初一数学竞赛10

合集下载

人教版七年级数学竞赛试题含答案

人教版七年级数学竞赛试题含答案

七年级数学竞赛(时间40分钟,满分100分)姓名_______班级________分数_________1、(10)已知关于x 的一元一次方程a x 20223x 20211+=+的解为x=1,那么关于y 的一元一次方程a 6y 202236y 20211++=++)()(的解为:________________. 2、(10)定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n+1;②当n 为偶数时,F (n )=n 2k [其中k 是使F (n )为奇数的正整数],两种运算交替重复进行.例如,取n =24,则:若n =13,则第2021次“F ”运算的结果是________________.3、(10)已知多项式-a 12+a 11b -a 10b 2+…+ab 11-b 12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?4、(10)请你将如图所示的两个正方形和两个长方形拼成一个较大的正方形,并列式计算所拼图形的面积.5、(15)材料阅读题阅读材料:求1+2+22+23+24+…+2100的值.解:设S=1+2+22+23+24+…+299+2100.①将等式①两边同时乘2,得2S=2+22+23+24+25+…+2100+2101.②②-①,得2S-S=2101-1,即S=2101-1.所以1+2+22+23+24+…+2100=2101-1.请你仿照此法计算:(1)1+3+32+33+34+…+32019+32020.(2)已知数列:-1,9,-92,93,-94,…. (Ⅰ)它的第100个数是多少?(Ⅰ)求这列数中前100个数的和.6、(15)数学家苏步青先生有一次在德国与另一位数学家同乘一辆电车,这位数学家出了一道题请苏先生解答.甲、乙两人同时从相距10 km的A,B两地出发,相向而行,甲每小时走6 km,乙每小时走4 km,甲带着一只狗和他同时出发,狗以每小时10 km 的速度向乙奔去,遇到乙后立即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲、乙两人相遇时狗才停住.则这只狗共跑了多少千米?7、(15)已知(2x-1)5=a5x5+a4x4+…+a1x+a0,求下列各式的值:(1)a1+a2+a3+a4+a5;(2)a1-a2+a3-a4+a5;(3)a1+a3+a5.8、(15)如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.参考答案:1、-52、43、[解析] 观察所给条件,a 的指数逐次减1,b 的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a 8b 4,它的系数为-1,次数为12.(2) 十二次十三项式.4、[解析] 根据题意拼出正方形ABCD ,将两个正方形和两个长方形的面积相加即可求出答案.解:如图所示,正方形ABCD 即为所拼图形.正方形ABCD 的面积是a 2+ab +ab +b 2或(a +b)2.5、解:(1)设S =1+3+32+33+34+…+32019+32020.①将等式①两边同时乘3,得3S =3+32+33+34+…+32020+32021.②②-①,得3S -S =32021-1,即S =12(32021-1). 所以1+3+32+33+34+…+32019+32020=12(32021-1). (2)(Ⅰ)第100个数是999.(Ⅰ)设S =-1+9-92+93-94+…-998+999.③将等式③两边同时乘9,得9S =-9+92-93+94-95+…-999+9100.④③+④,得10S =9100-1,即S =110(9100-1). 所以这列数中前100个数的和是110(9100-1). 6、[解析] 本题已知狗的奔跑速度是每小时10 km ,求狗奔跑的路程,它的奔跑时间是解决本题的关键,狗从甲、乙两人出发到甲、乙两人相遇时,一直在两人之间不断地奔跑,因此狗奔跑的时间即甲、乙两人从出发到相遇的时间.解:根据题意,得x 10=106+4.7、解:因为(2x -1)5=a 5x 5+a 4x 4+…+a 1x +a 0,所以令x =0,得(-1)5=a 0,即a 0=-1.①令x =-1,得(-3)5=-a 5+a 4-a 3+a 2-a 1+a 0,即-a 5+a 4-a 3+a 2-a 1+a 0=-243.②令x =1,得15=a 5+a 4+a 3+a 2+a 1+a 0,即a 5+a 4+a 3+a 2+a 1+a 0=1.③(1)③-①,得a 1+a 2+a 3+a 4+a 5=1-(-1)=2.(2)①-②,得a 1-a 2+a 3-a 4+a 5=(-1)-(-243)=242.(3)(③-②)÷2,得a 1+a 3+a 5=(1+243)÷2=122.8、解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒.(2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6;②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18.答:当A ,B 两点运动6秒或18秒时相距6个单位长度.(3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43. 当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72. 答:此时点B 表示的数为-72.。

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。

则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。

#初中数学竞赛分专题训练试题及解析(10套,76页)

#初中数学竞赛分专题训练试题及解析(10套,76页)

初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。

则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。

初一数学竞赛专题 (10)

初一数学竞赛专题 (10)

初一数学竞赛第10讲计数的方法与原理计数方法与原理是组合数学的主要课题之一,本讲介绍一些计数的基本方法及计数的基本原理。

一、枚举法一位旅客要从武汉乘火车去北京,他要了解所有可供乘坐的车次共有多少,一个最易行的办法是找一张全国列车运行时刻表,将所有从武汉到北京的车次逐一挑出来,共有多少次车也就数出来了,这种计数方法就是枚举法。

所谓枚举法,就是把所要求计数的所有对象一一列举出来,最后计算总数的方法。

运用枚举法进行列举时,必须注意无一重复,也无一遗漏。

例1四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张。

问:一共有多少种不同的方法?解:设四个学生分别是A,B,C,D,他们做的贺年片分别是a,b,c,d。

先考虑A拿B做的贺年片b的情况(如下表),一共有3种方法。

同样,A拿C或D做的贺年片也有3种方法。

一共有3+3+3=9(种)不同的方法。

例2甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止。

问:一共有多少种可能的情况?解:如下图,我们先考虑甲胜第一局的情况:图中打√的为胜者,一共有7种可能的情况。

同理,乙胜第一局也有 7种可能的情况。

一共有 7+7=14(种)可能的情况。

二、加法原理如果完成一件事情有n类方法,而每一类方法中分别有m1,m2,…,mn种方法,而不论采用这些方法中的任何一种,都能单独地完成这件事情,那么要完成这件事情共有:N=m1+m2+…mn种方法。

这是我们所熟知的加法原理,也是利用分类法计数的依据。

例3一个自然数,如果它顺着数和倒着数都是一样的,则称这个数为“回文数”。

例如1331,7,202都是回文数,而220则不是回文数。

问:1到6位的回文数一共有多少个?按从小到大排,第2000个回文数是多少?解:一位回文数有:1,2,…,9,共9个;二位回文数有:11,22,…,99,共9个;三位回文数有:101,111,…,999,共90个;四位回文数有:1001,1111,…,9999,共90个;五位回文数有:10001,10101,…,99999,共900个;六位回文数有:100001,101101,…,999999,共900个。

初中数学竞赛:十进制的记数法

初中数学竞赛:十进制的记数法

初中数学竞赛:十进制的记数法【内容提要】1. 十进制的记数法就是用0,1,2…9十个数码记数的方法,位率是逢十进一。

底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n (第n+1位上的数)例如54307记作5×104+4×103+3×102+0×101+7×102、十进制的n 位数(n 为正整数),n n a a a a 321 记作:10n-1a 1+10n-2a 2+10n-3+…+102a n-2+10a n-1+a n其中最高位a 1≠0,即0<a 1≤9,其它是0≤a 1,a 2,a 3…a n ≤93、各位上的数字相同的正整数记法:例如∵999=1000-1=103-1,9999=104-1,∴99999个n =10n -1 11111个n =9110-n , 33333个n =3110-n , 55555个n =()91105-n4、 解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据各位上的数字都是表示0到9的整数,这一性质进行讨论。

【例题】例1. 一个六位数的最高位是1,若把1移作个位数,其余各数的大小和顺序都不变,则所得的新六位数恰好是原数的3倍,求原六位数。

解:设原六位数1右边的五位数为x,那么原六位数可记作1×105+x ,新六位数为10x +1,根据题意,得 10x +1=3(1×105+x ) 7x=299999 x=42857∴原六位数是142857例2. 设n 为正整数,计算 99999个n × 99999个n +199999个n 解:原数=(10n –1)×(10 n –1)+1×10n +10n -1 =102n -2×10n +1+10n +10n -1=102n例3.试证明12,1122,111222,……, 1111个n 2222个n 这些数都是两个相邻的正整数的积 证明:12=3×4, 1122=33×34,111222=333×334注意到333×334=333×(333+1)=31-103×(31-103+1) 由经验归纳法,得1111个n 2222个n =9110-n ×10n +()91102-n =3110-n (310n +32) =3110-n ()13110+-n 上述结论证明了各数都是两个相邻的正整数的积例4. 试证明:任何一个四位正整数,如果四个数字和是9的倍数,那么这个四位数必能被9整除。

初一希望杯数学竞赛二试训练10

初一希望杯数学竞赛二试训练10

15.对任意两个正整数x,y,定义一个“※”新运算,即: x※y=2(2xy-x-y). 若正整数a,b满足a ※b=888,则这样的有序对(a,b)共有 对。
有序数对(a,b)共有4对。
16.若x4+ax2-bx+2能被x2+3x+2整除,则ab=
.
17.y=|x+1|+|x+2|+|x+3|,当x= 最小值等于 。
2.北京奥运期间,体育场馆要对观众进行安全检查.设某体育馆在安检开始时已 有若干名观众在馆外等候安检,安检开始后,到达体育馆的观众人数按固定速度 增加.又设各安检人员的安检效率相同.若用3名工作人员进行安检,需要25分 钟才能将等候在馆外的观众检测完,使后来者能随到随检;若用6名工作人员进 行安检,时间则缩短了10分钟.现要求不超过5分钟完成上述过程,则至少要安 排( )名工作人员进行安检. A.9 B.10 C.11 D.12
可以设小长方形的长和宽为未知数,根据图示可以得到长和宽的比例关系的方程, 及根据小长方形的面积是3也可得到小长方形长和宽的一个方程式,解方程组即可 得到小长形的长和宽,再可得到长方形的周长.
7.方程x3+6x2+5x=y3-y+2的整数解(x,y)的个数是( A .0 B.1 C.3 D.无穷多
ቤተ መጻሕፍቲ ባይዱ

解:原方程可化为x(x+1)(x+2)+3(x2+x)=y(y-1)(y+1)+2, ∵三个连续整数的乘积是3的倍数, ∴上式左边是3的倍数,而右边除以3余2,这是不可能的.
∴原方程无整数解.
8.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬 走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上 面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以 搬走( )个小正方体. A.25 B.28 C.24 D.27 留下靠墙的正方体,以及墙角处向外的一列正方体,依 次数出搬走的小正方体的个数相加即可.

初一数学竞赛系列讲座(10)_5

初一数学竞赛系列讲座(10)_5

初一数学竞赛系列讲座(10)应用题(二)一、一、知识要点1、工程类问题工程类问题讨论工作效率、工作时间和工作总量之间的相互关系。

它们满足如下基本关系式:工作效率⨯工作时间=工作总量解工程问题时常将工作总量当作整体“1”2、溶液类问题溶质:能溶解到溶剂中的物质。

如盐、糖、酒精等。

溶剂:能溶解溶质的物质。

如水等。

溶液:溶质和溶剂的混合体。

如盐水、糖水、酒精溶液等。

溶液的浓度:指一定量溶液中所含溶质的量,经常用百分数表示。

浓度的基本算式是:%100⨯=溶液量溶质量浓度二、二、例题精讲例1江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完,如果要在10分钟内抽完水,那么至少需要抽水机 台。

(1999年全国初中数学联合竞赛试题)解:设开始抽水前管涌已经涌出的水量为a 立方米,管涌每分钟涌出的水量为b 立方米,又设每台抽水机每分钟可抽水c 立方米,由条件可得:⎩⎨⎧⨯=+⨯=+c b a c b a 1641640240 解得⎪⎩⎪⎨⎧==c b c a 323160 如果要在10分钟内抽完水,那么至少需要抽水机的台数为:61032031601010=+=+c c c c b a评注:本题设了三个未知数a 、b 、c ,但只列出两个方程。

实质上c 是个辅助未知数,在解方程时把c 视为常数,解出a ,b(用c 表示出来),然后再代入求出所要求的结果。

例2 甲、乙、丙三队要完成A 、B 两项工程。

B 工程的工作量比A 工程的工作量多25%,甲、乙、丙三队单独完成A 工程所需的时间分别是20天、24天、30天。

为了共同完成这两项工程,先派甲队做A 工程,乙、丙二队做B 工程;经过几天后,又调丙队与甲队共同完成A 工程。

问乙、丙二队合作了多少天?(第十四届迎春杯决赛试题)解:设乙、丙二队合作了x 天,丙队与甲队合作了y 天。

将工程A 视为1,则工程B 可视为1+25%=5/4,由题意得:⎪⎩⎪⎨⎧⎩⎨⎧=+=+=++=++150596053 452430*********y x y x y x x y y x 去分母得,由此可解得x=15答:乙、丙二队合作了15天评注:在工程问题中,如果工作总量不是一个具体的量,常常将工作总量视为1。

初一数学竞赛系列练习16套 (含答案)全套 七年级

初一数学竞赛系列练习16套 (含答案)全套 七年级

初一数学竞赛系列训练1——自然数的有关性质一、选择题1、两个二位数,它们的最大公约数是8,最小公倍数是96,这两个数的和是( )A 、56B 、78C 、84D 、962、三角形的三边长a 、b 、c 均为整数,且a 、b 、c 的最小公倍数为60,a 、b 的最大 公约数是4,b 、c 的最大公约数是3,则a+b+c 的最小值是( )A 、30B 、31C 、32D 、333、在自然数1,2,3,…,100中,能被2整除但不能被3整除的数的个数是( )A 、33B 、34C 、35D 、374、任意改变七位数7175624的末四位数字的顺序得到的所有七位数中,能被3整除的数的个数是( )A 、24B 、12C 、6D 、05、若正整数a 和1995对于模6同余,则a 的值可以是( )A 、25B 、26C 、27D 、286、设n 为自然数,若19n+14≡10n+3 (mod 83),则n 的最小值是( )A 、4B 、8C 、16D 、32二、填空题7、自然数n 被3除余2,被4除余3,被5除余4,则n 的最小值是8、满足[x,y]=6,[y,z]=15的正整数组(x,y,z)共有 组9、一个四位数能被9整除,去掉末位数后得到的三位数是4的倍数,则这样的四位数中最大的一个,它的末位数是10、有一个11位数,从左到右,前k 位数能被k 整除(k=1,2,3,…,11),这样的最小11位数是11、设n 为自然数,则3 2 n +8被8除的余数是12、14+24+34+44+…+19944+19954的末位数是三、解答题13、求两个自然数,它们的和是667,它们的最小公倍数除以最大公约数所得的商是120。

14、已知两个数的和是40,它们的最大公约数与最小公倍数的和是56,求这两个数。

15、五位数H 97H 4能被12整除,它的最末两位数字所成的数7H 能被6整除,求出这个五位数。

16、若a,b,c,d 是互不相等的整数,且整数x 满足等式(x-a)(x-b)(x-c)(x-d)=9求证:4∣(a+b+c+d)17、一个数是5个2,3个3,2个5,1个7的连乘积,这个数当然有许多约数是两位数,这些两位约数中,最大的是多少?18、求2400被11除,所得的余数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

益智教育初一年级数学竞赛题(第10试) 姓名得分
一、选择题(每小题7分,共56分)
1.下面给出关于有理数a的三个结论:(1)a>-a,(2)|-a|>0,(3)(-a)2>0.其中,正确结论的个数为( ).
A.3 B.2 C.1 D.0
2.某商场经销一批电视机,进价为每台a元,原零售价比进价高m%,后根据市场变化,把零售价调整为原零售价的n%,调整后的零售价为每台( ).A.a(1+m%·n%)元B.a(1+m%)n%元
C.a(1+m%)(1-n%)元D.a·m%(1-n%)元
3.从如图的纸板上l0个无阴影的正方形中选1个(将其余9个
都剪去),与图中5个有阴影的正方形折成一个正方体,不同的
选法有( ).
A.3种B.4种C.5种D.6种
4.已知a、b是正整数(a>b).对于如下两个结论:(1)在a+b、ab、a-b这三个数中必有2的倍数,(2)在a+b、ab、a-b这三个数中必有3的倍数,( ).A.只有(1)正确B.只有(2)正确
C.(1)、(2)都正确D.(1)、(2)都不正确
5.如果以一组平行的“视线”观看物体,那么从物体正上方往下看可得“俯视图",从物体正左方往右看可得“左视图”,从物体正前方往后看可得“主视图’’.图2(1)中的正方体被经过相邻三条棱中点的平面截去一块后得到图2(2)的几何体.图(3)、(4)、(5)依次是小明画的该几何体的主视图、俯视图和左视图.其中,画得正确的图有( ).
A.O个B.1个C.2个D.3个
6.已知数轴上的三点A、B、C所对应的数a、b、c满足a<b<c、abc<O和a+b+c=O.那么线段AB与BC的大小关系是( ).
A.AB>BC B.AB=BC C.AB<BC D.不确定的
7.若a2003·(-b)2004<0,则下列结论正确的是()
A .a>0,b>0 B.a<0,b>0 C.a<0,b<0 D.a<0,b≠0。

8.a1,a2,…,a2004都是正数.如果M=(a l+a2+…+a2003)(a2+a3+…+a2004),
N=(a l+a2+…+a2004)(a2+a3+…+a2003),那么M、N的大小关系是( ).A.M>N B.M=N C M<N D.不确定的
二、填空题(每题7分,共56分) 图3 9.图3中有个正方形,个三角形,个梯形.
10.如图,长方形纸片的长为a,宽为b.在相邻两边上各取
一个三等分点,过这两点的直线将把纸片分成一个三角形和一
个五边形.由不同的取点、画线所得的五边形中,按面积大小,
有种不同的情况,其中,最小的面积等于.
11.已知图中数轴上线段MO(O是原点)的七等分点A、B、C、D、E、F中,只
有两点对应的数是整数,点M对应的数m>-10,
那么m可以取的不同值有个,m的最小值为.
12.如果|m|、|n|都是质数,且满足3m+5n=-1,那么m+n的值等于.13.一个长方体的长为42 cm,宽为35 cm,高为31.5 cm.如果要把这个长方体正好分割成若干大小相同的小正方体(没有剩余),那么这些小正方体至少有
个,这时所得小正方体的棱长为cm.
14.如图中有4个三角形和1个正方形.如果要把1~8这
8个自然数分别填入图中的8个圆圈中,使每个三角形顶点
处的3个数之和都相等,且与正方形顶点处的4个数之和也
相等,那么这个和等于.请在图中填入各数.
15.某班全体学生进行了一次篮球投篮练习,每人投球10个,每投进一球得1
得分不到8分的人的平均得分为3分,那么该班学生有人.
16.某校初一年级5个班举行4项环境保护知识竞赛,每班各选派2名代表参加,
10名学生中,在同一个班的分别是:和,.和,
和,和,和.
三、解答题(每题12分,)
17.18×1=18,18×4=72,18×7=126,
18×2=36,18×5=90,18×8=l44,
18×3=54,18×6=108,18×9=162.
上列等式说明18是一个奇怪的二位数——18分别乘以1、2、3、4、5、6、7、8、9以后,所得乘积的各位数字的和不变.请你找出另外一个二位数,它也具有这种奇怪的现象,并加以验证.
18.某地区的民用电,按白天时段和晚间时段规定了不同的单价.某户8月份白天时段用电量比晚间时段用电量多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的用电量虽比8月份的用电量多20%,但9月份的电费却比8月份的电费少1 O%.求该地区晚间时段民用电的单价比白天时段的单价低的百分数.
19..已知正整数a、b、c、m、n中,m、n分别是a、b被c除所得的余数.(1)m+n与2c的大小关系是:m+n 2c.
(2)当m+n=
2b
a
且a>b时,a、b、c三个数各与m、n有什么样的关系(用等式表示)?
(3)写出满足上述所有条件的一组a、b、c、m、n的值。

相关文档
最新文档