是“容数列”⇔存在非零常数p ,使得(2n +1)2=(2n -1)(2n +3)+p , 显然p =4满足题意,所以{a n }是“容数列”.(4分) (2) ① 假设{a n }是等差数列,设a n =a 1+(n -1)d ,则由a 2n +1=a n a n +2+p ,得(a 1+nd )2=[a 1+(n -1)·d ][a 1+(n +1)d ]+p , 解得p =d 2≥0,这与p <0矛盾,故假设不成立,从而{a n }不是等差数列.(10分) ② 因为a 2n +1=a n a n +2+p (p >0),所以a 2n =a n -1a n +1+p (n ≥2),两式相减得a 2n +1-a 2n =a n a n +2-a n -1a n +1(n ≥2).因为{a n }的各项均不为0,所以a n +1+a n -1a n =a n +a n +2a n +1(n ≥2),从而⎩⎨⎧⎭⎬⎫a n +1+a n -1a n (n ≥2)是常数列. 因为a 1,a 2,a 3成等差数列,所以a 3+a 1a 2=2,从而a n +1+a n -1a n=2(n ≥2),即a n +1+a n -1=2a n (n ≥2),即证.(16分) 20. 解:(1) ∵ f (8)=1,∴ a =2. 又b =0,∴ f (0)=1,∴ f ′(0)=-14,∴ f (x )在x =0处的切线方程为x +4y -4=0.(4分)(2) ∵ y =⎝⎛⎭⎫12x 是减函数,且f (x )是R 上的单调函数,∴ 在y =a (log 4x -1)中,应该有y ′=axln 4≤0,故a <0.(5分) 在y =ax 3+(b -4a )x 2-⎝⎛⎭⎫4b +14x +1中,其中a +b =0, y ′=3ax 2-10ax +4a -14,导函数的对称轴为x =53,故Δ=100a 2-12a ⎝⎛⎭⎫4a -14≤0,解得-352≤a <0, 即a 的取值范围是[-352,0).(8分)(3) 函数f (x )=⎩⎪⎨⎪⎧2-x,x <0,x 3+(b -4)x 2-⎝⎛⎭⎫4b +14x +1,0≤x ≤4,log 4x -1,x >4,则f ′(x )=3x 2+2(b -4)x -⎝⎛⎭⎫4b +14(0≤x ≤4), 其判别式Δ=4b 2+16b +67>0,记f ′(x )=0的两根为x 1,x 2(x 1<x 2), +-+当b >0时,⎝⎛⎭⎫12x+b =0无解,log 4x =1-b 无解,又f (0)+b =1+b >0, f (4)+b =b >0,f (2)+b =8+4(b -4)-2⎝⎛⎭⎫4b +14+1+b =-152-3b <0, 方程在(0,4)上有两解,方程一共有两个解;(10分)当b <-1时,⎝⎛⎭⎫12x +b =0有一解x =log 0.5(-b ),log 4x -1+b =0有一解x =41-b,又f (0)+b =1+b <0,f (4)+b =b <0, f ⎝⎛⎭⎫12+b =18+14(b -4)-12⎝⎛⎭⎫4b +14+1+b =-34b >0, 故方程在(0,4)上有两解,方程共有4个解;(12分)当-1<b <0时,⎝⎛⎭⎫12x+b =0无解,log 4x -1+b =0有一解, 又f (0)+b =1+b >0,f (4)+b =b <0,方程在(0,4)内只有一解,方程共两解;(14分)当b =0时,有x =4和x =12两解,当b =-1时,有x =0,x =5-102,x =16三个解,综上,当b >-1时,g (x )有2个零点; 当b =-1时,g (x )有3个零点;当b <-1时,g (x )有4个零点.(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(四)21. A . 解:由题意得矩阵M 的特征多项式 f (λ)=(λ-a )(λ-1).因为矩阵M 有一个特征值为2,f (2)=0,所以a =2.(2分)所以M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2021⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎩⎪⎨⎪⎧x ′=2x ,y ′=2x +y ,代入方程x 2+y 2=1,得(2x )2+(2x +y )2=1,即曲线C 的方程为8x 2+4xy +y 2=1.(10分)B. 解:点P 的直角坐标为(3,3).(2分)直线l 的普通方程为x -y -4=0,(4分)从而点P 到直线l 的距离为|3-3-4|2=2+62.(10分) C. 解:因为|x +1|+|x -2|≥|x +1-(x -2)|=3,所以f (x )的最小值为3-|a 2-2a |.(4分)由题设,得|a 2-2a |<3,解得-1<a <3,即a 的取值范围是(-1,3).(10分)22. (1) 证明:连结BD ,∵ FB ∥ED ,∴ F ,B ,E ,D 共面.∵ ED ⊥平面ABCD ,AC ⊂平面ABCD ,∴ ED ⊥AC.又ABCD 为正方形,∴ BD ⊥AC ,而ED ∩DB =D ,∴ AC ⊥平面DBFE ,而EF ⊂平面DBFE ,∴ AC ⊥EF.(4分)(2) 解:如图建立空间直角坐标系,则A(2,0,0),B(2,2,0),C(0,2,0),F(2,2,1),E(0,0,2).由(1)知AC →为平面DBFE 的法向量,即AC →=(-2,2,0),又CE →=(0,-2,2),CF →=(2,0,1),设平面CEF 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧CE →·n =0,CF →·n =0,即⎩⎪⎨⎪⎧-2y +2z =0,2x +z =0,取z =1, 则x =-12,y =1,∴ n =⎝⎛⎭⎫-12,1,1. 设二面角CEFD 的大小为θ,则cos 〈n ,AC →〉=n ·AC →|n ||AC →|=1+232×22=22. 又二面角CEFD 为锐角,∴ θ=π4.(10分)23. 解:(1) 由题意,取a 1=1,a 2=2,a 1a 2<6,满足题意;若∃a 3≥3,则必有a 2a 3≥6,不满足题意,综上所述,m 的最大值为2,即f(6)=2.(2分)(2) 由题意,当n(n +1)<k ≤(n +1)(n +2)时,设A 1={1,2,…,n},A 2={n +1,n +2,n +3,…},显然,∀a i ,a i +1∈A 1时,满足a i a i +1≤n(n -1)<n(n +1)<k ,所以从集合A 1中选出的a i 至多有n 个,∀a j ,a j +1∈A 2时,a j a j +1≥(n +1)(n +2) ≥k ,不符合题意,所以从集合A 2中选出的a j 必不相邻.因为从集合A 1中选出的a i 至多有n 个,所以从集合A 2中选出的a j 至多有n 个,放置于从集合A 1中选出的a i 之间,所以f(k) ≤2n. ① 当n(n +2)<k ≤(n +1)(n +2)时,取一串数a i 为1,2n ,2,2n -1,3,2n -2,…,n -1,n +2,n ,n +1,或写成a i =⎩⎨⎧i +12,i 为奇数,2n +1-i 2,i 为偶数(1≤i ≤2n), 此时a i a i +1≤n(n +2)<k(1≤i ≤2n -1),a 2n a 1=n +1<k ,满足题意,所以f(k)=2n.(5分)② 当n(n +1)<k ≤n(n +2)时,从A 1中选出的n 个a i :1,2,…,n ,考虑数n 两侧的空位,填入集合A 2的两个数a p ,a q ,不妨设na p >na q ,则na p ≥n(n +2) ≥k ,与题意不符,所以f(k) ≤2n -1,取一串数a i 为1,2n -1,2,2n -2,3,2n -3,…,n -2,n +2,n -1,n +1,n ,或写成a i=⎩⎨⎧i +12,i 为奇数,2n -i 2,i 为偶数(1≤i ≤2n -1), 此时a i a i +1≤n(n +1)<k(1≤i ≤2n -2),a 2n -1a 1=n <k ,满足题意,所以f(k)=2n -1.(10分)。
2019江苏高考压轴题(中篇)专题02.01 函数的有关性质~

专题02.01--函数的有关性质一、问题概述此类问题主要考查函数的奇偶性、单调性、对称性、最值(值域)等方面的内容,题型有以下几种:(1)利用导数探究函数的单调性、极值、最值等性质(例题1)(2)判断函数的奇偶性、单调性,可以利用定义法和导数法处理(例题2) (3)利用函数的单调性求函数的值域、证明不等式等(例题3) 二、释疑拓展1.【苏锡常镇四市2016届高三教学情况调研.19题】设函数2()(2ln )xf x x e k x x -=--(k 为实常数,e =2.71828 是自然对数的底数). (1)当k =1时,求函数()f x 的最小值;(2)若函数()f x 在区间内(0,4)存在三个极值点,求k 的取值范围.2.【镇江市2014届高三第一学期期末调研.19题】已知实数R k ∈,且0≠k ,e 为自然对数的底数,函数1)(+⋅=x x e e k x f ,x x f x g -=)()(.(1)如果函数)(x g 在R 上为减函数,求k 的取值范围;(2)如果]4,0(∈k ,求证:方程0)(=x g 有且有一个根0x x =;且当0x x >时,有))((x f f x >成立;(3)定义:①对于闭区间],[t s ,称差值s t -为区间],[t s 的长度;②对于函数)(x g ,如果对任意D t s x x ⊆∈],[,21(D 为函数)(x g 的定义域),记)()(12x g x g h -=,h 的最大值称为函数)(x g 在区间],[t s 上的“身高”.问:如果]4,0(∈k ,函数)(x g 在哪个长度为2的闭区间上“身高”最“矮”?3.【南京市2017届高三9月学情调研20题】 已知函数2()ln ,(,)f x ax bx x a b R =-+∈.(1)当1a b ==时,求曲线()y f x =在1x =处的切线方程; (2)当21b a =+时,讨论函数()f x 的单调性;(3)当1,3a b =>时,记函数()f x 的导函数'()f x 的两个零点是1x 和2x (12x x <),求证:123()()ln 24f x f x ->-.三、专题反思(你学到了什么?还想继续研究什么?)四、巩固训练1.【常州市2018届高三第一学期期末调研.20题】 已知函数2ln ()()xf x x a =+,其中a 为常数.(1)若0a =,求函数()f x 的极值;(2)若函数()f x 在(0)a -,上单调递增,求实数a 的取值范围;(3)若1a =-,设函数()f x 在(01),上的极值点为0x ,求证:0()2f x <-.2.【苏锡常镇四市2017届高三教学情况调研(二).18题】已知函数3()ln f x a x bx =-,a ,b 为实数,0b ≠, e 为自然对数的底数,e 2.71828≈….(1)当0a <,1b =-时,设函数()f x 的最小值为()g a ,求()g a 的最大值; (2)若关于x 的方程()=0f x 在区间(1e],上有两个不同实数解,求ab的取值范围.3.【镇江市2016届高三第一学期期末调研.20题】 已知函数f (x )=[ax 2-(2a +1)x +2a +1]e x . (1)求函数f(x )的单调区间;(2)设x >0,2a ∈[3,m +1],f (x )≥b 2a-1e 1a 恒成立,求正数b 的范围.参考答案 二、释疑拓展 名师分析: (1)求导得()()()232e x x x f x x--'=(0x >). 然后令0)(='x f ,显然x =2为其一解,但e x-x 2=0是否有正解?解又是什么呢?当我们无法解出来时,往往可能无解,可以想到证明e x >x 2(因为e x 增长比x 2快,故为大于)要证明这个不等式,构造函数一次求导不太好处理时,可以尝试取对数的变形,即证明:x >2lnx ,构造函数,利用导数法不难证得,从而确定x =2为唯一极值点,进而求得最值. (2)函数有三个极值点,转化为0)(='x f 有三个解,x =2为一解,则方程02=-kx e x在(0,2)∪(2,4)内有两个交点,求导研究函数2xe y x=的单调性和图像,这里难点是要严格论证,取一个值)4()1(g eg >,结合单调性和图像就能确定k 的取值范围. 1、【解】(1)由函数()()()2e 2ln 0xf x x x x x=-->,可得()()()232e x x x f x x --'=. 因为当0x >时,2e xx >.理由如下:要使0x >时,2e x x >,只要2ln x x >,设()2ln x x x ϕ=-,22()1x x x xϕ-'=-=, 于是当20<<x 时,()0x ϕ'<;当2>x 时,()0x ϕ'>.即()2ln x x x ϕ=-在2x =处取得最小值(2)22ln 20ϕ=->,即0x >时,2ln x x >,所以2e 0x x ->,于是当20<<x 时,()0f x '<;当2>x 时,()0f x '>.所以函数()x f 在()2,0上为减函数,()+∞,2上为增函数.…………6分所以()f x 在2x =处取得最小值 2e (2)22ln 24f =-+.……………7分(2) 因为()()()()22'3e 22e x x x k x kx xf x x x⎛⎫-- ⎪--⎝⎭==, 当0k ≤时,2e 0xk x->,所以()x f 在()2,0上单调递减,()2,4上单调递增,不存在三个极值点,所以0>k又()()()()223e 22e x x x k x kx x f x x x⎛⎫-- ⎪--⎝⎭'==, 令()2exg x x=,得()()23e 2x g x x ⋅-'=,易知()x g 在()2,0上单调递减,在()∞+,2上单调递增,在2=x 处取得极小值,得()2e 24g =,且()4e 416g =,于是可得k y =与()2e xg x x =在()4,0内有两个不同的交点的条件是 24e e ,416k ⎛⎫∈ ⎪⎝⎭设k y =与()2e xg x x=在()4,0内有两个不同交点的横坐标分别为21,x x ,则有420<<<<x x ,下面列表分析导函数x f '及原函数()x f :可知()x f 在()1,0x 上单调递减,在()2,1x 上单调递增, 在()2,2x 上单调递减,在()4,2x 上单调递增, 所以()x f 在区间()4,0上存在三个极值点.即函数()x f 在()4,0内存在三个极值点的k 的取值范围是24e e ,416⎛⎫⎪⎝⎭.心得反思2、【解】∵x e e k x x f x g xx-+=-=1.)()(在R 上为减函数, 1、研究函数的性质时,要优先考虑定义域;2、能够熟练证明和应用一些含有指数、对数的不等式1+≥x e x,1ln -≤x x ,注意取对数方法的转化作用;3、由方程解的个数确定参数的范围,可以考虑分离变量转化为函数图像的交点问题,通常是转化为定曲线和动直线好处理一些;4、本题求k 的范围,体现了数形结合的思想,但由于高中阶段没有涉及极限,找一点证明)4()1(g eg >成为本题解题的关键所在,所以要平时多观察多思考;5、若第(1)问中,考虑设)0()(2>=x x e x x ϕ来比较2xe x与1的大小关系,则第(2)问可用第(1)问的结论,解答更简洁;6、另外平时练习中要体会总结一些求导的技巧,如:)]()([])(.[x f x f e x f e xx'+=',)()]()([])([2x f x f x f e x f e x x '-=',x x e x f x f e x f )()(])([-'=',xx f x x f 1)(]ln )([+'='+∴x >f (x ).①解法一 又∵f (x )=1.+x xe e k =x ek)1(1+为增函数,由x >f (x ) ∴f (x )>f (f (x ))②解法二 再把f (x )看作自变量,代入①中,可得f (x )>f (f (x ))② 由①②得f (x )>f (f (x ))成立【说明】本题来源于《选修1-1》课本和期中考试题改编,考查函数的性质、不等式应用、导数的应用、方程根的判断等;考查函数思想、方程思想、等价思想;考查阅读理解能力、认识字母符号能力、运算能力、分析能力、探究能力. 3.【解】:(1)因为a =b =1,所以f (x )=x 2-x +ln x ,从而f ′(x )=2x -1+1x. 因为f (1)=0,f ′(1)=2,故曲线y =f (x )在x =1处的切线方程为y -0=2(x -1), 即2x -y -2=0.(2)因为b =2a +1,所以f (x )=ax 2-(2a +1)x +ln x ,从而f ′(x )=2ax -(2a +1)+1x=22(21)1ax a x x -++=(21)(1)ax x x --,x >0当a ≤0时,x ∈(0,1)时,f ′(x )>0,x ∈(1,+∞)时,f ′(x )<0, 所以,f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.当0<a <12时,由f ′(x )>0得0<x <1或x >12a ,由f ′(x )<0得1<x <12a ,所以f (x )在区间(0,1)和区间(12a ,+∞)上单调递增,在区间(1,12a)上单调递减.当a =12时,因为f ′(x )≥0(当且仅当x =1时取等号),所以f (x )在区间(0,+∞)上单调递增.当a >12时,由f ′(x )>0得0<x <12a 或x >1,由f ′(x )<0得12a <x <1,所以f (x )在区间(0,12a )和区间(1,+∞)上单调递增,在区间(12a,1)上单调递减.(3)方法一:因为a =1,所以f (x )=x 2-bx +ln x ,从而f ′(x )=221x bx x-+ (x >0).由题意知,x 1,x 2是方程2x 2-bx +1=0的两个根,故x 1x 2=12. 记g (x ) =2x 2-bx +1,因为b >3,所以g (12)=32b -<0,g (1)=3-b <0,所以x 1∈(0,12),x 2∈(1,+∞),且bx i =22i x +1 (i =1,2). f (x 1)-f (x 2)=(2212x x -)-(bx 1-bx 2)+ln12x x =-(2212x x -)+ln 12x x . 因为x 1x 2=12,所以f (x 1)-f (x 2)=22x -2214x -ln(222x ),x 2∈(1,+∞).令t =222x ∈(2,+∞),φ(t )=f (x 1)-f (x 2)=122t t--ln t . 因为φ′(t )=22(1)2t t -≥0,所以φ(t )在区间(2,+∞)单调递增,所以φ(t )>φ(2)=34-ln2,即f (x 1)-f (x 2)>34-ln2. 方法二:因为a =1,所以f (x )=x 2-bx +ln x ,从而f ′(x )=221x bx x-+ (x >0).由题意知,x 1,x 2是方程2x 2-bx +1=0的两个根. 记g (x ) =2x 2-bx +1,因为b >3,所以g (12)=32b -<0,g (1)=3-b <0,所以x 1∈(0,12),x 2∈(1,+∞),且f (x )在[x 1,x 2]上为减函数. 所以f (x 1)-f (x 2)>f (12)-f (1)=(14-2b +ln 12)-(1-b )=-34+2b-ln2.因为b >3,故f (x 1)-f (x 2)>-34+2b -ln2>34-ln2.四、巩固训练1、【解】:(1)当0a =时,2ln ()xf x x =,定义域为(0)+∞,. 312ln ()xf x x-'=,令()0f x '=,得x = 当x 变化时,()f x ,()f x '的变化情况如下表:∴当x ()f x 的极大值为2e,无极小值. (2)312ln ()()ax x f x x a +-'=+,由题意()0f x '≥对(0)x a ∈-,恒成立. ∵(0)x a ∈-,,∴3()0x a +<, ∴12ln 0ax x+-≤对(0)x a ∈-,恒成立. ∴2ln a x x x -≤对(0)x a ∈-,恒成立.令()2ln g x x x x =-,(0)x a ∈-,, 则()2ln 1g x x '=+, ①若120ea -<-≤,即120ea ->≥-,则()2ln 10g x x '=+<对(0)x a ∈-,恒成立,∴()2ln g x x x x =-在(0)a -,上单调递减,则2()ln()()a a a a ---≤-,∴ln()a -0≤,∴1a -≤与12e a -≥-矛盾,舍去;②若12ea -->,即12ea -<-,令()2ln 10g x x '=+=,得12ex -=,当120e x -<<时,()2ln 10g x x '=+<,∴()2ln g x x x x =-单调递减,当12ex a -<<-时,()2ln 10g x x '=+>,∴()2ln g x x x x =-单调递增,∴当12ex -=时,1111122222min [()](e)2eln(e)e2eg x g -----==-=-,∴122e a --≤.综上,实数a 的取值范围是122e a --≤.(3)当1a =-时,2ln ()(1)x f x x =-,312ln ()(1)x x xf x x x --'=-. 令()12ln h x x x x =--,(01)x ∈,,则()12(ln 1)2ln 1h x x x '=-+=--, 令()0h x '=,得12e x -=.①当12e1x -<≤时,()0h x '≤,∴()12ln h x x x x =--单调递减,12()(02e 1]h x -∈-,,∴312ln ()0(1)x x xf x x x --'=<-恒成立, ∴2ln ()(1)x f x x =-单调递减,且12()(e )f x f -≤, ②当120ex -<≤时,()0h x '≥,∴()12ln h x x x x =--单调递增,其中1111()12ln()02222h =--⋅=,又222225(e )e 12e ln(e )10eh ----=--⋅=-<, ∴存在唯一201(e ,)2x -∈,使得0()0h x =,∴0()0f x '=,当00x x <<时,()0f x '>,∴2ln ()(1)xf x x =-单调递增,当120ex x -<≤时,()0f x '<,∴2ln ()(1)x f x x =-单调递减,且12()(e )f x f -≥, 由①和②可知,2ln ()(1)xf x x =-在0(0)x ,单调递增,在0(1)x ,上单调递减, ∴当0x x =时,2ln ()(1)xf x x =-取极大值. ∵0000()12ln 0h x x x x =--=,∴0001ln 2x x x -=, ∴00220000ln 11()112(1)(1)2()22x f x x x x x ===----, 又01(0)2x ∈,,∴201112()(0)222x --∈-,,∴0201()2112()22f x x =<---. 2、【解】:(1)当1b =-时,函数3()ln f x a x x =+,则323()3a a x f x x x x+'=+=, ……………………………………………2分所以()ln()3333a a a ag a f a ===--, ………4分令()ln t x x x x =-+,则()ln t x x '=-,令()0t x '=,得1x =, 且当1x =时,()t x 有最大值1,所以()g a 的最大值为1(表格略),(分段写单调性即可),此时3a =-. (6)分(2)由题意得,方程3ln 0a x bx -=在区间(1e],上有两个不同实数解,所以3ln a x b x=在区间(1e],上有两个不同的实数解,即函数1ay b=图像与函数3()ln x m x x =图像有两个不同的交点,…………9分因为22(3ln 1)()x x m x -'=,令()0m x '=,得x所以当x ∈时,()(3e,)m x ∈+∞,……………………………14分当e]x ∈时,3()(3e,e ]m x ∈, 所以,a b 满足的关系式为 33e e a b <,即ab的取值范围为33e e ](,.……16分 3、【解】:(1) f ′(x)=(ax 2-x)e x =x(ax -1)e x .(1分)若a =0,则f′(x)=-x e x ,令f′(x)>0,则x<0;令f′(x)<0,则x>0;若a<0,由f′(x)>0,得1a <x<0;由f′(x)<0,得1a >x 或0<x ;若a>0,由f′(x)<0,得0<x<1a ;由f′(x)>0,得x>1a或x<0;综上可得:当a =0时,函数f(x)的增区间是(-∞,0),减区间是(0,+∞);(3分) 当a<0时,函数f(x)的增区间是⎝⎛⎭⎫1a ,0,减区间是(0,+∞),⎝⎛⎭⎫-∞,1a ;(5分) 当a>0时,函数f(x)的增区间是(-∞,0)⎝⎛⎭⎫1a ,+∞,减区间是⎝⎛⎭⎫0,1a (7分) (2) 因为2a ∈[3,m +1],由(1)x ∈(0,+∞)上函数f(x)的最小值是f ⎝⎛⎭⎫1a . 因为f(x)≥b2a -1e 1a 恒成立, 所以f ⎝⎛⎭⎫1a ≥b 2a -1e 1a 恒成立,(8分) 所以e 1a (2a -1)≥b 2a -1e 1a 恒成立,即2a -1≥b 2a -1恒成立.(9分)由2a ∈[3,m +1],令2a -1=t ∈[2,m],则t ≥b t ,所以ln b ≤ln tt =g(t),(10分)由g′(t)=1-ln tt 2,可知函数g(t)在(0,e )上递增;(e ,+∞)上递减,且g(2)=g(4). 当2<m ≤4时,g(t)min =g(2)=ln 22,从而ln b ≤ln 22,解得0<b ≤2;(13分)当m>4时,g(t)min=g(m)=ln mm,从而ln b≤ln mm,解得0<b≤m1m,(15分)故:当2<m≤4时,0<b≤2;当m>4时,0<b≤m 1m(16分)。
江苏省2019届高三数学一轮复习典型题专题训练:函数

江苏省2019届高三数学一轮复习典型题专题训练:函数1、函数f(x)=log2(x-1)的定义域为{x|x>1}。
2、设函数f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=x,当x不属于集合D={x|x=n-1或n,n∈N*}时,f(x)=x2.则方程f(x)-log2x=0的解的个数是1.3、已知函数y=3-2x-x3的定义域是R。
4、已知函数f(x)是定义在R上的奇函数,且在(-∞,0]上为单调增函数。
若f(-1)=-2,则满足f(2x-3)≤2的x的取值范围是[-1,0]。
5、若f(x)是定义在R上的周期为3的函数,且f(x)=2(x+x2+a),当x∈[1,2];f(x)=-6x+18,当x∈(2,3]。
则f(a+1)的值为-4.6、已知函数f(x)是定义在R上的周期为2的奇函数,当|x|<1时,f(x)=8x。
则f(-19/3)的值为-16.7、已知函数f(x)=(e4x,x≥1;x+1,x<1)。
若函数y=f(x)的最小值是4,则实数a的取值范围为(-∞,1)。
8、已知函数f(x)=|x+3|+1,当x≤8;f(x)=2lnx,当x>a。
若存在实数a<b<c,满足f(a)=f(b)=f(c),则af(a)+bf(b)+cf(c)的最大值为2ln8+4.9、已知函数f(x)=x2+abx+a+2b。
若f(0)=4,则f(1)的最大值是5.10、若函数f(x)=fx-3,当x>3;f(x)=1-x,当x≤3.则f(5)=-2.11、已知函数f(x)=ex-e-x+1.若f(2x-1)+f(4-x)>2,则实数x 的取值范围为(0,1)。
12、函数y=lg(4-3x-x2)的定义域为{x|x-3}。
13、已知函数$f(x)=x^2-kx+4$,对于任意$x\in[1,3]$,不等式$f(x)\geq$恒成立,则实数$k$的最大值为多少?14、函数$f(x)$满足$f(x+4)=f(x)(x\in R)$,且在区间$(-2,2]$上,$f(x)=\begin{cases} \cos x。
2019年江苏省高考冲刺压轴卷 数学试题及解析(Word版,解析版)

2019江苏省高考压轴卷数 学注意事项考生在答题前请认真阅读本注意事项及答题要求 1.本试卷共4页,包含填空题(第1题~第14题)、KS5U 解析题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:球体的体积公式:V =334R π,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.全集12{}345U =,,,,,集合134{}}35{A B =,,,=,,则U A B ⋂()ð═ . 2.已知i 是虚数单位,若12i a i a R +∈(﹣)()=,,则a = . 3.我国古代数学算经十书之一的《九章算术》一哀分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽 人.4.如图是一个算法的流程图,则输出y 的取值范围是 .5.已知函数22353log (1)3x x f x x x -⎧-<⎨-+≥⎩()=,若f (m )=﹣6,则f (m ﹣61)= . 6.已知f (x )=sin (x ﹣1),若p ∈{1,3,5,7},则f (p )≤0的概率为 . 7.已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<2π)的部分图象如图所示,则f (76π)的值为 .8.已知A ,B 分别是双曲线2212x y C m :-=的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为 .9.已知f (x )是R 上的偶函数,且当x ≥0时,f (x )=|x 2﹣3x |,则不等式f (x ﹣2)≤2的解集为 .10.若函数f (x )=a 1nx ,(a ∈R )与函数g (x,在公共点处有共同的切线,则实数a 的值为 .11.设A ,B 在圆x 2+y 2=4上运动,且AB =点P 在直线3x +4y ﹣15=0上运动.则|PA PB |+的最小值是 .12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =23π,∠ABC 的平分线交AC 于点D ,BD =1,则a +c 的最小值为 .13.如图,点D 为△ABC 的边BC 上一点,2BD DC =,E n (n ∈N )为AC 上一列点,且满足:11414n n n n n E A E D E a B a +=+(﹣)﹣5,其中实数列{a n }满足4a n ﹣1≠0,且a 1=2,则111a -+211a -+311a -+…+11n a -= .14.已知函数2910(1)e ,023xx x f x x x ⎧++<⎪⎨⎪-≥⎩()=+6,x 0,其中e 是自然对数的底数.若集合{x ∈Z|x (f (x )﹣m )≥0}中有且仅有4个元素,则整数m 的个数为 .二、解答题(本大题共6小题,计90分.KS5U 解析应写出必要的文字说明,证明过程或演算步骤,请把KS5U 答案写在答题卡的指定区域内)15.(本小题满分14分) 如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,已知点M 为棱BC 上异于B ,C 的一点.(1)若M 为BC 中点,求证:A 1C ∥平面AB 1M ; (2)若平面AB 1M ⊥平面BB 1C 1C ,求证:AM ⊥BC .16.(本小题满分14分)已知12(,),(0,cos(),.2273πππαπβαβαβ∈∈-=+=), (1)求22sin αβ(﹣)的值;(2)求cos α的值.17.(本小题满分14分) 学校拟在一块三角形边角地上建外籍教室和留学生公寓楼,如图,已知△ABC 中,∠C =2π,∠CBA =θ,BC =a .在它的内接正方形DEFG 中建房,其余部分绿化,假设△ABC 的面积为S ,正方形DEFG 的面积为T . (1)用a ,θ表示S 和T ; (2)设f (θ)=TS,试求f (θ)的最大值P ;18.(本小题满分16分) 已知椭圆22221x y C a b:+=0a b (>>),短轴长为. (Ⅰ)求C 的方程;(Ⅱ)如图,经过椭圆左项点A 且斜率为k (k ≠0)直线l 与C 交于A ,B 两点,交y 轴于点E ,点P 为线段AB 的中点,若点E 关于x 轴的对称点为H ,过点E 作与OP (O 为坐标原点)垂直的直线交直线AH 于点M ,且△APM 面积为3,求k 的值.19.(本小题满分16分) 已知函数()212ln 2f x x x ax a R =+-∈,. (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值; (3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由. 20.(本小题满分16分) 已知集合A =a 1,a 2,a 3,…,a n ,其中a i ∈R (1≤i ≤n ,n >2),l (A )表示和a i +a j (1≤i <j ≤n )中所有不同值的个数.(Ⅰ)设集合P =2,4,6,8,Q =2,4,8,16,分别求l (P )和l (Q ); (Ⅱ)若集合A =2,4,8, (2),求证:(1)()2n n l A -=; (Ⅲ)l A ()是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由? 数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.请在答题..卡指定区域内......作答.KS5U 解析应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲如图,已知AB 为半圆O 的直径,点C 为半圆上一点,过点C 作半圆的切线CD ,过点B 作BD CD ⊥于点D . 求证:2BC BA BD =⋅.B .选修4—2:矩阵与变换已知矩阵=a b M c d ⎡⎤⎢⎥⎣⎦,10=102N ⎡⎤⎢⎥⎢⎥⎣⎦,且()110402MN -⎡⎤⎢⎥=⎢⎥⎣⎦,求矩阵M .C .选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为2{2x t y t==--(t 为参数).在极坐标系中(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,极轴与x 轴的非负半轴重合),圆C的方程为4πρθ⎛⎫=+ ⎪⎝⎭,求直线l 被圆C 截得的弦长.D .选修4—5:不等式选讲已知正实数x y z 、、,满足3x y z xyz ++=,求xy yz xz ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出 文字说明、证明过程或演算步骤.22.(本小题满分10分) 如图,在四棱锥P ﹣ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =4,PD =2.(1)求异面直线AP 与BC 所成角的余弦值. (2)求直线AB 与平面PBC 所成角的正弦值.23.(本小题满分10分)在集合{A =1,2,3,4,…,2n }中,任取m (m n ≤,m ,n ∈N *)元素构成集合m A .若m A 的所有元素之和为偶数,则称m A 为A 的偶子集,其个数记为()f m ;若m A 的所有元素之和为奇数,则称m A 为A 的奇子集,其个数记为()g m .令()()()F m f m g m =-.(1)当2n =时,求(1)F ,(2)F ,的值; (2)求()F m .2019年江苏省高考压轴卷 数学1.【答案】{1,2,4,5} 【解析】解:A ∩B ={3}, 则∁U (A ∩B )={1,2,4,5}, 故答案为:{1,2,4,5}, 2.【答案】1.【解析】解:∵(1﹣i )(a +i )=(a +1)+(1﹣a )i =2, ∴1210a a +=⎧⎨-=⎩,即a =1.故答案为:1. 3.【答案】60.【解析】解:由题意可知,抽样比为500181009000540045=++.故北乡应抽8100×145=180,南乡应抽5400×145=120, 所以180﹣120=60, 即北乡比南乡多抽60人, 故答案为:604.【答案】31]. 【解析】解:由已知中的程序语句可知:该程序的功能是计算并输出变量123030x x x y xx ⎧+->⎪=⎨⎪≤⎩的值, 由于当x >0时,123y x x+≥=﹣3, 当x ≤0时,y =3x∈(0,1],则输出y的取值范围是31].故答案为:31]. 5.【答案】-4.【解析】解:∵函数22353log (1)3x x f x x x -⎧-<⎨-+≥⎩()=,f (m )=﹣6,∴当m <3时,f (m )=3m ﹣2﹣5=﹣6,无解;当m ≥3时,f (m )=﹣log 2(m +1)=﹣6, 解得m =63,∴f (m ﹣61)=f (2)=32﹣2﹣5=﹣4.故答案为:﹣4. 6.【答案】34. 【解析】解:∵f (x )=sin (x ﹣1),p ∈{1,3,5,7},f (1)=sin0=0, f (3)=sin2>0, f (5)=sin4<0, f (7)=sin6<0,∴f (p )≤0的概率为p =34. 故答案为:34. 7.【答案】1.【解析】解:根据函数f (x )=2sin (ωx +φ)(ω>0,|φ|<2π)的部分图象,可得12521212πππω⋅=+,∴ω=2, 再根据五点法作图可得2012πφ⋅+=,求得6πφ=-,∴函数f (x )=2sin (26x π-),∴f (76π)=2sin (736ππ-)=2sin 136π=2sin 6π=1, 故答案为:1.8.【答案】x 2+(y ﹣3)2=10. 【解析】解:P (3,4)为C 上的一点, 所以91612m -=,解得m =1, 所以A (﹣1,0)B (1,0), 设△PAB 的外接圆的圆心(0,b ), 则1+b 2=32+(b ﹣4)2,解得b =3,则△PAB 的外接圆的标准方程为x 2+(y ﹣3)2=10. 故答案为:x 2+(y ﹣3)2=10.9.【答案】{x |﹣3≤x ≤1或0≤x≤x ≤﹣4}. 【解析】解:根据题意,当x ≥0时,f (x )=|x 2﹣3x |, 此时若有f (x )≤2,即20|3|2x x x ≥⎧⎨-≤⎩,解可得0≤x ≤1或2≤x≤32,即此时f (x )≤2的解集为{x |0≤x ≤1或2≤x≤32+}, 又由f (x )为偶函数,则当x ≤0时,f (x )≤2的解集为{x |﹣1≤x ≤0≤x ≤﹣2},综合可得:f (x )≤2的解集为{x |﹣1≤x ≤1或2≤xx ≤﹣2}; 则不等式f (x ﹣2)≤2的解集{x |﹣3≤x ≤1或0≤x或﹣72≤x ≤﹣4}; 故答案为:{x |﹣3≤x ≤1或0≤x≤12或﹣72≤x ≤﹣4}. 10.【答案】2e. 【解析】解:函数f (x )=alnx 的定义域为(0,+∞),f ′(x )=ax ,g ′(x, 设曲线f (x )=alnx 与曲线g (x公共点为(x 0,y 0),由于在公共点处有共同的切线,∴0a x =,解得204x a =,a >0. 由f (x 0)=g (x 0),可得0alnx联立2004x a alnx ⎧=⎪⎨⎪⎩,解得2e a =.故答案为:2e.11.【答案】5.【解析】解:取AB 的中点M ,连OM ,则OM ⊥AB ,∴|OM |1===,即点M 的轨迹是以O 为圆心,1为半径的圆.∴|PA PB |2||PM +=,设点O 到直线3x +4y ﹣15=0的距离为3d ==,所以2|PM |≥2d ﹣1=6﹣1=5(当且仅当OP ⊥l ,M 为线段OP 与圆x 2+y 2=1的交点时取等) 故答案为:5.12.【答案】4. 【解析】解:由题意得1211232323acsin asin csin πππ+=, 即ac =a +c , 得+=1,得a +c =(a +c )(1a +1c)=22224c a a c ++≥+=+=, 当且仅当a =c 时,取等号, 故答案为:413.【答案】13342n n+--.【解析】解:点D 为△ABC 的边BC 上一点,2,2()n n n n BD DC E D E B E C E D =-=- ∴3122n n n E C E D E B =-又322n n n n E A E C E D E B λλλ==-, 1141345n n a a +-=-⨯-,∴134541n n a a +--=-,14434414141n n n n a a a a +--=-=--,11141131,441111n n n n n n n a a a a a a a ++---===+----,,∴11123(2)11n n a a ++=+--, ∴1123,3 2.11n n n n a a +==---,13(13)3342132n n n n S n +⨯---=-=-.故答案为:13342n n+--.14.已知函数f (x )=,其中e 是自然对数的底数.若集合{x ∈Z|x(f (x )﹣m )≥0}中有且仅有4个元素,则整数m 的个数为 . 【答案】34.【解析】解:∵x =0∈A ,符合条件的整数根,除零外有且只有三个即可. 画出f (x )的图象如下图:当x >0时,f (x )≥m ;当x <0时,m ≥f (x ).即y 轴左侧的图象在y =m 下面,y 轴右侧的图象在y =m 上面, ∵f (3)=﹣3×9+18=﹣9,f (4)=﹣3×16+24=﹣24,f (﹣3)=﹣(﹣3)3﹣3×(﹣3)2+4=4, f (﹣4)=﹣(﹣4)3﹣3×(﹣4)2+4=20,平移y =a ,由图可知:当﹣24<a ≤﹣9时,A ={1,2,3},符合题意;a =0时,A ={﹣1,1,2},符合题意;2≤a≤3时,A={1,﹣1,﹣2},符合题意;4≤a<20时,A={﹣1,﹣2,﹣3},符合题意;∴整数m的值为﹣23,﹣22,﹣21,﹣20,﹣19,﹣18,﹣17,﹣16,﹣15,﹣14,﹣13,﹣12,﹣11,﹣10,﹣9,0,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,共34个.故答案为:34.15.【答案】见解析.【解析】证明:(1)连结A1B,交AB1于N,则N是A1B的中点,∵在直四棱柱ABCD﹣A1B1C1D1中,M为BC中点,∴MN∥A1C,∵A1C⊄平面AB1M,MN⊂平面AB1M,∴A1C∥平面AB1M.解:(2)过B作BP⊥B1M,垂足为P,平面AB1M⊥平面B1BCC1,且交线为B1M,BP⊂平面AB1M,AM⊂平面ABCD,∴BB1⊥AM,直四棱柱ABCD﹣A1B1C1D1中,BB1⊥平面ABCD,AM⊂平面ABCD,∴BB1⊥AM,又BP∩BB1=B,∴AM⊥平面BB1C1C,又BC⊂平面BB1C1C,∴AM⊥BC.16.【答案】(1)49.(2)14. 【解析】解:(1)∵已知12(,),(0,cos(),2273πππαπβαβαβ∈∈-=+=),,∴sinαβ=(﹣∴22249sinsin cos αβαβαβ(﹣)=(﹣)(﹣)=. (2)[]2cos cos cos cos sin sin ααβαβαβαβαβαβ++++=()(﹣)=()(﹣)-()(﹣2111321272714cos α-⋅-=-=﹣,求得14cos α,或14cos α=-(舍去),综上,cos α 17.【答案】(1)S =12a 2tan θ,θ∈(0,2π);22(sin )(sin cos 1)a T θθθ=+,θ∈(0,2π);(2)49. 【解析】解:(1)由题意知,AC =a tan θ, 所以△ABC 的面积为:S =12AC •BC =12a 2tan θ,其中θ∈(0,2π); 又DG =GF =BG sin θ=cos cos CG a BGθθ-=, 所以BG =sin cos 1aθθ=+,DG sin sin cos 1a θθθ=+,所以正方形DEFG 的面积为:2T DG ==22(sin )(sin cos 1)a θθθ+,其中θ∈(0,2π); (2)由题意知22sin cos (sin cos 1)f θθθθθ+()=,其中θ∈(0,2π), 所以21sin cos 2sin cos f θθθθθ++()=;由sin θcos θ=12sin2θ∈(0,12],所以15sin cos sin cos 2θθθθ+≥,即f (θ)≤49,当且仅当sin2θ=1,即θ=4π时“=”成立;所以f (θ)的最大值P 为49.18.【答案】(Ⅰ)22142x y +=;(Ⅱ)2k =±.【解析】解:(Ⅰ)由题意可得22222c e a b a b c ⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得a =2,b,c,∴椭圆C 的方程为22142x y +=. (Ⅱ)易知椭圆左顶点A (﹣2,0),设直线l 的方程为y =k (x +2),则E (0,2k ),H (0,﹣2k ),由22(2)142y k x x y =+⎧⎪⎨⎪⎩+=消y 可得(1+2k 2)x 2+8k 2x +8k 2﹣4=0 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0), ∴△=64k 4﹣4(8k 2﹣4)(1+2k 2)=16则有x 1+x 2=22812k k -+,x 1x 2=228412k k -+,∴x 0=12(x 1+x 2)=﹣22412k k +,y 0=k (x 0+2)=2212kk+, ∴0012OP y k x k=-=, ∴直线EM 的斜率k EM =2k ,∴直线EM 的方程为y =2kx +2k ,直线AH 的方程为y =﹣k (x +2), ∴点M (43-,23k ), ∴点M 到直线l :kx ﹣y +2k =0的距离4||k d ,∴|AB |=,∴12AP AB =,∴2244|k ||k |113•2212123APM S AP d k k ∆⋅==++==解得k =19.【答案】(1)()f x 的极大值为()512f =-;极小值为()22ln24f =-;(2)0x =(3)见解析【解析】(1) 当3a =时,函数()212ln 32f x x x x =+-的定义域为()0+∞,. 则()22x 3x 2f x x 3x x-+=+-=',令()f x 0'=得,1x =或2x =.列表:所以函数的极大值为()512f =-;极小值为()22ln24f =-. (2)依题意,切线方程为()()()0000y f x x x f x (x 0)=-+>', 从而()()()0000g(x)f x x x f x (x 0)+'=->, 记()()()p x f x g x =-,则()()()()()000p x f x f x f x x x =---'在()0+∞,上为单调增函数, 所以()()()0p x f x f x 0=-''≥'在()0+∞,上恒成立, 即()022p x xx 0x x +-'=-≥在()0+∞,上恒成立.变形得0022x x x x +≥+在()0+∞,上恒成立 ,因为2xx +≥=x =, 所以002x x +,从而(20x 0≤,所以0x(3)假设存在一条直线与函数的图象有两个不同的切点()111T x y ,,()222T x y ,,不妨120x x <<,则1T 处切线1l 的方程为:()()()111y f x f x x x '-=-,2T 处切线2l 的方程为:()()()222y f x f x x x '-=-.因为1l ,2l 为同一直线,所以()()()()()()12111222f x f x {x x f x x x f x .f f ''''=-=-,即121222111111222221222x x x x { 12122x x x x x a2x x x x x a .2x 2x a a ln a ln a +-=+-⎛⎫⎛⎫+--+-=+--+- ⎪⎪⎝⎭⎝⎭,整理得,12221122x x 2{ 112x x 2x x .22ln ln =-=-,消去2x 得,221121x x 22ln02x 2+-=.令21x t 2=,由120x x <<与12x x 2=,得()01t ∈,,记()1p t 2lnt t t =+-,则()()222t 121p t 10t t t -=--=-<', 所以()p t 为()01,上的单调减函数,所以()()p t p 10>=. 从而式不可能成立,所以假设不成立,从而不存在一条直线与函数()f x 的图象有两个不同的切点.20.【答案】(Ⅰ)l (P )=5. l (Q )=6;(Ⅱ)证明见解析; (Ⅲ)l (A )存在最小值,且最小值为2n ﹣3.【解析】解:(Ⅰ)根据题中的定义可知:由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得l (P )=5.由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得l (Q )=6.(5分) (Ⅱ)证明:因为a i +a j (1≤i <j ≤n )最多有2(1)2n n n C -=个值,所以(1)()2n n l A -≤. 又集合A =2,4,8,,2n,任取a i +a j ,a k +a l (1≤i <j ≤n ,1≤k <l ≤n ), 当j ≠l 时,不妨设j <l ,则a i +a j <2a j =2j +1≤a l <a k +a l , 即a i +a j ≠a k +a l .当j =l ,i ≠k 时,a i +a j ≠a k +a l . 因此,当且仅当i =k ,j =l 时,a i +a j =a k +a l . 即所有a i +a j (1≤i <j ≤n )的值两两不同, 所以(1)()2n n l A -=.(9分) (Ⅲ)l (A )存在最小值,且最小值为2n ﹣3.不妨设a 1<a 2<a 3<…<a n ,可得a 1+a 2<a 1+a 3<…<a 1+a n <a 2+a n <…<a n ﹣1+a n , 所以a i +a j (1≤i <j ≤n )中至少有2n ﹣3个不同的数,即l (A )≥2n ﹣3. 事实上,设a 1,a 2,a 3,,a n 成等差数列, 考虑a i +a j (1≤i <j ≤n ),根据等差数列的性质, 当i +j ≤n 时,a i +a j =a 1+a i +j ﹣1; 当i +j >n 时,a i +a j =a i +j ﹣n +a n ;因此每个和a i +a j (1≤i <j ≤n )等于a 1+a k (2≤k ≤n )中的一个, 或者等于a l +a n (2≤l ≤n ﹣1)中的一个.所以对这样的A ,l (A )=2n ﹣3,所以l (A )的最小值为2n ﹣3. 21.A .选修4—1:几何证明选讲 【答案】证明见解析. 【解析】证明:因为CD 为圆的切线,弧所对的圆周角为BAC ∠,所以 BCD BAC ∠=∠. ① 又因为为半圆的直径,所以90ACB ∠=︒.又BD ⊥CD ,所以90CDB ACB ∠=︒=∠. ② 由①②得ABC CBD ∆∆∽, 所以2AB BCBC BA BD BC BD=⇒=⋅. B .选修4—2:矩阵与变换 【答案】40=01M ⎡⎤⎢⎥⎣⎦【解析】由题意,()110402MN -⎡⎤⎢⎥=⎢⎥⎣⎦,则40102MN ⎡⎤⎢⎥=⎢⎥⎣⎦. 因为10=102N ⎡⎤⎢⎥⎢⎥⎣⎦,则110=02N -⎡⎤⎢⎥⎣⎦. 所以矩阵401040=1020102M ⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. C .选修4—4:坐标系与参数方程【解析】将直线l 的参数方程为2{2x t y t ==--化为方程:240x y ++=圆的方程为4πρθ⎛⎫=+⎪⎝⎭化为直角坐标系方程:()24cos sin ρρθθ=-, 即22440x y x y +-+=,()()22228x y -++=,其圆心()2,2-,半径为∴圆心C 到直线l的距离为d ==∴直线l 被圆C 截得的弦长为5= D .选修4—5:不等式选讲 【答案】3 【解析】因3x y z xyz ++=,所以1113xy yz xz++=, 又2111()()(111)9xy yz xz xy yz xz++++≥++=, 3xyyz xz ++≥,当且仅当1x y z ===时取等号,所以xy yz xz ++的最小值为3.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.KS5U解析应写出 文字说明、证明过程或演算步骤. 22.【答案】(1)5;(2)5. 【解析】解:(1)因为AD ∥BC ,所以∠DAP 或其补角就是异面直线AP 与BC 所成的角, 因为AD ⊥平面PDC ,所以AD⊥PD , 在Rt △PDA 中,AP ==cos ∠DAP =AD AP= 所以,异面直线AP 与BC(2)过点D 作AB 的平行线交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.∵AD ⊥PD ,AD ∥BC ,∴PD ⊥BC , 又PD ⊥PB ,PB ∩BC =B , ∴PD ⊥平面PBC ,∴∠DFP 为直线DF 和平面PBC 所成的角.由于AD ∥BC ,DF ∥AB ,故BF =AD =1,由已知,得CF =BC ﹣BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF中,可得DF =在Rt △DPF 中,sin ∠DFP=5PD DF =. 所以,直线AB 与平面PBC23. 【答案】(1)0,-2;(2)22(1)C , ()0,m mn m F m m ⎧⎪-=⎨⎪⎩为偶数, 为奇数..【解析】(1)当2n =时,集合为{1,2,3,4}.当1m =时,偶子集有{2},{4},奇子集有{1},{3},(1)2f =,(1)2g =,(1)0F =; 当2m =时,偶子集有{2,4},{1,3},奇子集有{1,2},{1,4},{2,3},{3,4},(2)2f =,(2)4g =,(2)2F =-;(2)当m 为奇数时,偶子集的个数0224411()C C C C C C C C m m m m n n n n n n n n f m ---=++++,奇子集的个数1133()C C C C C C m m m n nn n n n g m --=+++,所以()()f m g m =,()()()0F m f m g m =-=.当m 为偶数时,偶子集的个数022440()C C C C C C C C m m m m n n n n n n n n f m --=++++,奇子集的个数113311()C C C C C C m m m n nn n n n g m ---=+++,所以()()()F m f m g m =-0112233110C C C C C C C C C C C C m m m m m m n n n n n n n nn n n n ----=-+-+-+.一方面,1220122(1)(1)(C C C C )[C C C (1)C ]n n n n n n n n n n n n n n n x x x x x x x x +-=++++-+-+-,所以(1)(1)n n x x +-中m x 的系数为0112233110C C C C C C C C C C C C m m m m m m n n n n n n n n n n n n -----+-+-+; 另一方面,2(1)(1)(1)n n n x x x +-=-,2(1)n x -中m x 的系数为22(1)C m m n-, 故()F m =22(1)C m mn -. 综上,22(1)C ,()0,m mn m F m m ⎧⎪-=⎨⎪⎩为偶数, 为奇数.。
推荐2019年人教版江苏省高三数学一轮复习备考试题:函数(含答案)Word版

高考一轮复习备考试题(附参考答案)函数一、填空题1、(2014年江苏高考)已知函数,若对于任意,都有成立,则实数的取值范围是▲. 2、(2014年江苏高考)已知是定义在上且周期为3的函数,当时,在区间上有10个零点(互不相同),则实数的取值范围是▲.3、(2013年江苏高考)已知是定义在上的奇函数。
当时,,则不等式的解集用区间表示为。
4、(2012年江苏高考)函数的定义域为▲.5、(2012年江苏省高考)设是定义在上且周期为2的函数,在区间上,其中.若,则的值为▲.6、(2012年江苏省5分)已知函数的值域为,若关于x 的不等式的解集为,则实数c 的值为▲.7、(2015届江苏南京高三9月调研)设f (x )=x 2-3x +a .若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为▲8、(2015届江苏南通市直中学高三9月调研)已知函数若在R 上为增函数,则实数的取值范围是▲9、(2015届江苏苏州高三9月调研)已知函数为奇函数则实数的值为▲10、(南京市2014届高三第三次模拟)已知函数f (x )=⎩⎨⎧x ,x≥0,x2,x <0,,则关于x 的不等式f (x 2)>f (3-2x )的解集是▲11、(南通市2014届高三第三次调研)已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是▲.12、(苏锡常镇四市2014届高三5月调研(二))函数的定义域为A ,函数的定义域为B ,则AB = ▲13、(苏锡常镇四市2014届高三5月调研(二))已知奇函数是上的单调函数,若函数只有一个零点,则实数k 的值是▲.14、(徐州市2014届高三第三次模拟)已知函数是定义在上的奇函数,且当时,,则不等式的解集是▲15、(徐州市2014届高三第三次模拟)已知函数.若存在实数,,使得的解集恰为,则的取值范围是▲16、(南京、盐城市2014届高三第二次模拟(淮安三模))函数f(x)=ln x+1-x的定义域为▲17、(南京、盐城市2014届高三第二次模拟(淮安三模))已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1).若直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,则实数k的值为▲18、(2014江苏百校联考一)函数的所有零点之和为.19、(南京、盐城市2014高三第一次模拟)若函数是定义在上的偶函数,且在区间上是单调增函数.如果实数满足时,那么的取值范围是20、(苏锡常镇四市2014届高三3月调研(一))已知函数,若函数恰有两个不同的零点,则实数的取值范围为▲21、(南通市2014届高三上学期期末考试)设函数是定义域为R,周期为2的周期函数,且当时,;已知函数则函数和的图象在区间内公共点的个数为.22、(苏州市2014届高三1月第一次调研)已知,则不等式的解集是▲23、(泰州市2014届高三上学期期末考试)设函数(都是实数).则下列叙述中,正确的序号是▲.(请把所有叙述正确的序号都填上)①对任意实数,函数在上是单调函数;②存在实数,函数在上不是单调函数;③对任意实数,函数的图像都是中心对称图形;④存在实数,使得函数的图像不是中心对称图形.24、(江苏省扬州中学2014届高三上学期12月月考)设,,且,则▲25、、(江苏省诚贤中学2014届高三12月月考)在用二分法...求方程的一个近似解时,现在已经将一根锁定在区间(1,2),则下一步可断定该根所在的区间为▲.26、(江苏省东海县第二中学2014届高三第三次学情调研)已知函数,如果关于的方。
2019届高考数学(江苏卷)模拟冲刺卷(含附加及详细解答,共8套)

2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 已知集合A ={1,2},B ={a ,a 2-3},若A ∩B ={1},则实数a 的值为________.2. 若命题“∀t ∈R , t 2-at -a ≥0”是真命题,则实数a 的取值范围是________.3. 已知复数z 满足z (1-i)=2+i ,其中i 为虚数单位,则复数z 的模|z |=________.4. 根据如图所示的伪代码,当输出y 的值为1时,则输入的x 的值为________. Read xIf x ≤0 Then y ←x 2+1 Elsey ←ln x End If Print y5. 若函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥4,f (x +3),x <4,则f (log 238)=________.6. 盒子中有2个白球、1个黑球,一人从盒中抓出两球,则两球颜色不同的概率为________.7. 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x -y -2≤0,x +y -2≥0,则z =3x -y 的最大值为________.8. 如图,F 1,F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若△AF 1F 2为等腰三角形,则C 2的离心率是________.9. 已知α,β∈(3π4,π),sin(α+β)=-35,sin(β-π4)=13,则cos(α+π4)=________.10. 如图,在△ABC 中,AB =3,BC =2,D 在边AB 上,BD →=2DA →,若DB →·DC →=3,则边AC 的长为__________.11. 设正四面体ABCD 的棱长为6,P 是棱AB 上的任意一点(不与A ,B 重合),且P 到平面BCD 、平面ACD 的距离分别为x ,y ,则3x +1y的最小值是________.12. 已知数列{a n }的前n 项和S n =-a n -(12)n -1+1(n 为正整数),则数列{a n }的通项公式为________.13. 已知函数f (x )(x ∈R )的图象关于点(1,2)对称,若函数y =2xx -1-f (x )有四个零点x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.14. 已知函数f (x )=1e x -ae x(x >0,a ∈R ),若存在实数m ,n ,使得f (x )≥0的解集恰为[m ,n ],则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.如图,在三棱柱ABCA 1B 1C 1中,M ,N 分别为线段BB 1,A 1C 的中点,MN ⊥AA 1,且MA 1=MC .求证:(1)平面A 1MC ⊥平面A 1ACC 1; (2)MN ∥平面ABC .16. (本小题满分14分)已知在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且2cos 2B2=3sin B ,b =1.(1)若A =5π12,求边c 的大小;(2)若sin A =2sin C ,求△ABC 的面积.学校A,B两餐厅每天供应1 000名学生用餐(每人每天只选一个餐厅用餐),调查表明:开学第一天有200人选A餐厅,并且学生用餐有以下规律:凡是在某天选A餐厅的,后面一天会有20%改选B餐厅,而选B餐厅的,后面一天则有30%改选A餐厅.若用a n,b n分别表示在开学第n天选A餐厅、B餐厅的人数.(1)求开学第二天选择A餐厅的人数;(2)若某餐厅一天用餐总人数低于学校用餐总数的920,则该餐厅需整改,问B餐厅在开学一个月内是否有整改的可能,如果有可能,请指出在开学后第几天开始整改;如果没有可能,请说明理由.18. (本小题满分16分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数,直线l:x-y+2=0与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.(1)求椭圆C的方程;(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,m=(k1-2,1),n=(1,k2-2),若m⊥n,求证:直线AB过定点.在等比数列{a n }中,a 2=14,a 3·a 6=1512.设b n =log2a 2n 2·log2a 2n +12,T n 为数列{b n }的前n 项和. (1)求a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n -2(-1)n 恒成立,求实数λ的取值范围.20. (本小题满分16分)已知函数f (x )=ln x +ke x(其中k ∈R ,e =2.718 28…是自然对数的底数).(1) 当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2) 若x e x f (x )>m 对x ∈[1,e]恒成立,求k 的取值范围;(3) 若f ′(1)=0,求证:对任意x >0,f ′(x )<e -2+1x 2+x 恒成立.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤12c d (c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.B. (选修44:坐标系与参数方程)在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R ),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数),求直线l 与曲线C 的交点P 的直角坐标.C. (选修45:不等式选讲)已知x ,y ,z ∈R ,且x +2y +3z +8=0.求证:(x -1)2+(y +2)2+(z -3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1)求异面直线BA1与CB1夹角的余弦值;(2)求二面角BAB1C平面角的余弦值.23. 在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1)当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2)求出所有的正整数n,使得5a n+1a n+1为完全平方数.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)1. 1或-2 解析:∵ A ∩B ={1},∴ 1∈B ,∴ a =1或a 2-3=1,∴ a =1或a =±2,但a =2 不合题意,舍去.2. [-4,0] 解析:∵ Δ=a 2+4a ≤0,∴ -4≤a ≤0.3. 102 解析:z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=12+32i ,|z |=14+94=102.4. e 或0 解析:y =⎩⎪⎨⎪⎧x 2+1,x ≤0,ln x ,x >0,令y =1,则x =0或x =e .5. 24 解析:∵ log 238=log 23-3<4,log 23<4,又x <4时,f (x )=f (x +3),∴ f ⎝⎛⎭⎫log 238=f (log 23-3)=f (log 23+3).∵ log 23+3>4,∴ f (log 23+3)=2log 23+3=2log 23·23=24. 6. 23 解析:从盒中抓出两球共有3种方法,其中颜色不同的有2种,故概率为23. 7. 6 解析:作出如图所示可行域,当直线经过最优点(4,6)时,z 取得最大值6.8. 23 解析:∵ AF 2=F 1F 2=2c =4,AF 2-AF 1=2,∴ AF 1=2,∴ a =3,∴ e =23. 9. -82+315 解析:由于α,β∈⎝⎛⎭⎫3π4,π,∴ 3π2<α+β<2π,∴ π2<β-π4<3π4,∴ cos(α+β)=45,cos ⎝⎛⎭⎫β-π4=-223,∴ cos ⎝⎛⎭⎫α+π4=cos[(α+β)-⎝⎛⎭⎫β-π4]=45×⎝⎛⎭⎫-232+⎝⎛⎭⎫-35×13=-82+315. 10. 10 解析:∵ DB →·DC →=3,∴ DB →·(BC →-BD →)=3,∴ DB →·BC →-DB →·BD →=3.又|BD →|=2,∴ BD →·BC →=1,∴ cos B =14,由余弦定理得AC =10.11. 2+3 解析:∵ V ABCD =V PBCD +V P ACD ,正四面体ABCD 的高h =2,∴ x +y =2,∴ 3x+1y =⎝⎛⎭⎫3x +1y ⎝⎛⎭⎫x +y 2=12⎝⎛⎭⎫4+3y x +x y ≥2+3,当且仅当3y x =x y 时等号成立. 12. n -12n 解析:当n =1时,得S 1=-a 1-⎝⎛⎭⎫120+1,即a 1=0;当n ≥2时,∵ S n =-a n-⎝⎛⎭⎫12n -1+1,∴ S n -1=-a n -1-⎝⎛⎭⎫12n -2+1,∴ a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1,∴ 2a n =a n -1+⎝⎛⎭⎫12n -1,即2n a n =2n -1a n -1+1.令b n =2n a n ,则当n ≥2时,b n =b n -1+1,即b n -b n -1=1.又b 1=2a 1=0,故数列{b n }是首项为0,公差为1的等差数列,于是b n =b 1+(n -1)·1=n -1.∵ b n=2n a n ,∴ a n =2-n b n =n -12n .13. 4 解析:y =2x x -1-f (x )的零点即为2x x -1=f (x )的解,∴ y =2xx -1与y =f (x )有四个交点.∵y =2x x -1=2+2x -1,∴ y =2x x -1的图象关于点(1,2)对称.又f (x )(x ∈R )的图象关于点(1,2)对称,∴ y =2xx -1与y =f (x )的四个交点关于(1,2)对称,∴ x 1+x 2+x 3+x 4=2+2=4.14. (0,1) 解析:由f (x )≥0及x >0,得a ≤ex e x 的解集恰为[m ,n ],设 g (x )=exe x ,则g ′(x )=e (1-x )e x,由g ′(x )=0,得x =1,当0<x <1时,g ′(x )>0,g (x )单调递增; 当x >1时,g ′(x )<0,g (x )单调递减,且g (1)=1,g (0)=0,当x >0时,g (x )>0,大体图象如图所示.由题意得方程a =exex 有两不等的非零根,∴ a ∈(0,1).15. 证明:(1) ∵ MA 1=MC ,且N 是A 1C 的中点, ∴ MN ⊥A 1C .又MN ⊥AA 1,AA 1∩A 1C =A 1,A 1C ,AA 1⊂平面A 1ACC 1, 故MN ⊥平面A 1ACC 1. ∵ MN ⊂平面A 1MC ,∴ 平面A 1MC ⊥平面A 1ACC 1. (6分) (2) 如图,取AC 中点P ,连结NP ,BP . ∵ N 为A 1C 中点,P 为AC 中点,∴ PN ∥AA 1,且PN =12AA 1.在三棱柱ABCA 1B 1C 1中,BB 1∥AA 1,且BB 1=AA 1.又M 为BB 1中点,故BM ∥AA 1,且BM =12AA 1,∴ PN ∥BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN ∥BP .又MN ⊄平面ABC ,BP ⊂平面ABC , ∴ 故MN ∥平面ABC .(14分)16. 解:(1) 由题意,得1+cos B =3sin B ,∴ 2sin ⎝⎛⎭⎫B -π6=1,∴ B -π6=π6或5π6(舍去),∴ B =π3.∵ A =5π12,则C =π4,由正弦定理c sin C =b sin B ,得c =63.(5分)(2) ∵ sin A =2sin C ,由正弦定理,得a =2c .由余弦定理,得b 2=a 2+c 2-2ac cos B , 将b =1,a =2c ,B =π3代入解得c =33,从而a =233,∴ S △ABC =12ac sin B =12×233×33sin π3=36.(14分)17. 解:(1) 第一天选A 餐厅的学生在第二天仍选A 餐厅的学生有200(1-20%)=160(人), 第一天选B 餐厅的学生在第二天改选A 餐厅的学生有(1000-200)×30%=240(人), 故开学第二天选择A 餐厅的人数为160+240=400.(4分) (2) 由题知b n +1=20%a n +b n (1-30%),而a n +b n =1 000,∴ b n +1=12b n +200,∴ b n +1-400=12(b n -400).又b 1=1 000-200=800,∴ 数列{b n -400}是首项为400,公比为12的等比数列,∴ b n -400=400×⎝⎛⎭⎫12n -1,∴ b n =400+400×⎝⎛⎭⎫12n -1.当选B 餐厅用餐总人数低于学校用餐总数的920时, 有400+400×⎝⎛⎭⎫12n -1<920×1 000, 即⎝⎛⎭⎫12n -1<18,∴ n >4,∴ B 餐厅有整改的可能,且在开学第5天开始整改.(14分) 18. (1) 解:∵ 等轴双曲线的离心率为2,∴ 椭圆的离心率为e =22,∴ e 2=c 2a 2=a 2-b 2a 2=12,∴ a 2=2b 2.∵ 直线l :x -y +2=0与圆x 2+y 2=b 2相切, ∴ b =1,∴ 椭圆C 的方程为x 22+y 2=1.(4分)(2) 证明:由(1)知M (0,1),∵ m =(k 1-2,1),n =(1,k 2-2),m ⊥n ,∴ k 1+k 2=4. ① 若直线AB 的斜率存在,设AB 方程为y =kx +m ,依题意m ≠±1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得 (1+2k 2)x 2+4kmx +2m 2-2=0,则有x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2.由k 1+k 2=4,可得y 1-1x 1+y 2-1x 2=4,∴ kx 1+m -1x 1+kx 2+m -1x 2=4,即2k +(m -1)·x 1+x 2x 1x 2=4,将x 1+x 2,x 1x 2代入得k -km m +1=2,∴ m =k2-1,故直线AB 的方程为y =kx +k2-1,即y =k ⎝⎛⎫x +12-1,∴ 直线AB 过定点⎝⎛⎭⎫-12,-1;(10分) ② 若直线AB 的斜率不存在,设方程为x =x 0, 则点A (x 0,y 0),B (x 0,-y 0).由已知y 0-1x 0+-y 0-1x 0=4,得x 0=-12,此时AB 方程为x =x 0,显然过点⎝⎛⎭⎫-12,-1. 综上所述,直线AB 过定点⎝⎛⎭⎫-12,-1.(16分) 19. 解:(1) 设{a n }的公比为q ,由a 3a 6=a 22·q 5=116q 5=1512,得q =12,∴ a n =a 2·q n -2=⎝⎛⎭⎫12n .(2分)b n =log2a 2n 2·log2a 2n +12=log ⎝⎛⎭⎫122n -12·log ⎝⎛⎭⎫122n +12=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴ T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1. (5分)(2) ① 当n 为偶数时,由λT n <n -2恒成立,得λ<(n -2)(2n +1)n =2n -2n -3恒成立,即λ<⎝⎛⎭⎫2n -2n -3min ,(6分) 而2n -2n-3随n 的增大而增大,∴ n =2时⎝⎛⎭⎫2n -2n -3min =0,∴ λ<0;(8分) ② 当n 为奇数时,由λT n <n +2恒成立得,λ<(n +2)(2n +1)n =2n +2n +5恒成立,即λ<⎝⎛⎭⎫2n +2n +5min .(12分) 而2n +2n +5≥22n ·2n+5=9,当且仅当2n =2n,即n =1时等号成立,∴ λ<9.综上,实数λ的取值范围是(-∞,0).(16分)20. (1) 解:由f (x )=ln x +2e x,得f ′(x )=1-2x -xln xxe x,x ∈(0,+∞),(1分)∴ 曲线y =f (x )在点(1,f (1))处的切线斜率为f ′(1)=-1e .∵ f (1)=2e ,∴ 曲线y =f (x )切线方程为y -2e =-1e (x -1),即y =-1e x +3e.(4分) (2) 解:由xe x f (x )>m ,得k >mx-ln x ,令F (x )=mx-ln x ,则k >F (x )max ,又F ′(x )=-m x 2-1x =-1x2(x +m ),x ∈[1,e ].当m ≥0时,F ′(x )<0,F (x )在[1,e ]上单调递减, ∴ F (x )max =F (1)=m ,∴ k >m ;当m <0时,由F ′(x )=0,得x =-m ,在(0,-m )上F ′(x )>0,F (x )单调递增,在(-m ,+∞)上F ′(x )<0,F (x )单调递减.① 若-m ≤1即-1≤m <0,则F (x )在[1,e ]上单调递减,k >F (x )max =F (1)=m ;② 若1<-m <e 即-e <m <-1,则F (x )在[1,-m ]上单调递增,在[-m ,e ]上单调递减, k >F (x )max =F (-m )=-1-ln (-m );③ 若-m ≥e 即m ≤-e ,则F (x )在[1,e ]上单调递增,k >F (x )max =F (e )=me-1,综上,当m ≥-1时,k ∈(m ,+∞);当-e <m <-1时,k ∈(-1-ln (-m ),+∞);当m ≤-e 时,k ∈⎝⎛⎭⎫me -1,+∞.(8分) (3) 证明:由f ′(1)=0,得k =1. 令g (x )=(x 2+x )f ′(x ),∴ g (x )=x +1ex (1-x -xln x ),x ∈(0,+∞),因此,对任意x >0,g (x )<e -2+1等价于1-x -xln x <e xx +1(e -2+1). 由h (x )=1-x -xln x ,x ∈(0,+∞),得h ′(x )=-ln x -2,x ∈(0,+∞),因此,当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减,∴ h (x )的最大值为h (e -2)=e -2+1,故1-x -xln x ≤e -2+1.设φ(x )=e x -(x +1),∵ φ′(x )=e x -1,所以x ∈(0,+∞)时φ′(x )>0,∴ φ(x )单调递增,φ(x )>φ(0)=0,故x ∈(0,+∞)时,φ(x )=e x -(x +1)>0,即e x x +1>1, ∴ 1-x -xln x ≤e -2+1<e xx +1(e -2+1), 故对任意x >0,f ′(x )<e -2+1x 2+x 恒成立.(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)21. A . 解:由题意知⎣⎢⎡⎦⎥⎤12c d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤42c +d =2⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤12c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤3c +d =3⎣⎢⎡⎦⎥⎤11,所以⎩⎪⎨⎪⎧2c +d =2,c +d =3,解得⎩⎪⎨⎪⎧c =-1,d =4,(4分) 所以A =⎣⎢⎡⎦⎥⎤ 12-14,所以A -1=⎣⎢⎡⎦⎥⎤23-1316 16.(10分) B. 解:因为直线l 的极坐标方程为θ=π3(ρ∈R ), 所以直线l 的普通方程为y =3x .(2分)因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数), 所以曲线C 的直角坐标方程为y =12x 2(x ∈[-2,2]). (4分) 联立解方程组⎩⎪⎨⎪⎧y =3x ,y =12x 2,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =23,y =6, 由x ∈[-2,2],则x =23,y =6(舍去),故P 点的直角坐标为(0,0).(10分)C. 证明:因为[(x -1)2+(y +2)2+(z -3)2](12+22+32) ≥[(x -1)+2(y +2)+3(z -3)]2=(x+2y +3z -6)2=142,当且仅当x -11=y +22=z -33, 即x =z =0,y =-4时,取等号,所以(x -1)2+(y +2)2+(z -3)2≥14.(10分)22. 解:如图,以{CA →,CB →,CC 1→}为正交基底,建立空间直角坐标系Cxyz ,则A(1,0,0),B(0,1,0),A 1(1,0,2),B 1(0,1,2),所以CB 1→=(0,1,2),AB →=(-1,1,0),AB 1→=(-1,1,2),BA 1→=(1,-1,2).(1) 因为cos 〈CB 1→,BA 1→〉=CB 1→·BA 1→|CB 1→||BA 1→|=35×6=3010, 所以异面直线BA 1与CB 1夹角的余弦值为3010.(4分)(2) 设平面CAB 1的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AB 1→=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧-x +y +2z =0,y +2z =0, 取平面CAB 1的一个法向量为m =(0,2,-1).设平面BAB 1的法向量为n =(r ,s ,t ),则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AB →=0,即⎩⎪⎨⎪⎧-r +s +2t =0,-r +s =0, 取平面BAB 1的一个法向量为n =(1,1,0),则cos 〈m ,n 〉=m ·n |m||n|=25×2=105. 易知二面角BAB 1C 为锐角, 所以二面角BAB 1C 平面角的余弦值为105.(10分) 23. 解:(1) 由已知得a 3=70,a 4=180,所以当n =2时,a 2n -a n -1a n +1=-500;当n =3时,a 2n -a n -1a n +1=-500.(2分)猜想:a 2n -a n -1a n +1=-500(n ≥2).下面用数学归纳法证明:① 当n =2时,结论成立.② 假设当n =k(k ≥2,k ∈N *)时,结论成立,即a 2k -a k -1a k +1=-500.将a k +1=3a k -a k -1代入上式,可得a 2k -3a k a k -1+a 2k -1=-500,则当n =k +1时,a 2k +1-a k a k +2=a 2k +1-a k (3a k +1-a k )=a 2k +1-3a k a k +1+a 2k =-500,故当n =k +1时结论成立, 根据①②可得a 2n -a n -1a n +1=-500(n ≥2)成立.(4分)(2) 将a n -1=3a n -a n +1代入a 2n -a n -1a n +1=-500,得a 2n +1-3a n a n +1+a 2n =-500,则5a n +1a n =(a n +1+a n )2+500,5a n a n +1+1=(a n +1+a n )2+501.设5a n +1a n +1=t 2(t ∈N *),则t 2-(a n +1+a n )2=501,即[t -(a n +1+a n )](t +a n +1+a n )=501.又a n +1+a n ∈N *,且501=1×501=3×167,故⎩⎪⎨⎪⎧a n +1+a n -t =-1,a n +1+a n +t =501或⎩⎪⎨⎪⎧a n +1+a n -t =-3,a n +1+a n +t =167,所以⎩⎪⎨⎪⎧t =251,a n +1+a n =250或⎩⎪⎨⎪⎧t =85,a n +1+a n =82. 由a n +1+a n =250,解得n =3; 由a n +1+a n =82,得n 无整数解, 所以当n =3时,满足条件.(10分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则A ∩B =________.2. 若复数z 1=4-3i ,z 2=1+i ,则复数(z 1-z 2)i 的模为________.3. 如图所示的程序框图,运行相应的程序,则输出S 的值为________.4. 学校从参加安全知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数,成绩≥80分记为优秀)分成6组后,得到部分频率分布直方图(如图),则分数在[70,80)内的人数为________.5. 如图,在▱ABCD 中,AB =4,AD =3,∠DAB =π3,点E ,F 分别在BC ,DC 边上,且BE →=12EC →,DF →=FC →,则AE →·EF →=________.6. 从1,2,4,8这四个数中一次随机地取2个数,则所取2个数的乘积小于8的概率是________.7. 已知函数f (x )=12x +1,则f (log 23)+f (log 213)=________. 8. 已知锐角θ满足sin(θ2+π6)=45,则cos(π6-θ)的值为________. 9. 若直线l 1:mx +y +1=0,l 2:(m -3)x +2y -1=0,则“m =1”是“l 1⊥l 2”的________条件.10. 已知定义在R 上的函数f (x )的周期为4,当x ∈[0,2]时,f (x )=x 3,且函数y =f (x +2)的图象关于y 轴对称,则f (2 019)=________.11. 设点O ,P ,Q 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y 2=4x 的交点,O 为坐标原点,若△OPQ 的面积为2,则双曲线的离心率为________.12. 若a ≥c >0,且3a -b +c =0,则ac b的最大值为__________. 13. 已知S n 是等差数列{a n }的前n 项和,若S 2≥4,S 4≤16,则S 9的最大值是________.14. 已知函数f (x )=x 3-3x 在区间[a -1,a +1](a ≥0)上的最大值与最小值之差为4,则实数a 的值为________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,三角形PCD 所在的平面与等腰梯形ABCD 所在的平面垂直,AB =AD =12CD ,AB ∥CD ,CP ⊥CD ,M 为PD 的中点.求证:(1)AM ∥平面PBC ;(2)平面BDP ⊥平面PBC .16. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos 2A =-13,c =3,sin A =6sin C . (1)求a 的值;(2) 若角A 为锐角,求b 的值及△ABC 的面积.17. (本小题满分14分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0),圆O :x 2+y 2=b 2,过椭圆C 的上顶点A 的直线l :y =kx +b 分别交圆O 、椭圆C 于不同的两点P ,Q .(1)若点P (-3,0),点Q (-4,-1),求椭圆C 的方程;(2)若AP →=3PQ →,求椭圆C 的离心率e 的取值范围.18. (本小题满分16分)某公司一种产品每日的网络销售量y (单位:千件)与销售价格x (单位:元/件)满足关系式y =m x -2+4(x -6)2,其中2<x <6,m 为常数.已知销售价格为4元/件时,每日可售出产品21千件.(1)求m 的值;(2)假设网络销售员工的工资、办公等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格x 的值,使公司每日销售产品所获得的利润最大.(结果保留一位小数)19. (本小题满分16分)已知数列{a n }中,a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n ,n 为奇数,a n -3n ,n 为偶数.(1)求证:数列⎩⎨⎧⎭⎬⎫a 2n -32是等比数列; (2)若S n 是数列{a n }的前n 项和,求满足S n >0的所有正整数n .20. (本小题满分16分)已知函数f (x )=12x 2+kx +1,g (x )=(x +1)ln(x +1),h (x )=f (x )+g ′(x ). (1)若函数g (x )的图象在原点处的切线l 与函数f (x )的图象相切,求实数k 的值;(2)若h (x )在[0,2]上单调递减,求实数k 的取值范围;(3)若对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4),且x 1≠x 2满足f (x i )=g (t )(i =1,2),其中e 为自然对数的底数,求实数k 的取值范围.已知[ln(x +1)]′=1x +1.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)设二阶矩阵A ,B 满足A -1=⎣⎢⎡⎦⎥⎤1234,(BA )-1=⎣⎢⎡⎦⎥⎤1001,求B -1.B. (选修44:坐标系与参数方程)已知直线l 的极坐标方程为ρsin(θ-π3)=3,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.C. (选修45:不等式选讲)已知a ≥0,b ≥0,求证:a 6+b 6≥ab (a 4+b 4).【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的分布列和数学期望E(ξ).23. 设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)1. {x |-1<x ≤0} 解析:由题意可得,A ={x |-1<x <1},B ={y ∈R |y ≤0}={x |x ≤0}.故A ∩B ={x |-1<x ≤0}.2. 5 解析:∵ (z 1-z 2)i =(3-4i )i =4+3i , ∴ |(z 1-z 2)i |=5.3. 154. 18 解析:分数在[70,80)内的人数为[1-(0.005+0.010+0.015×2+0.025)×10]×60=18.5. -3 解析:AE →=AB →+BE →=AB →+13AD →,EF →=EC →+CF →=-12AB →+23AD →,又AB =4,AD =3,∠DAB =π3,∴ AE →·EF →=⎝⎛⎭⎫AB →+13AD →⎝⎛⎭⎫-12AB →+23AD →=-12AB →2+12AB →·AD →+29AD →2=-12×42+12×4×3×cos π3+29×32=-3. 6. 13解析:从1,2,4,8这四个数中一次随机地取2个数相乘,共有6个结果,其中乘积小于8的有2个,故所求概率为26=13.7. 1 解析:∵ f (x )+f (-x )=12x +1+12-x +1=1,∴ f (log 23)+f ⎝⎛⎭⎫log 213=f (log 23)+f (-log 23)=1.8. 2425 解析:∵ 0<θ<π2,∴ π6<θ2+π6<5π12,∴ cos ⎝⎛⎭⎫θ2+π6=35,∴ sin ⎝⎛⎭⎫θ+π3=2425,∴ cos ⎝⎛⎭⎫π6-θ=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π3=sin ⎝⎛⎭⎫θ+π3=2425.9. 充分不必要 解析:l 1⊥l 2 的充要条件是m (m -3)+1×2=0,即m =1或m =2,∴ “m =1”是“l 1⊥l 2”的充分不必要条件.10. 1 解析:∵ 函数y =f (x +2)的图象关于y 轴对称,∴ 函数y =f (x )的图象关于直线x =2对称.又函数f (x )的周期为4,∴ f (2 019)=f (3)=f (1)=1.11. 5 解析:不妨设P (x 0,y 0)(x 0>0,y 0>0),则y 20=4x 0,12x 0(2y 0)=2,∴ x 0=1,y 0=2.又y 0=b a x 0,∴ b a =2,∴ b 2a 2=4,∴ c 2-a 2a 2=4,∴ e = 5.12. 36 解析:∵ 3a -b +c =0,则b =3a +c ,设t =c a ,则t ∈(0,1],∴ ac b =ac 3a +c =c a 3+c a =t 3+t 2=13t+t .∵ 3t +t ≥23,∴ ac b ≤123=36,∴ ac b 的最大值为36. 13. 81 解析:设等差数列{a n }的公差为d ,∵ S 2≥4,S 4≤16,∴ 2a 1+d ≥4,4a 1+6d ≤16,即2a 1+d ≥4且2a 1+3d ≤8.又S 9=9a 1+9×82d =9(a 1+4d ),由线性规划可知,当a 1=1,d =2时,S 9取得最大值81. 14. 1或0 解析:f ′(x )=3(x +1)(x -1),令f ′(x )=0,则x =-1或x =1,则f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.∵ a ≥0,x ∈[a -1,a +1],∴ a -1≥-1,a +1≥1.① 当a -1<1即a <2时,f (x )min =f (1)=-2,f (x )max =max {f (a -1),f (a +1)},又f (x )max -f (x )min=4,f (x )max =2,∴ ⎩⎪⎨⎪⎧f (a -1)=2f (a +1)≤f (a -1)或⎩⎪⎨⎪⎧f (a +1)=2,f (a -1)≤f (a +1),∴ a 的值为1或0;② 当a -1≥1即a ≥2时,f (x )min =f (a -1),f (x )max =f (a +1), ∴ f (a +1)-f (a -1)=4,无解. 综上,a 的值为1或0.15. 证明:(1) 如图,取为PC 中点N ,连结MN ,BN , ∵ M 为PD 的中点,N 为PC 中点,∴ MN ∥CD ,MN =12CD .又AB ∥CD ,AB =12CD ,∴ MN ∥AB ,MN =AB ,∴ 四边形ABNM 为平行四边形, ∴ AM ∥BN .又AM ⊄平面PBC ,BN ⊂平面PBC , ∴ AM ∥平面PBC .(7分)(2) 如图,在等腰中梯形ABCD 中,取CD 中点T ,连结AT ,BT .∵ AB =12CD ,AB ∥CD ,∴ AB =DT ,AB ∥DT ,∴ 四边形ABTD 为平行四边形.又AB =AD ,∴ 四边形ABTD 为菱形, ∴ AT ⊥BD .同理,四边形ABCT 为菱形,∴ AT ∥BC . ∵ AT ⊥BD ,∴ BC ⊥BD .∵ 平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,CP ⊥CD ,CP ⊂平面PCD , ∴ CP ⊥平面ABCD ,又BD ⊂平面ABCD , ∴ CP ⊥BD .∵ BC ⊥BD ,BC ∩CP =C ,∴ BD ⊥平面PBC . 又BD ⊂平面BDP ,∴平面BDP ⊥平面PBC .(14分) 16. 解:(1) 由题知,c =3,sin A =6sin C .由正弦定理a sin A =c sin C ,得a =csin C·sin A =3 2.(6分)(2) ∵ cos 2A =1-2sin 2A =-13,且0<A <π,∴ sin A =63.由于角A 为锐角,得cos A =33.由余弦定理,a 2=b 2+c 2-2bc cos A ,∴ b 2-2b -15=0, 解得b =5或b =-3(舍去),所以S △ABC =12bc sin A =522.(14分)17. 解:(1) 由P 在圆O :x 2+y 2=b 2上得b =3,又点Q 在椭圆C 上,得(-4)2a 2+(-1)232=1,解得a 2=18,∴ 椭圆C 的方程是x 218+y 29=1.(6分)(2) 由⎩⎪⎨⎪⎧y =kx +b ,x 2+y 2=b 2,得x =0或x P =-2kb 1+k 2; 由⎩⎪⎨⎪⎧y =kx +b ,x 2a 2+y 2b 2=1,得x =0或x Q =-2kba 2a 2k 2+b 2.∵ AP →=3PQ → ,∴ AP →=34AQ →,∴ 2kba 2k 2a 2+b 2·34=2kb 1+k 2,即a 2a 2k 2+b 2·34=11+k2,∴ k 2=3a 2-4b 2a 2=4e 2-1. ∵ k 2>0,∴ 4e 2>1,即e >12.又0<e <1,∴ 12<e <1,即离心率e 的取值范围是(12,1).(14分)18. 解:(1) 因为当x =4时,y =21,代入关系式y =m x -2+4(x -6)2,得m2+16=21,解得m =10. (6分)(2) 由(1)可知,产品每日的销售量为y =10x -2+4(x -6)2, 所以每日销售产品所获得的利润为f (x )=(x -2)·⎣⎡⎦⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,且在⎝⎛⎭⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝⎛⎭⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以当x =103≈3.3时,函数f (x )取得最大值,故当销售价格约为3.3元/件时,该公司每日销售产品所获得的利润最大.(16分)19. (1) 证明:设b n =a 2n -32,因为b n +1b n =a 2n +2-32a 2n -32=13a 2n +1+(2n +1)-32a 2n -32=13(a 2n -6n )+(2n +1)-32a 2n -32=13a 2n -12a 2n -32=13,所以数列{a 2n -32}是以a 2-32即-16为首项,以13为公比的等比数列.(6分)(2) 解:由(1)得b n =a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·⎝⎛⎭⎫13n ,即a 2n =-12·⎝⎛⎭⎫13n +32,由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=-12·⎝⎛⎭⎫13n -1-6n +152,所以 a 2n -1+a 2n =-12·⎣⎡⎦⎤⎝⎛⎭⎫13n -1+⎝⎛⎭⎫13n -6n +9=-2·⎝⎛⎭⎫13n -6n +9, 所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-2⎣⎡⎦⎤13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -6(1+2+…+n )+9n =-2·13⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13-6·n (n +1)2+9n=⎝⎛⎭⎫13n -1-3n 2+6n =⎝⎛⎭⎫13n -3(n -1)2+2, 显然当n ∈N *时,{S 2n }单调递减,又当n =1时,S 2=73>0,当n =2时,S 4=-89<0,所以当n ≥2时,S 2n <0;S 2n -1=S 2n -a 2n =32·⎝⎛⎭⎫13n -52-3n 2+6n ,同理,当且仅当n =1时,S 2n -1>0.综上,满足S n >0的所有正整数n 为1和2.(16分) 20. 解:(1) 函数g (x )的定义域为(-1,+∞), g ′(x )=ln (x +1)+1,则g (0)=0,g ′(0)=1,∴ 直线l :y =x .联立⎩⎪⎨⎪⎧y =12x 2+kx +1,y =x ,消去y ,得x 2+2(k -1)x +2=0.∵ l 与函数f (x )的图象相切,∴ Δ=4(k -1)2-8=0⇒k =1±2.(4分)(2) 由题意知,h (x )=12x 2+kx +1+ln (x +1)+1,h ′(x )=x +k +1x +1.令φ(x )=x +k +1x +1,∵ φ′(x )=1-1(x +1)2=x (x +2)(x +1)2>0对x ∈[0,2]恒成立, ∴ φ(x )=x +k +1x +1,即h ′(x )在[0,2]上为增函数,∴ h ′(x )max =h ′(2)=k +73.∵ h (x )在[0,2]上单调递减,∴ h ′(x )≤0对x ∈[0,2]恒成立,即h ′(x )max =k +73≤0,∴ k ≤-73,即k 的取值范围是(-∞,-73].(8分)(3) 当x ∈[0,e -1]时,g ′(x )=ln (x +1)+1>0,∴ g (x )=(x +1)ln (x +1)在区间[0,e -1]上为增函数,∴ x ∈[0,e -1]时,0≤g (x )≤e2.∵ f (x )=12x 2+kx +1的对称轴为直线x =-k ,∴ 为满足题意,必须-1<-k <4,此时f (x )min =f (-k )=1-12k 2,f (x )的值恒小于f (-1)和f (4)中最大的一个.∵ 对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4), 且x 1≠x 2满足f (x i )=g (t )(i =1,2),∴ ⎣⎡⎦⎤0,e2⊆(f (x )min ,min {f (-1),f (4)}),∴ ⎩⎪⎨⎪⎧-1<-k <4,f (x )min<0,e2<f (4),e 2<f (-1)⇒⎩⎪⎨⎪⎧-4<k <1,1-12k 2<0,e 2<4k +9,e 2<32-k ,∴e 8-94<k <-2, 即k 的取值范围是(e 8-94,-2).(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)21. A . 解:设B -1=⎣⎢⎡⎦⎥⎤a b c d ,因为(BA )-1=A -1B -1,所以⎣⎢⎡⎦⎥⎤1001=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤a b c d , 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 1 32-12.(10分) B. 解:由ρsin ⎝⎛⎭⎫θ-π3=3,可得ρ⎝⎛⎭⎫12sin θ-32cos θ=3,所以y -3x =6,即3x -y +6=0.(4分)由⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ得x 2+y 2=4,圆的半径为r =2, 所以圆心到直线l 的距离d =62=3,所以P 到直线l 的距离的最大值为d +r =5.(10分) C .证明:由题得a 6+b 6-ab (a 4+b 4) =a 5(a -b )-(a -b )b 5 =(a -b )(a 5-b 5)=(a -b )2(a 4+a 3b +a 2b 2+ab 3+b 4).(4分) 又a ≥0,b ≥0,∴ a 6+b 6-ab (a 4+b 4)≥0, 即a 6+b 6≥ab (a 4+b 4).(10分)22. 解:(1) 比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.所以比赛结束后甲的进球数比乙的进球数多1个的概率为P =C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 33×⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1136.(3分) (2) ξ的取值为0,1,2,3,则P (ξ=0)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 23×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=724, P (ξ=1)=⎝⎛⎭⎫133×C 13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1124,P (ξ=2)=⎝⎛⎭⎫133×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫23×13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 13×⎝⎛⎭⎫123=524, P (ξ=3)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=124, 所以ξ(8分)所以数学期望E(ξ)=0×724+1×1124+2×524+3×124=1.(10分)23. 解:(1) 110(2分)(2) 集合M 有2n 个子集,不同的有序集合对(A ,B)有2n (2n -1)个. 当A B ,并设B 中含有k(1≤k ≤n ,k ∈N *)个元素,则满足A B 的有序集合对(A ,B )有错误!C 错误!=(3n -2n )个.同理,满足B A 的有序集合对(A ,B)有(3n -2n )个.故满足条件的有序集合对(A ,B)的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n .(10分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 已知集合A ={x |x -x 2≥0},B ={x |y =lg(2x -1)},则集合A ∩B =________.2. 已知复数z =11+i+i(i 为虚数单位),则|z |=________.3. 某学校高三年级有700人,高二年级有700人,高一年级有800人,若采用分层抽样的办法,从高一年级抽取80人,则全校总共抽取________人.4. 已知a ∈R ,则“a >2”是“1a <12”的________条件.5. 从1,2,4,8这四个数中一次随机地取2个数,则所取2个数差的绝对值小于2的概率是________.6. 执行如图所示的伪代码,最后输出的S 值为________. n ←1 S ←0While S <9S ←S +(-1)n +n n ←n +1 End While Print S7. 曲线f (x )=x -cos x 在点(π2,f (π2))处的切线方程为________.8. 若函数f (x )=⎩⎪⎨⎪⎧kx -1(x ≥1),2x -x 2(x <1)是R 上的增函数,则实数k 的取值范围是________. 9. 若sin α=35且α是第二象限角,则tan(α-π4)=________.10. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右端点分别为A ,B ,点C (0,b2),若线段AC 的垂直平分线过左焦点F ,则椭圆的离心率为________.11. 已知数列{a n }是首项为a ,公差为1的等差数列,b n =a n +2a n,若对任意的n ∈N *,都有b n ≥b 6成立,则实数a 的取值范围是________.12. 已知x ,y 为正实数,满足2x +y +6=xy ,则xy 的最小值为________.13. 已知向量a ,b 是单位向量,若a·b =0,且|c -a|+|c -2b |=5,则|c -b |的最小值是________.14. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≤0,x ln x ,x >0,g (x )=kx -1,若方程f (x )-g (x )=0在x ∈(-2,2)上有三个实数根,则实数k 的取值范围是______________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在四棱锥P ABCD 中,平面P AB ⊥平面ABCD ,∠PBC =∠BAD =90°.求证: (1)BC ⊥平面P AB ;(2)AD ∥平面PBC .16. (本小题满分14分)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3.(1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.17. (本小题满分14分)如图,某地要在矩形区域OABC 内建造三角形池塘OEF ,E ,F 分别在AB ,BC 边上,OA =5 m ,OC =4 m ,∠EOF =π4,设CF =x ,AE =y .(1)试用解析式将y 表示成x 的函数;(2)求三角形池塘OEF 的面积S 的最小值及此时x 的值.18. (本小题满分16分)在直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过点(1,32).(1)求椭圆C 的方程;(2)已知点P (2,1),直线l 与椭圆C 相交于A ,B 两点,且线段AB 被直线OP 平分. ① 求直线l 的斜率;② 若P A →·PB →=0,求直线l 的方程.19. (本小题满分16分)已知数列{a n}是首项为a,公比为q的等比数列,且a n>0.(1)若a=1,a1,a3+2,a5-5成等差数列,求a n;(2)如果a2a4n-2=a4n,①当a=2时,求证:数列{a n}中任意三项都不能构成等差数列;②若b n=a n lg a n,数列{b n}的每一项都小于它后面的项,求实数a的取值范围.20. (本小题满分16分)设函数f(x)的导函数为f′(x).若不等式f(x)≥f′(x)对任意实数x恒成立,则称函数f(x)是“超导函数”.(1)请举一个“超导函数” 的例子,并加以证明;(2)若函数g(x)与h(x)都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数F(x)=g(x)h(x)是“超导函数”;(3)若函数y=φ(x)是“超导函数”且方程φ(x)=φ′(x)无实根,φ(1)=e(e为自然对数的底数),判断方程φ(-x-ln x)=e-x-ln x的实数根的个数并说明理由.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修42:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤m 00n ,若矩阵A 的属于特征值1的一个特征向量为⎣⎢⎡⎦⎥⎤10,属于特征值2的一个特征向量为⎣⎢⎡⎦⎥⎤01,求矩阵A .B. (选修44:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A ,B 两点,且AB =3,求直线l 的方程.C. (选修45:不等式选讲) 解不等式:|x -2|+x |x +2|>2.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,47.(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.23. 已知抛物线C:x2=2py(p>0)过点(2,1),直线l过点P(0,-1)与抛物线C交于A,B两点.点A关于y轴的对称点为A′,连结A′B.(1)求抛物线C的标准方程;(2)问直线A′B是否过定点?若是,求出定点坐标;若不是,请说明理由.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)1. ⎝⎛⎦⎤12,1 解析:A ={x |0≤x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >12,A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤1. 2. 22 解析:z =1-i 2+i =12+12i ,∴ |z |=22.3. 220 解析:设全校总共抽取x 人,则x 700+700+800=80800,∴ x =220.4. 充分不必要 解析:由1a <12,得a <0或a >2,∴ “a >2”是“1a <12”的充分不必要条件.5. 16解析:从1,2,4,8这四个数中一次随机地取2个数,有6个结果,绝对值小于2的只有一个,即取2个数差的绝对值小于2的概率是16.6. 10 解析:当n =1时,S =0;当n =2时,S =3;当n =3时,S =5;当n =4时,S =10.7. 2x -y -π2=0 解析:f ⎝⎛⎭⎫π2=π2,f ′⎝⎛⎭⎫π2=1+sin π2=2,切线方程为y -π2=2⎝⎛⎭⎫x -π2,即2x -y -π2=0.8. [2,+∞) 解析:由题知,k >0且k ×1-1≥2×1-12, ∴ k ≥2.9. -7 解析:∵ sin α=35且α是第二象限角,∴ cos α=-45,∴ tan α=-34,∴ tan⎝⎛⎭⎫α-π4=-7.10. 4-13 解析:k AC =b2a ,AC 中点为P ⎝⎛⎭⎫-a 2,b 4,k FP =b 4c -a2,由题知,k AC ·k FP =-1,∴ 3a 2-8ac +c 2=0,∴ e 2-8e +3=0,∴ e =4±13,又0<e <1, ∴ e =4-13.11. (-6,-5) 解析:a n =a +n -1,b n =1+2a +n -1=1+2n +a -1,由y =1x 的图象可得6<1-a <7,∴ -6<a <-5.12. 18 解析:∵ 2x +y +6=xy ,∴ xy -6=2x +y ≥22xy ,令t =2xy ,则12t 2-6≥2t 即t 2-4t -12≥0,∴ t ≥6,∴ xy ≥18,当且仅当2x =y =6时“=”成立,∴ xy 的最小值为18.13. 55解析:设a =(1,0),b =(0,1),将c 的起点放在原点,则|c -a |+|c -2b |的几何意义是c 的终点到向量a ,2b 的终点M (1,0),N (0,2)的距离之和,由于点(1,0),(0,2)的距离为5,故c 的终点在线段MN 上,∴ |c -b |的最小值即为点(0,1)到直线MN 的距离,即55.14. (1,ln 2e )∪⎝⎛⎭⎫32,2 解析:显然x =0不是方程f (x )-g (x )=0的解,由f (x )-g (x )=0,得k =h (x )=⎩⎨⎧x +1x +4,x <0,ln x +1x,x >0,由图象可得实数k 的取值范围是(1,ln 2e )∪⎝⎛⎭⎫32,2. 15. 证明:(1) 如图,在平面P AB 内过点P 作PH ⊥AB 于H , 因为平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,PH ⊂平面P AB , 所以PH ⊥平面ABCD .(4分)。
2019届高考数学(江苏卷)模拟冲刺卷(2)(含附加及详细解答)

2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则A ∩B =________.2. 若复数z 1=4-3i ,z 2=1+i ,则复数(z 1-z 2)i 的模为________.3. 如图所示的程序框图,运行相应的程序,则输出S 的值为________.4. 学校从参加安全知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数,成绩≥80分记为优秀)分成6组后,得到部分频率分布直方图(如图),则分数在[70,80)内的人数为________.5. 如图,在▱ABCD 中,AB =4,AD =3,∠DAB =π3,点E ,F 分别在BC ,DC 边上,且BE →=12EC →,DF →=FC →,则AE →·EF →=________.6. 从1,2,4,8这四个数中一次随机地取2个数,则所取2个数的乘积小于8的概率是________.7. 已知函数f (x )=12x +1,则f (log 23)+f (log 213)=________. 8. 已知锐角θ满足sin(θ2+π6)=45,则cos(π6-θ)的值为________. 9. 若直线l 1:mx +y +1=0,l 2:(m -3)x +2y -1=0,则“m =1”是“l 1⊥l 2”的________条件.10. 已知定义在R 上的函数f (x )的周期为4,当x ∈[0,2]时,f (x )=x 3,且函数y =f (x +2)的图象关于y 轴对称,则f (2 019)=________.11. 设点O ,P ,Q 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y 2=4x 的交点,O 为坐标原点,若△OPQ 的面积为2,则双曲线的离心率为________.12. 若a ≥c >0,且3a -b +c =0,则ac b的最大值为__________. 13. 已知S n 是等差数列{a n }的前n 项和,若S 2≥4,S 4≤16,则S 9的最大值是________.14. 已知函数f (x )=x 3-3x 在区间[a -1,a +1](a ≥0)上的最大值与最小值之差为4,则实数a 的值为________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,三角形PCD 所在的平面与等腰梯形ABCD 所在的平面垂直,AB =AD =12CD ,AB ∥CD ,CP ⊥CD ,M 为PD 的中点.求证:(1)AM ∥平面PBC ;(2)平面BDP ⊥平面PBC .16. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos 2A =-13,c =3,sin A =6sin C . (1)求a 的值;(2) 若角A 为锐角,求b 的值及△ABC 的面积.17. (本小题满分14分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0),圆O :x 2+y 2=b 2,过椭圆C 的上顶点A 的直线l :y =kx +b 分别交圆O 、椭圆C 于不同的两点P ,Q .(1)若点P (-3,0),点Q (-4,-1),求椭圆C 的方程;(2)若AP →=3PQ →,求椭圆C 的离心率e 的取值范围.18. (本小题满分16分)某公司一种产品每日的网络销售量y (单位:千件)与销售价格x (单位:元/件)满足关系式y =m x -2+4(x -6)2,其中2<x <6,m 为常数.已知销售价格为4元/件时,每日可售出产品21千件.(1)求m 的值;(2)假设网络销售员工的工资、办公等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格x 的值,使公司每日销售产品所获得的利润最大.(结果保留一位小数)19. (本小题满分16分)已知数列{a n }中,a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n ,n 为奇数,a n -3n ,n 为偶数.(1)求证:数列⎩⎨⎧⎭⎬⎫a 2n -32是等比数列; (2)若S n 是数列{a n }的前n 项和,求满足S n >0的所有正整数n .20. (本小题满分16分)已知函数f (x )=12x 2+kx +1,g (x )=(x +1)ln(x +1),h (x )=f (x )+g ′(x ). (1)若函数g (x )的图象在原点处的切线l 与函数f (x )的图象相切,求实数k 的值;(2)若h (x )在[0,2]上单调递减,求实数k 的取值范围;(3)若对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4),且x 1≠x 2满足f (x i )=g (t )(i =1,2),其中e 为自然对数的底数,求实数k 的取值范围.已知[ln(x +1)]′=1x +1.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)设二阶矩阵A ,B 满足A -1=⎣⎢⎡⎦⎥⎤1234,(BA )-1=⎣⎢⎡⎦⎥⎤1001,求B -1.B. (选修44:坐标系与参数方程)已知直线l 的极坐标方程为ρsin(θ-π3)=3,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.C. (选修45:不等式选讲)已知a ≥0,b ≥0,求证:a 6+b 6≥ab (a 4+b 4).【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的分布列和数学期望E(ξ).23. 设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)1. {x |-1<x ≤0} 解析:由题意可得,A ={x |-1<x <1},B ={y ∈R |y ≤0}={x |x ≤0}.故A ∩B ={x |-1<x ≤0}.2. 5 解析:∵ (z 1-z 2)i =(3-4i )i =4+3i ,∴ |(z 1-z 2)i |=5.3. 154. 18 解析:分数在[70,80)内的人数为[1-(0.005+0.010+0.015×2+0.025)×10]×60=18.5. -3 解析:AE →=AB →+BE →=AB →+13AD →,EF →=EC →+CF →=-12AB →+23AD →,又AB =4,AD =3,∠DAB =π3,∴ AE →·EF →=⎝⎛⎭⎫AB →+13AD →⎝⎛⎭⎫-12AB →+23AD →=-12AB →2+12AB →·AD →+29AD →2=-12×42+12×4×3×cos π3+29×32=-3. 6. 13解析:从1,2,4,8这四个数中一次随机地取2个数相乘,共有6个结果,其中乘积小于8的有2个,故所求概率为26=13. 7. 1 解析:∵ f (x )+f (-x )=12x +1+12-x +1=1,∴ f (log 23)+f ⎝⎛⎭⎫log 213=f (log 23)+f (-log 23)=1.8. 2425 解析:∵ 0<θ<π2,∴ π6<θ2+π6<5π12,∴ cos ⎝⎛⎭⎫θ2+π6=35,∴ sin ⎝⎛⎭⎫θ+π3=2425,∴ cos ⎝⎛⎭⎫π6-θ=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π3=sin ⎝⎛⎭⎫θ+π3=2425. 9. 充分不必要 解析:l 1⊥l 2 的充要条件是m (m -3)+1×2=0,即m =1或m =2,∴ “m =1”是“l 1⊥l 2”的充分不必要条件.10. 1 解析:∵ 函数y =f (x +2)的图象关于y 轴对称,∴ 函数y =f (x )的图象关于直线x =2对称.又函数f (x )的周期为4,∴ f (2 019)=f (3)=f (1)=1.11. 5 解析:不妨设P (x 0,y 0)(x 0>0,y 0>0),则y 20=4x 0,12x 0(2y 0)=2,∴ x 0=1,y 0=2.又y 0=b a x 0,∴ b a =2,∴ b 2a 2=4,∴ c 2-a 2a 2=4,∴ e = 5. 12. 36 解析:∵ 3a -b +c =0,则b =3a +c ,设t =c a ,则t ∈(0,1],∴ ac b =ac 3a +c =ca 3+c a =t 3+t 2=13t+t .∵ 3t +t ≥23,∴ ac b ≤123=36,∴ ac b 的最大值为36. 13. 81 解析:设等差数列{a n }的公差为d ,∵ S 2≥4,S 4≤16,∴ 2a 1+d ≥4,4a 1+6d ≤16,即2a 1+d ≥4且2a 1+3d ≤8.又S 9=9a 1+9×82d =9(a 1+4d ),由线性规划可知,当a 1=1,d =2时,S 9取得最大值81.14. 1或0 解析:f ′(x )=3(x +1)(x -1),令f ′(x )=0,则x =-1或x =1,则f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.∵ a ≥0,x ∈[a -1,a +1],∴ a -1≥-1,a +1≥1.① 当a -1<1即a <2时,f (x )min =f (1)=-2,f (x )max =max {f (a -1),f (a +1)},又f (x )max -f (x )min=4,f (x )max =2,∴ ⎩⎪⎨⎪⎧f (a -1)=2f (a +1)≤f (a -1)或⎩⎪⎨⎪⎧f (a +1)=2,f (a -1)≤f (a +1),∴ a 的值为1或0; ② 当a -1≥1即a ≥2时,f (x )min =f (a -1),f (x )max =f (a +1),∴ f (a +1)-f (a -1)=4,无解.综上,a 的值为1或0.15. 证明:(1) 如图,取为PC 中点N ,连结MN ,BN ,∵ M 为PD 的中点,N 为PC 中点,∴ MN ∥CD ,MN =12CD .又AB ∥CD ,AB =12CD ,∴ MN ∥AB ,MN =AB , ∴ 四边形ABNM 为平行四边形,∴ AM ∥BN .又AM ⊄平面PBC ,BN ⊂平面PBC ,∴ AM ∥平面PBC .(7分)(2) 如图,在等腰中梯形ABCD 中,取CD 中点T ,连结AT ,BT .∵ AB =12CD ,AB ∥CD ,∴ AB =DT ,AB ∥DT , ∴ 四边形ABTD 为平行四边形.又AB =AD ,∴ 四边形ABTD 为菱形,∴ AT ⊥BD .同理,四边形ABCT 为菱形,∴ AT ∥BC .∵ AT ⊥BD ,∴ BC ⊥BD .∵ 平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,CP ⊥CD ,CP ⊂平面PCD , ∴ CP ⊥平面ABCD ,又BD ⊂平面ABCD ,∴ CP ⊥BD .∵ BC ⊥BD ,BC ∩CP =C ,∴ BD ⊥平面PBC .又BD ⊂平面BDP ,∴平面BDP ⊥平面PBC .(14分)16. 解:(1) 由题知,c =3,sin A =6sin C .由正弦定理a sin A =c sin C ,得a =c sin C·sin A =3 2.(6分) (2) ∵ cos 2A =1-2sin 2A =-13,且0<A <π, ∴ sin A =63. 由于角A 为锐角,得cos A =33. 由余弦定理,a 2=b 2+c 2-2bc cos A ,∴ b 2-2b -15=0,解得b =5或b =-3(舍去),所以S △ABC =12bc sin A =522.(14分) 17. 解:(1) 由P 在圆O :x 2+y 2=b 2上得b =3,又点Q 在椭圆C 上,得(-4)2a 2+(-1)232=1, 解得a 2=18,∴ 椭圆C 的方程是x 218+y 29=1.(6分) (2) 由⎩⎪⎨⎪⎧y =kx +b ,x 2+y 2=b 2,得x =0或x P =-2kb 1+k 2; 由⎩⎪⎨⎪⎧y =kx +b ,x 2a 2+y 2b 2=1,得x =0或x Q =-2kba 2a 2k 2+b 2. ∵ AP →=3PQ → ,∴ AP →=34AQ →,∴ 2kba 2k 2a 2+b 2·34=2kb 1+k 2,即a 2a 2k 2+b 2·34=11+k 2,∴ k 2=3a 2-4b 2a 2=4e 2-1. ∵ k 2>0,∴ 4e 2>1,即e >12. 又0<e <1,∴ 12<e <1, 即离心率e 的取值范围是(12,1).(14分) 18. 解:(1) 因为当x =4时,y =21,代入关系式y =m x -2+4(x -6)2,得m 2+16=21, 解得m =10. (6分)(2) 由(1)可知,产品每日的销售量为y =10x -2+4(x -6)2, 所以每日销售产品所获得的利润为f (x )=(x -2)·⎣⎡⎦⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,且在⎝⎛⎭⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝⎛⎭⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以当x =103≈3.3时,函数f (x )取得最大值, 故当销售价格约为3.3元/件时,该公司每日销售产品所获得的利润最大.(16分)19. (1) 证明:设b n =a 2n -32,因为b n +1b n =a 2n +2-32a 2n -32=13a 2n +1+(2n +1)-32a 2n -32=13(a 2n -6n )+(2n +1)-32a 2n -32=13a 2n -12a 2n -32=13, 所以数列{a 2n -32}是以a 2-32即-16为首项,以13为公比的等比数列.(6分) (2) 解:由(1)得b n =a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·⎝⎛⎭⎫13n ,即a 2n =-12·⎝⎛⎭⎫13n +32, 由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=-12·⎝⎛⎭⎫13n -1-6n +152, 所以 a 2n -1+a 2n =-12·⎣⎡⎦⎤⎝⎛⎭⎫13n -1+⎝⎛⎭⎫13n -6n +9=-2·⎝⎛⎭⎫13n -6n +9, 所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-2⎣⎡⎦⎤13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -6(1+2+…+n )+9n =-2·13⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13-6·n (n +1)2+9n =⎝⎛⎭⎫13n -1-3n 2+6n =⎝⎛⎭⎫13n -3(n -1)2+2, 显然当n ∈N *时,{S 2n }单调递减,又当n =1时,S 2=73>0,当n =2时,S 4=-89<0, 所以当n ≥2时,S 2n <0;S 2n -1=S 2n -a 2n =32·⎝⎛⎭⎫13n -52-3n 2+6n , 同理,当且仅当n =1时,S 2n -1>0.综上,满足S n >0的所有正整数n 为1和2.(16分)20. 解:(1) 函数g (x )的定义域为(-1,+∞),g ′(x )=ln (x +1)+1,则g (0)=0,g ′(0)=1,∴ 直线l :y =x .联立⎩⎪⎨⎪⎧y =12x 2+kx +1,y =x ,消去y ,得x 2+2(k -1)x +2=0. ∵ l 与函数f (x )的图象相切,∴ Δ=4(k -1)2-8=0⇒k =1±2.(4分)(2) 由题意知,h (x )=12x 2+kx +1+ln (x +1)+1,h ′(x )=x +k +1x +1. 令φ(x )=x +k +1x +1, ∵ φ′(x )=1-1(x +1)2=x (x +2)(x +1)2>0对x ∈[0,2]恒成立, ∴ φ(x )=x +k +1x +1,即h ′(x )在[0,2]上为增函数, ∴ h ′(x )max =h ′(2)=k +73. ∵ h (x )在[0,2]上单调递减,∴ h ′(x )≤0对x ∈[0,2]恒成立,即h ′(x )max =k +73≤0,∴ k ≤-73, 即k 的取值范围是(-∞,-73].(8分) (3) 当x ∈[0,e -1]时,g ′(x )=ln (x +1)+1>0,∴ g (x )=(x +1)ln (x +1)在区间[0,e -1]上为增函数,∴ x ∈[0,e -1]时,0≤g (x )≤e 2. ∵ f (x )=12x 2+kx +1的对称轴为直线x =-k , ∴ 为满足题意,必须-1<-k <4,此时f (x )min =f (-k )=1-12k 2, f (x )的值恒小于f (-1)和f (4)中最大的一个.∵ 对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4),且x 1≠x 2满足f (x i )=g (t )(i =1,2),∴ ⎣⎡⎦⎤0,e 2⊆(f (x )min ,min {f (-1),f (4)}),∴ ⎩⎪⎨⎪⎧-1<-k <4,f (x )min <0,e 2<f (4),e 2<f (-1)⇒⎩⎪⎨⎪⎧-4<k <1,1-12k 2<0,e 2<4k +9,e 2<32-k , ∴ e 8-94<k <-2, 即k 的取值范围是(e 8-94,-2).(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)21. A . 解:设B -1=⎣⎢⎡⎦⎥⎤a b c d ,因为(BA )-1=A -1B -1, 所以⎣⎢⎡⎦⎥⎤1001=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤a b c d , 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 1 32-12.(10分) B. 解:由ρsin ⎝⎛⎭⎫θ-π3=3, 可得ρ⎝⎛⎭⎫12sin θ-32cos θ=3, 所以y -3x =6,即3x -y +6=0.(4分)由⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ得x 2+y 2=4,圆的半径为r =2, 所以圆心到直线l 的距离d =62=3, 所以P 到直线l 的距离的最大值为d +r =5.(10分)C .证明:由题得a 6+b 6-ab (a 4+b 4)=a 5(a -b )-(a -b )b 5=(a -b )(a 5-b 5)=(a -b )2(a 4+a 3b +a 2b 2+ab 3+b 4).(4分)又a ≥0,b ≥0,∴ a 6+b 6-ab (a 4+b 4)≥0,即a 6+b 6≥ab (a 4+b 4).(10分)22. 解:(1) 比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.所以比赛结束后甲的进球数比乙的进球数多1个的概率为P =C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 33×⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1136.(3分) (2) ξ的取值为0,1,2,3,则P (ξ=0)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 23×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=724, P (ξ=1)=⎝⎛⎭⎫133×C 13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1124,P (ξ=2)=⎝⎛⎭⎫133×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫23×13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 13×⎝⎛⎭⎫123=524, P (ξ=3)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=124,所以ξ(8分)所以数学期望E(ξ)=0×724+1×1124+2×524+3×124=1.(10分) 23. 解:(1) 110(2分)(2) 集合M 有2n 个子集,不同的有序集合对(A ,B)有2n (2n -1)个.当A B ,并设B 中含有k(1≤k ≤n ,k ∈N *)个元素,则满足A B 的有序集合对(A ,B )有错误!C 错误!=(3n -2n )个.同理,满足B A 的有序集合对(A ,B)有(3n -2n )个.故满足条件的有序集合对(A ,B)的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n .(10分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2019届高三数学专题训练
函数
一、填空题
1、(2018江苏高考)函数2()log 1f x x =-的定义域为 ▲ .
2、(2017江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,⎩⎨⎧∉∈=D
x x D x x x f ,,)(2,
其中集合⎭
⎬⎫
⎩⎨⎧∈-=
=*,1|N n n n x x D ,则方程0lg )(=-x x f 的解的个数是 3、(2016江苏高考)函数y =2
32x x --的定义域是 ▲ .
4、(南京市2018高三9月学情调研)已知函数f (x )是定义在R 上的奇函数,且在(-∞,0]上为单调
增函数.若f (-1)=-2,则满足f (2x -3)≤2的x 的取值范围是 ▲ .
5、(南京市2018高三第三次(5月)模拟)若f (x )是定义在R 上的周期为3的函数,且f (x )=
⎩
⎪⎨⎪⎧
x 2
+x +a ,0≤x ≤2,-6x +18,2<x ≤3,则f (a+1)的值为▲________. 6、(前黄高级中学、姜堰中学等五校2018高三上第一次学情监测)已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()8x f x =,则19
()3
f -
的值为 ▲ . 7、(苏锡常镇2018高三3月教学情况调研(一))已知函数,1()4
,1
x a e x f x x x x ⎧-<⎪
=⎨+≥⎪⎩
(e 是自然对数的底).若函数()y f x =的最小值是4,则实数a 的取值范围为 .
8、(苏锡常镇2018高三5月调研(二模))已知函数1
(|3|1),0
()2ln ,0x x f x x x ⎧++≤⎪=⎨⎪>⎩ ,若存在实数
a b c <<,满足()()()f a f b f c ==,则()()()af a bf b cf c ++的最大值为 .
9、(苏州市2018高三上期初调研)已知函数()22f x x abx a b =+++.若()04f =,则()1f 的最大值是 .
10、(无锡市2018高三上期中考试)若函数()(
)1,03,0x x f x f x x -≤⎧⎪
=⎨->⎪⎩,则()5f = .
11、(徐州市2018高三上期中考试)已知函数()e +1e x x f x -=-(e 为自然对数的底数),
若2(21)42)(f x f x +->-,则实数x 的取值范围为 ▲ .
12、(扬州、泰州、淮安、南通、徐州、宿迁、连云港市2018高三第三次调研)函数2
lg(43)
y x x =--的定义域为 ▲ .
13、(镇江市2018届高三第一次模拟(期末)考试)已知函数 f (x ) = x 2
- kx + 4 对任意的 x ∈[1,3],不等式 f (x ) ≥ 0 恒成立,则实数 k 的最大值为
14、(2018江苏高考)函数()f x 满足(4)()(f x f x x +=∈
R ,且在区间(2,2]-上,c o s ,02,2
()1||,20,2
x x f x x x π⎧
<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为 ▲ .
15、(2016江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,
,10,
()2
,01,
5x a x f x x x +-≤<⎧⎪
=⎨-≤<⎪⎩
其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是 ▲ . 16、(南京市2018高三9月学情调研)已知函数f (x )=⎩⎨⎧2x 2,x ≤0,
-3|x -1|+3,x >0.
若存在唯一的整数x ,
使得f (x )-a x
>0成立,则实数a 的取值范围为 ▲ .
17、(南京市2018高三第三次(5月)模拟)已知a ,b ∈R ,e 为自然对数的底数. 若存在b ∈[-3e ,-e 2],使得函数f (x )=e x -ax -b 在[1,3]上存在零点,则a 的取值范围为▲________. 18、(前黄高级中学、姜堰中学等五校2018高三上第一次学情监测)已知函数
()ln (e )+f x x a x b =+-,其中e 为自然对数的底数,若不等式()0f x ≤恒成立,则
b
a
的最大值为 ▲ .
19、(苏锡常镇2018高三3月教学情况调研(一))若二次函数2
()f x ax bx c =++(0)a >在区间
[1,2]上有两个不同的零点,则
(1)
f a
的取值范围为 . 20、(苏州市2018高三上期初调研)已知函数()()0a
f x x a x
=+>,当[]1,3x ∈时,函数()f x 的值域为A ,若[]8,16A ⊆,则a 的值是 . 21、(无锡市2018高三上期中考试)已知函数()11212
x
f x =
-+,则()()2
110f a f a ++->的解为 . 22、(扬州、泰州、淮安、南通、徐州、宿迁、连云港市2018高三第三次调研)已知函数
310() 2 0ax x f x x ax x x -≤⎧⎪=⎨-+->⎪⎩, ,,
的图象恰好经过三个象限,则实数a 的取值范围是 ▲ .。