三大分布--正态分布

合集下载

三大分布和正态分布的关系

三大分布和正态分布的关系

三大分布和正态分布的关系三大分布是指均匀分布、正态分布和泊松分布。

在统计学中,这三个分布都是非常重要的基本概率分布之一。

正态分布是最为常见的一种概率分布,也被称为高斯分布或钟形曲线,因其形状呈钟形而得名。

均匀分布则是一种平均分布的概率分布,泊松分布则是一种描述稀有事件发生次数的概率分布。

首先,我们来探讨一下正态分布和均匀分布的关系。

首先需要了解的是,均匀分布是一种最简单的概率分布,它在给定区间内的各个取值概率相等,也就是说每个取值都是等可能发生的。

而正态分布则是一种近似正常分布的概率分布,它的概率密度在均值处达到最大值,两侧逐渐减小。

在正态分布中,大部分的值都集中在均值附近,并且对称分布。

均匀分布和正态分布在形状上有明显的区别。

均匀分布的概率密度函数是一个矩形,在给定区间内的取值概率是相等的,因此其形状是平坦的。

而正态分布的概率密度函数呈现钟形曲线,形状相对较高且对称。

在正态分布中,均值和标准差控制了曲线的位置和形状。

对于均匀分布,通过区间的长度可以控制分布的形状。

另外,均匀分布和正态分布在数学性质上也有一些区别。

对于均匀分布,其期望值和方差均可以通过区间的长度来计算。

例如,在[0,1]区间上的均匀分布的期望值为0.5,方差为1/12。

而对于正态分布,其期望值恒为均值μ,方差为标准差的平方σ^2。

在正态分布中,许多常见的统计推理方法都是基于正态分布的假设,这也是正态分布被广泛应用的原因之一。

此外,正态分布和均匀分布在实际应用中也有着不同的特点和用途。

正态分布广泛应用于实际测量的误差分布、自然现象的变异分布等。

在统计学中,许多假设检验和参数估计方法都是基于正态分布的推论,因此正态分布在统计学中具有重要作用。

而均匀分布常常用于随机数生成、模拟实验中,以及一些特定的情况下,如等可能事件的建模等。

最后,我们来讨论一下正态分布和泊松分布的关系。

正态分布和泊松分布是两种完全不同的概率分布。

正态分布是描述连续型随机变量的概率分布,而泊松分布则是描述离散型随机变量的概率分布。

三大分布及其分位数

三大分布及其分位数
性质
泊松分布的均值和方差相等,且随着均值 的增大,泊松分布逐渐趋近于正态分布。 此外,泊松分布具有可加性,即两个独立 泊松分布的和仍然服从泊松分布。
泊松分布的分位数计算
分位数定义
分位数是指将一个随机变量的概率分 布划分为几个等份的数值点,如中位 数就是50%分位数。
泊松分布分位数计算
泊松分布的分位数可以通过查表或使用 统计软件进行计算。对于给定的泊松分 布参数λ和概率p,可以计算出对应的分分位数的概念
分布
分布是指一组数据在各个取值范围内的频数或频率。在统计 学中,分布通常用概率密度函数或累积分布函数来描述。
分位数
分位数是指将一个随机变量的概率分布范围分为几个等份的 数值点。常用的分位数有四分位数、百分位数等。例如,中 位数就是50%分位数,表示有一半的数据小于或等于该值, 另一半的数据大于该值。
和优化提供理论支持。
生物学和医学
在生物学和医学研究中,泊松分布 可以用来描述放射性物质的衰变次 数、基因突变数等随机事件的发生
次数。
04 指数分布及其分位数
指数分布的定义和性质
定义
01
指数分布是一种连续概率分布,通常用于描述事件之间的时间
间隔。
性质
02
指数分布具有无记忆性,即事件发生的概率与自上次事件发生
排队论
在排队系统中,指数分布可用于描述顾客到达和 服务时间的概率分布,从而分析系统的性能指标 。
金融风险管理
指数分布可用于评估金融风险,如信用风险和市 场风险等,帮助金融机构制定风险管理策略。
05 三大分布的比较与联系
三大分布的特征比较
正态分布
呈钟形曲线,两侧对称,均值、 中位数、众数相等,标准差决定

统计学三大分布的应用

统计学三大分布的应用

统计学三大分布的应用
统计学三大分布是指正态分布、t分布和卡方分布。

这些分布在统计学中应用广泛,下面将分别介绍其应用。

正态分布是自然界中最常见的分布之一,常用于描述连续性变量。

例如,身高、体重、智商等连续性变量都可以用正态分布来描述。

在假设检验、置信区间估计和回归分析等统计学方法中,正态分布也是一个非常重要的理论基础。

t分布是由威廉·塞德威克·高斯特(W.S.Gosset)于1908年提
出的,用来解决小样本量的问题。

t分布的形状与正态分布非常接近,但是在样本量较小的情况下,t分布的尾部更宽一些,因此在小样本量的情况下,使用t分布进行假设检验和置信区间估计更为合适。

卡方分布是概率论中一个重要的分布,通常应用于描述计数数据。

例如,在卡方检验中,卡方分布常常用来处理分类数据,如调查中统计“喜欢”或“不喜欢”某种产品或服务的人数。

卡方分布也常用于多项式回归和逻辑回归等模型中。

综上所述,正态分布、t分布和卡方分布在统计学中应用非常广泛,是统计学的重要组成部分。

对于从事统计学研究或相关领域的人员来说,深入理解和熟练运用这些分布是非常重要的。

- 1 -。

概率论三大分布四大定理

概率论三大分布四大定理

概率论三大分布四大定理概率论是统计学的一个分支,它讨论和研究一些随机事件发生的概率。

它的研究对于进行统计分析和做出经验推断都非常重要。

概率论主要分为三大分布及四大定理。

首先来谈谈三大分布:正态分布、泊松分布和二项式分布。

正态分布又称高斯分布,是一种表征连续随机变量的概率分布,由其特殊的曲线形式,常可以清楚直观地反映出总体中随机变量分布的特点。

它具有平均值、标准差和期望值等参数,常用于描述一般性普适性状。

泊松分布也称为指数分布,这种分布可以用来描述一定时间内发生某类事件的次数。

它具有概率分布函数及期望值、方差等参数,主要应用于线性回归模型中,广泛应用于抽样检验、可靠性分析。

二项式分布是离散随机变量的概率分布,它可以描述试验重复完成某类事情的次数。

它反映的是一系列重复实验中成功次数的概率,具有概率函数及期望值、方差等参数,主要应用于网络设计中,广泛应用于效率分析及统计检验。

接下来让我们来谈谈四大定理:大数定律、中心极限定理、方差定理和期望定理。

大数定律规定,一系列的实验结果的均值越多越接近期望值,它解释了总体均值和样本均值的关系,是概率论中最重要的定理。

中心极限定理指出,在进行大量独立重复实验时,总体随机变量的分布接近正态分布,即随着实验次数的增加,实验结果越来越接近期望值。

方差定理规定,当做一系列实验时,总体方差应越来越小,而样本方差则越来越接近总体方差,这表明样本变量的方差可以代表总体方差。

期望定理定义了实验的期望值的关系,表明总体期望值可以由样本期望值准确估计。

概率论中的三大分布及四大定理是概率研究的基础知识,也是统计分析的基础。

掌握这些基本概念和定理,可以帮助我们理解和深入探讨更多有关概率和统计的主题,从而更好地应用于各种实际领域。

概率论与数理统计 7.2 数理统计中的三大分布

概率论与数理统计 7.2 数理统计中的三大分布
数理统计
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025

统计学三大分布与正态分布的差异

统计学三大分布与正态分布的差异

申请大学学士学位论文大学学士学位论文统计学三大分布与正态分布的差异年级专业:学生:指导教师:统计学三大分布与正态分布的差异中文摘要统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策者提供依据和参考。

它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。

而对数据的分析过程中就需要利用到数据的分布来研究分类。

在实际遇到的许多随机现象都服从或近似服从正态分布。

而由正态分布构造的三大分布在实际中有广泛的应用,因为这三大分布不仅有明确的背景,而且其抽样分布的密度函数有明显表达式,研究三大分布与正态分布有助于研究实际事例,比如经济安全与金融保险领域、人口统计等。

本文讨论了三大分布与正态分布,并将它们之间的密度函数进行比较说明.第二章介绍了正态分布的定义、性质,三大分布的定义、性质。

第三章介绍了正态分布与三大分布的密度函数,并将它们之间的密度函数进行比较关键词:正态分布;三大分布;密度函数The Difference between the Three Statistical Distributions andthe Normal DistributionAbstractStatistics is a branch of applied mathematics, the mathematical models are mainly established by the probability and statistics theory based on the collectingthe data, so as to conduct the quantitative analysis, and obtain the correct inference. It is widely used in the subjects, such as physical, social science, industrial and commercial field, and government intelligence decision. The process of the data analysis will need to use the data distributions to study.In practice, many random phenomena are obedient for the normal distributions, or approximately. And the three statistical distributions structured by the normal distributions have extensive applications, because these three distributions is explicitly background, and the sampling distribution density function have obvious expressions. Research on the distributions and normal distributions is useful for the study of economic security and financial insurance fields, population statistics, etc.This paper discusses the three statistical distributions and normal distributions, their density functions are compared.The second chapter presents the definition of the normal distribution, the distribution of nature, three definitions and properties.The third chapter covers a normal distribution and the density functions of the three distributions, and then the density functions are compared. Keywords: the normal distribution; Three distribution; Density function目录中文摘要 (2)英文摘要 (2)1 绪论 (5)1.1 问题的提出 (5)1.2 国外研究现状 (5)1.3 本文的主要工作 (6)2 基础知识介绍 (7)2.1 正态分布 (7)2.2 三大统计分布 (8)3 三大分布与正态分布的比较 (12)3.1 三大分布与正态分布的密度函数 (12)3.2 三大分布与正态分布的密度函数比较 (12)3.3 本章小结 (16)4 进一步工作 (16)参考文献 (17)致 (17)1 绪论统计学,最早是由Gottfried Achenwall(1749)所使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。

统计学三大分布的应用

统计学三大分布的应用

统计学三大分布的应用统计学是一门重要的学科,它通过收集、整理和分析数据来揭示事物之间的潜在规律和关系。

在统计学中,分布是一种揭示数据特征的重要工具。

在统计学中,有三大常见的分布,它们分别是正态分布、均匀分布和指数分布。

这些分布在各个领域都有广泛的应用,能够帮助我们更好地理解和解释现象。

首先,正态分布是统计学的核心概念之一。

正态分布也被称为高斯分布,它的形状近似为一个钟形曲线。

正态分布在自然界中广泛存在,例如人的身高、体重等,也在许多地方出现,如测试成绩、产品质量等。

统计学家常常使用正态分布来研究和描述各种现象,并通过计算均值和标准差来分析数据的集中度和离散程度。

正态分布也是许多假设检验和参数估计方法的基础,为我们进行科学研究和决策提供了强有力的工具。

其次,均匀分布是一种简单且常见的分布形式。

在均匀分布中,所有的取值都具有相同的概率。

这种分布可以用来模拟随机实验的结果,例如抛硬币的正反面、掷骰子的点数等。

均匀分布还在随机数生成、概率推断等方面发挥着重要作用。

在实际应用中,均匀分布也可以用来描述一些特定的自然现象,如某些地区的降雨量、温度等。

通过研究和理解均匀分布,我们可以更好地预测和解释这些现象。

最后,指数分布是描述事件发生时间的一种重要分布。

在指数分布中,事件发生的概率密度函数随时间指数级衰减。

这种分布常常用于研究和模拟一些连续系统的寿命、等待时间等。

指数分布也在信号处理、通信理论、生物学等领域中得到广泛应用。

通过对指数分布的研究,我们能够更好地理解和预测事件的发生模式,为我们提供关键信息,以便做出合理的决策。

总而言之,正态分布、均匀分布和指数分布是统计学中三大重要分布。

它们在各个领域都有广泛的应用,帮助我们更好地理解和解释现象,提供科学依据和决策支持。

通过对分布的研究和应用,统计学可以发挥重要作用,推动科学发展和社会进步。

统计学三大分布与正态分布的关系

统计学三大分布与正态分布的关系

统计学三大分布与正态分布的关系[1] 张柏林 41060045 理实1002班摘要:本文首先将介绍2χ分布,t 分布,F 分布与正态分布的定义及基本性质,然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之、1、 三大分布函数[2]1、12χ分布2()n χ分布就是一种连续型随机变量的概率分布。

这个分布就是由别奈梅(Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它就是由正态分布派生出来的,主要用于列联表检验。

定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,),则称统计量222212n =+X X χ++…X 为服从自由度为n 的2χ分布,记为22~()n χχ、2χ分布的概率密度函数为122210(;),2()200n xn x e x nf x n x --⎧≥⎪⎪=Γ⎨⎪⎪<⎩ 其中伽玛函数1(),0t x x et dt x +∞--Γ=>⎰,2χ分布的密度函数图形就是一个只取非负值的偏态分布,如下图、卡方分布具有如下基本性质:性质1:22(()),(())2E n n D n n χχ==;性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++;性质3:2n χ→∞→时,(n )正态分布; 性质4:设)(~22n αχχ,对给定的实数),10(<<αα称满足条件:αχχαχα==>⎰+∞)(222)()}({n dx x f n P 的点)(2n αχ为)(2n χ分布的水平α的上侧分位数、 简称为上侧α分位数、 对不同的α与n , 分位数的值已经编制成表供查用、2()n χ分布的上α分位数 1、2t 分布t 分布也称为学生分布,就是由英国统计学家戈赛特在1908年“student”的笔名首次发表的,这个分布在数理统计中也占有重要的位置、定义:设2~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量/XT Y n=服从自由度为n 的t 分布,记为~()T t n 、t 分布的密度函数为1221()2(;)(1),.()2n n x t x n t n n n π+-+Γ=+-∞<<+∞Γt 分布的密度函数图t 分布具有如下一些性质:性质1:()n f t 就是偶函数,221,()()2t n n f t t e ϕπ-→∞→=;性质2:设)(~n t T α,对给定的实数),10(<<αα 称满足条件;ααα==>⎰+∞)()()}({n tdx x f n t T P 的点)(n t α为)(n t 分布的水平α的上侧分位数、 由密度函数)(x f 的对称性,可得 ).()(1n t n t αα-=-类似地,我们可以给出t 分布的双侧分位数,)()()}(|{|)()(2/2/2/αααα=+=>⎰⎰+∞-∞-n t n t dx x f dx x f n t T P 显然有.2)}({;2)}({2/2/αααα=-<=>n t T P n t T P对不同的α与n , t 分布的双侧分位数可从附表查得、t 分布的上α分位数 1、3F 分布F 分布就是随机变量的另一种重要的小样本分布,应用也相当广泛、 它可用来检验两个总体的方差就是否相等,多个总体的均值就是否相等、 F 分布还就是方差分析与正交设计的理论基础、定义:设22~(),~()X n Y m χχ,,X Y 相互独立,令则称统计量//X nF Y m=服从为第一自由度为n ,第二自由度为m 的F 分布、F 分布的密度函数图F 分布具有如下一些性质:性质1:若~(,),1/~(,)F F n m F F m n 则; 性质2:若)(~n t X ,则2~(1,)X F n ; 性质3:设),(~m n F F α,对给定的实数),10(<<αα称满足条件;ααα==>⎰+∞),()()},({m n F dx x f m n F F P的点),(m n F α为),(m n F 分布的水平α的上侧分位数、F分布的上α分位数F 分布的上侧分位数的可自附表查得、性质4:.),(1),(1m n F n m F αα-=此式常常用来求F 分布表中没有列出的某些上侧分位数、 1、4正态分布正态分布就是数理统计中的一种重要的理论分布 ,就是许多统计方法的理论基础、 高斯(Gauss)在研究误差理论时首先用正态分布来刻画误差的分布,所以正态分布又称为高斯分布、 正态分布有两个参数,μ与σ,决定了正态分布的位置与形态、 为了应用方便,常将一般的正态变量X 通过u 变换转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布N (0,1)、 正态分布的密度函数与分布函数若连续型随机变量X 具有概率密度()f x 为22()21(),,2x f x ex μσπσ--=-∞<<+∞其中,(0)μσσ>为常数,则称X 服从参数为μσ,的正态分布,记为2~()X N μσ,、正态分布的密度函数图特征1:正态曲线(normal curve)在横轴上方均数处最高; 特征2:正态分布以均数为中心,左右对称;特征3:正态分布有两个参数,即均数μ与标准差σ、 μ就是位置参数,σ固定不变时,μ越大,曲线沿横轴越向右移动;反之,μ越小,则曲线沿横轴越向左移动、 σ就是形状参数,当μ固定不变时,σ越大,曲线越平阔;σ越小,曲线越尖峭、 通常用2N μσ(,)表示均数为μ,方差为2σ的正态分布、 用N (0,1)表示标准正态分布、 特征4:正态曲线下面积的分布有一定规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( k=0,1, 2,, m ; m=min{M,n} )
E(X ) nM
N
D(
X
)
nM
(N N
n)(N 2(N 1)
M
)
超几何分布的应用
注1:当n≤2时,虽可套用公式 但不如直接计算简捷 当n≥3时,套用公式 一般的,可减少操作量
注2:三个细节要留心 书写格式要正规 随机变量有范围 (高仿只用莫声张) 二项分布会区分
超几何分布的书写格式
由题意得X服从超几何分布
其中 N=!,M=!,n=!

P( X
k)
C C k nk M NM CNn
(k=0,1, 2,, m)
m =min{M,n}
从而X的分布列为
X
0
p
C C 0 n0 M NM
CNn
1
C C 1 n1 M NM CNn
… …
m
C C m nm M NM CNn
其密度函数f(xf ()x=)
1
e
(
x
80 200
)2
,
x,则(不, 正) 确的是
【B】
2 10
A.平均成绩为80分
B.分数在120分以上和分数在60分以下的人数相同
C.分数在110分以上和分数在50分以下的人数相同
D.这次考试的成绩标准差为10
(4)设随机变量ξ~N(2,4),则D(2ξ+3)=_1_6__
一、概念:
1.正态曲线: 称函数 f (x) , (x)
1
e
(x )2 2 2
,
x (, )
的图象
2
(其中μ和δ>0为参量)为正态分布密度曲线,简称正态曲线
x =μ
x
2.正态分布:
若随机变量X满足
P(a X
b)
b
a , (x)dx
则称随机变量X服从正态分布. 记作 X~N(μ, δ2 )
A.4.56% B.13.59% C.27.18% D.31.74%
(8)已知某工厂生产的圆柱形零件的外直径X~N(4,0.52) 质量检查人员从该厂生产的1000个零件中随机抽查了 一个,测得它的外直径为5.7 cm,能否判断该厂生产 的这批零件是否合格?
析:由3δ原则及小概率事件原理可知:
个体落在区间(4-3×0.5,4+3×0.5)外几乎不可能的
一、概念:
1.正态曲线: 2.正态分布: 3.标准正态分布:
二、性质:
1.对称性 2.渐近性 3.最大值 4.面积为1
5.期望为μ,方差为δ2
三、应用:
正态曲线是钟型 指数二次组合体 要求概率求面积 左小右大总为 1 均值中众对称轴 比较方差武大郎 前数期望后方差 平方去π同上母
1.求概率及各参量: 2.小概率事件原理与3δ原则
§117 三大分布——正态分布
一、概念:
1.正态曲线: 2.正态分布: 3.标准正态分布:
二、性质:
1.对称性 2.渐近性 3.最大值 4.面积为1
5.期望为μ,方差为δ2
三、应用:
正态曲线是钟型 指数二次组合体 要求概率求面积 左小右大总为 1 均值中众对称轴 比较方差武大郎 前数期望后方差 平方去π同上母
随机变量有范围 (高仿只用莫声张)

X
~ H(n
,M
,N)
,则
P( X
k ) C C k nk M NM CNn
( k=0?,1, 2,, m ; m=min{M,n} )
若随机变量 X 符合超几何分布的条件 但 k ∈ {0,1,2,…,m } ,则 ①虽然 X 不是“正品”的超几何分布
②但概率公式,期望公式,仍然适用 即表象上;按照求一般分布列来处理 骨子里;按照超几何分布列来处理
(2)某市期末教学质量检测中,甲、乙、丙三科考试成绩 近似服从正态分布,则由如图所示的曲线可得下列说法 中正确的是 【A】
(A)甲学科总体的方差最小 (B)丙学科总体的均值最小 (C)乙学科总体的方差及均值都居中 (D)甲、乙、丙的总体的均值不相同
(3)某校高二期中考试后统计的数学成绩服从正态分布
由正态分布的对称性得 P(X≥1400)=0.6826+ 1 0.682 6 =0.8413 即所求概率为0.8413 2
②寿命最长的占0.13%,即寿命最长的概率是0.0013 而 P(1200<X≤1800)= P(μ-3δ<X≤μ+3δ)=0.9974 由正态分布的对称性得 P(X≥1800)=0.0013
而5.7 (2.5,5.5) 故可认为:该批零件是不合格的
(9)已知电灯泡的使用寿命X~N(1500,1002)(单位:h) ①购买一个灯泡,求它的寿命不小于1400小时的概率 ②这种灯泡中,寿命最长的占0.13%,这部分灯泡的 寿命至少为多少小时?
析:由题意得μ=1500,δ=100 ①因P(1400<X≤1600)=P(μ-δ<X≤μ+δ)=0.6826
2.小概率事件原理与3δ原则:
①小概率事件原理:
一般的,当P(A)≤0.05(或0.01)时 可以认为在一次试验中事件A几乎是不可能发生的 但在多次重复试验中几乎是必然发生的
② 3δ原则:
若X~N(μ,δ2).则
区间
δ原则 X ,
2δ原则 X 2 , 2
3δ原则 X 3, 3
超几何分布的概念
在含有M件次品的N件产品中,任取n件,其中恰有X件次品数

P( X
k)
C C k nk M NM CNn
k=0,1,2,…,m; m=min{M,n}
X
0
1

m
即p
C C 0 n0 M NM CNn
C C 1 n1 M NM CNn

C C m nm M NM CNn
称该分布列称为超几何分布
所以这部分灯泡的寿命至少为1800小时
针对训练:
1.《精炼案》P:90 2.《精炼案》P:90 3.《精炼案》P:96
Ex 1 Ex 2 Ex 5
预习:
回归分析
注2:频率代概率 总数一大批 抽取要放回 二项分布也
二项分布常用的公式
若ξ~B(n,p),则
① P( k) Cnk pk (1 p)nk (k 0,1,2,..., n)
② E( ) np ③ D( ) np(1 p)
二项分布常见的题型
1.
明考 暗考
单变量 2. 双变量 a b
多变量 a b
1.求概率及各参量: 2.小概率事件原理与3δ原则
随机变量期望与方差的概念
若ξ的分布列为 ξ p
x1 x2 x3 … xn p1 p2 p3 … pn
① 则称 E x1 p1 x2 p2 L xi pi L xn pn
为ξ的数学期望或均值,简称为期望.
② 则称 D (x1 E )2 p1 (x2 E )2 p2 ... (xn E )2 pn
5.期望为μ,方差为δ2
三、应用:
1.求概率及各参量: 2.小概率事件原理与3δ原则:
(1)(2008年安徽)设两个正态分布
N (1 ,12 )

N
(2
,
2 2
)的
密度函数图像如图所示.则有【D】
A. 1 2 ,1 2 B. 1 2 ,1 2 C. 1 2 ,1 2 D. 1 2 ,1 2
取值概率
0.6826 0.9544 0.9974
(7)(2015年山东)已知某批零件的长度误差(单位:毫米)
服从正态分布N(0,32 ),从中随机取一件,其长度 误差落在区间(3,6)内的概率为 【B】
附:若随机变量ξ服从正态分布N(μ, δ²)
则 P (μ-δ<ξ<μ+δ)=68.26% P (μ-2δ<ξ<μ+2δ)= 95.44%
,
N
D(
)
1
p p2
nM
(N n)(N nN(N 1)
M
)
⑩ E( ) E( ) E()
〇11 若ξ,η相互独立,则 E() E( )E()
随机变量期望与方差的求法
(1).定义法: (2).性质公式法: (3).图布的定义
——独立重复n次,恰好发生k次的概率
(5)(2008年湖南)设随机变量ξ~N(2,9) 若P(ξ>c+1)=P(ξ<c-1) ,则 c= 【B】
A.1
B.2
C.3
D.4
(6)(2010年山东)已知随机变量Z~N(0,δ2) 若P(Z>2)=0.023,则 P(-2≤Z≤2)= 【C】
A.0.477 C.0.954
B.0.625 D.0.977
x=a
x=b
x
3.标准正态分布:
当μ=0,δ=1时的正态分布叫做标准正态分布
二、性质:
1.对称性
f (x) , (x)
1
( x )2
e 2 2
2
2.渐近性
正态曲线是钟型 指数二次组合体
3.最大值 4.面积为1
要求概率求面积 左小右大总为 1 均值中众对称轴 比较方差武大郎 前数期望后方差 平方去π同上母
一般的,在n次独立重复试验中 用X表示事件A发生的次数 设每次试验中事件A发生的概率为p,则
P( k) Cnk pk (1 p)nk (k 0,1,2,..., n)
则称随机变量X服从二项分布
称 p 为成功概率 ,并记X~ B (n, p)
注1:互不影响为独立 概率相等即重复 重复n 次恰好 k 通项公式后项 p
称随机变量X服从超几何分布. 并记X~ H (n,M,N)
注:元素属性两大类 质量抽检是范例
相关文档
最新文档