2016年陕西省师大附中七年级下学期数学期末试卷与解析答案

合集下载

15-16第二学期期末七年级数学答案

15-16第二学期期末七年级数学答案

2015-2016学年第二学期期末七年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试七年级数学试题参考答案及评分标准一、选择题(每小题2分,共30分)16.6 17.105° (17小题有无度数均不扣分)18.14 19.4 20.(14,2) 注:不加括号不能得分三、解答题(本大题共6个小题,共60分.解答应写出文字说明或演算步骤) 21. (每个4分,共16分) 解:(1)①6 ②﹣2 (①②两个小题,结果不正确不能得分) (2)解:由②得y=6﹣x ,代入①得2x ﹣3(6﹣x )=2,解得x=4.------------------2分 把x=4代入②,得y=2. ∴原方程组的解为.-------------------------------------------------------------4分(3)解:,由①得:x >﹣2,-----------------------------------------------------1分 由②得:x ≤3,---------------------------------------------------------2分 ∴不等式组的解集是:﹣2<x ≤3.-----------------------------4分 (其他解法参照此评分标准酌情给分) 22.(本题满分8分) 解:(1)如图所示;------------------------3分(2)由图可知,A ′(2,3)、B ′(1,0)、C ′(5,1);--6分(3)S △A ′B ′C ′=3×4﹣×1×3﹣×1×4﹣×2×3 =12﹣﹣2﹣3=.---------------------------------8分23.(本题满分8分)解:∵AB ⊥BF ,CD ⊥BF , ∴∠B=∠CDF=90°,∴AB ∥CD ,---------------------------------3分 ∵∠1=∠2,∴AB ∥EF ,----------------------------------6分 ∴CD ∥EF .----------------------------------8分 (其他解法参照此评分标准酌情给分)(第22题图)(第23题图)2015-2016学年第二学期期末七年级数学答案 第2页(共2页)24.(本题满分8分) 解:(1)4,6;------------------------2分(2)24, ------------------------------------3分120°,-----------------------------------4分 补图----------------------------------------6分 (3)32÷80×1000=400答:今年参加航模比赛的获奖人数约是400人. -------------------------------------------------8分25.(本题满分10分)解:设后半小时速度为xkm/h ,根据题意得:--------------------------------1分50+0.5x ≥120, --------------------------------------------------------6分解得:x ≥140.---------------------------------------------------------------------- 9分 答:后半小时速度至少为140km/h 才能保证按时到达.----------------- 10分 (其他解法参照此评分标准酌情给分。

陕西省师大附中2015-2016学年七年级(下)期末数学试卷(解析版)

陕西省师大附中2015-2016学年七年级(下)期末数学试卷(解析版)

2015-2016学年陕西省师大附中七年级(下)期末数学试卷一、选择题1.在8,,,1.030030003,中,无理数有()A.4个 B.3个 C.2个 D.1个2.在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作PQ∥BC,交AB 于点P,交AC于点Q,若∠A=60°,则∠PEB+∠QEC=()A.50°B.60°C.70°D.80°3.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率4.人的身高h随时间t的变化而变化,那么下列说法正确的是()A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量 D.h是自变量,t是因变量5.若一个直角三角形的三边长分别为a、b、c,已知a2=25,b2=144,则c2=()A.169 B.119 C.13或25 D.169或1196.以下说法合理的是()A.小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖C.不确定事件A发生的概率是0与1之间的一个常数D.某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是7.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC8.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.9.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个10.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDEF不可能四边都相等;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的有()A.①②③B.①③④C.①④⑤D.③④⑤二、填空题11.等腰三角形的顶角是80°,一腰上的高与底边的夹角是°.12.点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,且点Q在点P左边,则P、Q之间的距离为.13.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,若DE 垂直平分AB,交AB于点E,则∠B=.14.如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=50°,则∠2=°.15.已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为.16.若m2=(﹣2)2,n2=(﹣3)2,则mn=.17.如图,A村到公路l的距离AB为6km,C村到公路l的距离CD为2km,且BD的长为6km.现要在公路l上取一点P,使AP+CP的值最小,则这个最小值为.18.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC为斜边AC为直角边,画第2个等腰直角三角形ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,以此类推,第n个等腰直角三角形的面积是.三、解答题19.计算:(1)解方程:2(1﹣2x)2=162;(2)化简:×(﹣)++;(3)化简:|3﹣π|++.20.尺规作图已知在Rt△ABC中,∠B=90°,请用尺规在边BC上找一点D,使得点D到A、C 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)21.如图,在△ABC中,∠BAC=90°,AB=AC,AM是过点A的任意一条直线,BD ⊥AM于点D,CE⊥AM于点E,求证:DE=BD﹣CE.22.点燃的蜡烛每分钟燃烧的长度一定,长为22cm的蜡烛,点燃10分钟,变短4cm,设点燃x分钟后,还剩ycm.(1)求y与x之间的关系式;(2)点燃30分钟后,蜡烛还剩多少?(3)此蜡烛几分钟能燃烧完?23.一个口袋中6个黑球,10个白球,这些球除了颜色外完全相同.充分搅匀后随机摸出一球,发现是黑球.(1)如果将这个黑球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个黑球不放回,再摸出一球,那么它是白球的概率是多少?24.如图1所示,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D在边AB上.(1)若DE经过点C,且AD=CD=BD,DF交AC于点G,求重叠部分(△DCG)的面积;(2)思考探究:“数学学习小组”的几位同学受到启发,保持(1)中的点D不动,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求△ADH的面积.2015-2016学年陕西省师大附中七年级(下)期末数学试卷参考答案与试题解析一、选择题1.在8,,,1.030030003,中,无理数有()A.4个 B.3个 C.2个 D.1个【考点】无理数.【分析】无理数是无限不循环的小数.【解答】解:无理数有,,故选(C)2.在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作PQ∥BC,交AB 于点P,交AC于点Q,若∠A=60°,则∠PEB+∠QEC=()A.50°B.60°C.70°D.80°【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据三角形的内角和得到∠ABC+∠ACB=120°,根据角平分线的定义得到∠PBE=∠EBC,∠QCE=∠BCE,求得∠CBE+∠BCE=60°,根据平行线的性质得到∠PEB=∠EBC,∠QEC=∠QCE,等量代换即可得到结论.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠ABC和∠ACB的角平分线交于点E,∴∠PBE=∠EBC,∠QCE=∠BCE,∴∠CBE+∠BCE=60°,∵PQ∥BC,∴∠PEB=∠EBC,∠QEC=∠QCE,∴∠PEB+∠QEC=60°,故选B.3.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】利用频率估计概率.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.4.人的身高h随时间t的变化而变化,那么下列说法正确的是()A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量 D.h是自变量,t是因变量【考点】常量与变量.【分析】因为函数的定义中,因变量y随自变量x的变化而变化,利用这一关系即可作出判断.【解答】解:因为人的身高h随时间t的变化而变化,所以t是自变量,h是因变量;故本题选B.5.若一个直角三角形的三边长分别为a、b、c,已知a2=25,b2=144,则c2=()A.169 B.119 C.13或25 D.169或119【考点】勾股定理.【分析】此题有两种情况,当a,b为直角边,c为斜边,和当a,c为直角边,b 为斜边,利用勾股定理即可求解.【解答】解;当a,b为直角边时,c2=a2+b2=25+144=169,当a,c为直角边,b为斜边时,c2=b2﹣a2=144﹣25=119,故选:D.6.以下说法合理的是()A.小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖C.不确定事件A发生的概率是0与1之间的一个常数D.某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是【考点】概率的意义.【分析】直接利用概率的意义分别分析得出答案.【解答】解:A、小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是,不合理;B、某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖,不合理;C、不确定事件A发生的概率是0与1之间的一个常数,合理;D、某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是,不合理.故选:C.7.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】四项分别一试即可,要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选A.8.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选B9.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个【考点】函数的图象.【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选C.10.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDEF不可能四边都相等;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的有()A.①②③B.①③④C.①④⑤D.③④⑤【考点】三角形综合题.【分析】①连接CF,证明△ADF≌△CEF,可以得出结论正确;②当D、E分别为AC、BC中点时,四边形CDFE是正方形;所以此结论不正确;③由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,求出最小值,所以此结论不正确;④根据两三角形全等时面积也相等得:S△CEF=S△ADF,利用割补法知:S四边形CDFE=S△AFC,F是定点,所以△AFC的面积是定值,即四边形CDFE的面积保持不变;⑤当△CDE面积最大时,此时△DEF的面积最小,计算S△CDE=S四边形CEFD﹣S△DEF=S△AFC ﹣S△DEF,代入即可.【解答】解:①连接CF,∵∠ACB=90°,AC=BC,∴∠A=45°,∵F是AB边上的中点,∴CF=AF=BF,CF⊥AB,∠ACF=∠BCF=45°,∴∠AFC=90°,∴∠A=∠BCF,在△ADF和△CEF中,∵,∴△ADF≌△CEF(SAS),∴DF=EF,∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC=90°,即∠DFE=90°,∴△DEF是等腰直角三角形;所以此结论正确;②当D、E分别为AC、BC中点时,四边形CDFE是正方形.如图2,∵E是BC的中点,F是AB边上的中点,∴EF是△ABC的中位线,∴EF∥AC,EF=AC=CD,∴四边形CDFE是平行四边形,∵CD=AC,CE=BC,AC=BC,∴CD=CE,∵∠C=90°,∴四边形CDFE是正方形,但已知点D、E分别在AC、BC边上运动,并不能一直保持D、E分别是AC、BC 的中点,所以四边形CDEF不可能四边都相等;所以此结论不正确;③由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4;所以此结论不正确;④∵△ADF≌△CEF,=S△ADF∴S△CEF=S△AFC.∴S四边形CDFE∴四边形CDFE的面积保持不变;所以此结论正确;⑤当△CDE面积最大时,此时△DEF的面积最小,∵∠C=90°,AC=BC=8,∴AB==8,∴AF=CF=4,=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=××﹣×4×4=16﹣8=8.此时S△CDE则结论正确的是①④⑤.故选C.二、填空题11.等腰三角形的顶角是80°,一腰上的高与底边的夹角是40°.【考点】等腰三角形的性质.【分析】从已知条件根据等腰三角形一腰上的高与底边的夹角等于顶角的一半进行解答即可.【解答】解:因为等腰三角形的顶角是80°,根据等腰三角形一腰上的高与底边的夹角等于顶角的一半得所求的角为40°.故答案为:40.12.点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,且点Q在点P左边,则P、Q之间的距离为5或1.【考点】数轴;两点间的距离公式.【分析】根据点P、Q离原点的距离可得出点P、Q表示的数,再根据点Q在点P的左边可确定点Q表示的数为﹣3,根据两点表示的数利用数轴上两点间的距离公式即可求出结论.【解答】解:∵点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,∴点P表示的数为±2,点Q表示的数为±3,又∵点Q在点P左边,∴点Q表示的数为﹣3.当点P表示的数为2时,PQ=2﹣(﹣3)=5;当点P表示的数为﹣2时,PQ=﹣2﹣(﹣3)=1.故答案为:5或1.13.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,若DE 垂直平分AB,交AB于点E,则∠B=30°.【考点】线段垂直平分线的性质.【分析】根据垂直平分线得出AD=BD,推出∠B=∠DAB,求出∠CAD=∠BAD=∠B,根据三角形内角和定理求出3∠B=90°,求出∠B.【解答】解:∵DE垂直平分AB,∴AD=BD,∴∠B=∠DAB,∵∠CAB的平分线AD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴3∠B=90°,∴∠B=30°,故答案为:30°14.如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=50°,则∠2=40°.【考点】平行线的性质;垂线.【分析】根据两直线平行,内错角相等,即可求得∠3=∠1,根据PM⊥l于点P,则∠MPQ=90°,即可求解.【解答】解:∵直线a∥b,∴∠3=∠1=50°,又∵PM⊥l于点P,∴∠MPQ=90°,∴∠2=90°﹣∠3=90°﹣50°=40°.故答案是:40.15.已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为等腰直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质可得a2﹣b2﹣c2=0,b﹣c=0,进而可得a2﹣b2=c2,b=c,从而可得三角形的形状.【解答】解:∵|a2﹣b2﹣c2|+=0,∴a2﹣b2﹣c2=0,b﹣c=0,∴a2﹣b2=c2,b=c,∴△ABC的形状为等腰直角三角形,故答案为:等腰直角三角形.16.若m2=(﹣2)2,n2=(﹣3)2,则mn=±6.【考点】有理数的乘方.【分析】先求出m与n的值,再代入计算即可.【解答】解:∵m2=(﹣2)2,n2=(﹣3)2,∴m=±2,n=±3,当m=2,n=3时,mn=6;当m=2,n=﹣3时,mn=﹣6;当m=﹣2,n=3时,mn=﹣6;当m=﹣2,n=﹣3时,mn=6;故答案为±6.17.如图,A村到公路l的距离AB为6km,C村到公路l的距离CD为2km,且BD的长为6km.现要在公路l上取一点P,使AP+CP的值最小,则这个最小值为10km.【考点】轴对称﹣最短路线问题.【分析】作点C关于直线BD的对称点C′,连接AC′交BD′于点P,则直线AC′的长即为AP+CP的最小值.【解答】解:作点C关于直线BD的对称点C′,连接AC′交BD′于点P.∵AB=6km,CD=2km,BD=6km,∴AC′==10km.故答案为:10km.18.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC为斜边AC为直角边,画第2个等腰直角三角形ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,以此类推,第n个等腰直角三角形的面积是2n﹣2.【考点】等腰直角三角形.【分析】将前4个等腰三角形的面积计算出来,然后找出规律即可求出答案.【解答】解:由勾股定理可知:AC2=2,AD2=4,AE2=8,AF2=16,故第n个等腰三角形的斜边的平方为:2n,设等腰三角形的直角边长为a;斜边长为c,∴由勾股定理可知:c2=2a2由三角形面积公式可知:a2=c2,∴第n个等腰三角形的面积为:×2n=2n﹣2故答案为:2n﹣2三、解答题19.计算:(1)解方程:2(1﹣2x)2=162;(2)化简:×(﹣)++;(3)化简:|3﹣π|++.【考点】实数的运算;负整数指数幂.【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)原式利用平方根、立方根定义,以及负整数指数幂法则计算即可得到结果;(3)原式利用绝对值的代数意义,二次根式性质,以及算术平方根定义计算即可得到结果.【解答】解:(1)方程整理得:(1﹣2x)2=81,开方得:1﹣2x=9或1﹣2x=﹣9,解得:x=﹣4或x=5;(2)原式=×(﹣2)+4+=2;(3)原式=π﹣1+﹣1+4=π++2.20.尺规作图已知在Rt△ABC中,∠B=90°,请用尺规在边BC上找一点D,使得点D到A、C 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)【考点】作图—基本作图;线段垂直平分线的性质.【分析】作AC的垂直平分线交BC于D,则点D满足条件.【解答】解:如图,点D为所作.21.如图,在△ABC中,∠BAC=90°,AB=AC,AM是过点A的任意一条直线,BD ⊥AM于点D,CE⊥AM于点E,求证:DE=BD﹣CE.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】先根据垂直的定义得到∠AEC=∠BDA=90°,再根据等角的余角相等得到∠ABD=∠CAE,则可利用“AAS”判断△ABD≌△CAE,所以AD=CE,BD=AE,于是有BD﹣CE=AE﹣AD=DE.【解答】证明:∵CE⊥AM,BD⊥AM,∴∠AEC=∠BDA=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,即∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴BD﹣CE=AE﹣AD=DE,即DE=BD﹣CE.22.点燃的蜡烛每分钟燃烧的长度一定,长为22cm的蜡烛,点燃10分钟,变短4cm,设点燃x分钟后,还剩ycm.(1)求y与x之间的关系式;(2)点燃30分钟后,蜡烛还剩多少?(3)此蜡烛几分钟能燃烧完?【考点】一次函数的应用.【分析】(1)根据题意可以求得每分钟蜡烛燃烧的长度,从而可以求得y与x之间的关系式;(2)将x=30代入(1)中的函数解析式,即可解答本题;(3)将y=0代入(1)中的函数解析式,即可解答本题.【解答】解:(1)由题意可得,y=22﹣(4÷10)×x=22﹣0.4x,即y与x之间的关系式是y=22﹣0.4x;(2)当x=30时,y=22﹣0.4×30=10,即点燃30分钟后,蜡烛还剩10cm;(3)令y=0,则0=22﹣0.4x,解得,x=55,即此蜡烛55分钟能燃烧完.23.一个口袋中6个黑球,10个白球,这些球除了颜色外完全相同.充分搅匀后随机摸出一球,发现是黑球.(1)如果将这个黑球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个黑球不放回,再摸出一球,那么它是白球的概率是多少?【考点】列表法与树状图法.【分析】(1)摸出一个黑球放回对第二次摸到白球没有影响,直接利用概率公式求解即可;(2)如果这个黑球不放回,则总数减少1,再利用概率公式求解即可.=;【解答】解:(1)如果将白球放回,再摸出一球P(摸到的球是白球)=(2)如果这个黑球不放回,再摸出一球,有10个白球和5个黑球,再摸出一球P(摸到的球是白球)==.24.如图1所示,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D在边AB上.(1)若DE经过点C,且AD=CD=BD,DF交AC于点G,求重叠部分(△DCG)的面积;(2)思考探究:“数学学习小组”的几位同学受到启发,保持(1)中的点D不动,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求△ADH的面积.【考点】旋转的性质;全等三角形的性质;相似三角形的判定与性质.【分析】(1)先求出∠B=∠DCB,再证明DG∥BC,然后证出DG⊥AC,G是AC 的中点,即可求出重叠部分(△DCG)的面积;(2)先证明AG=GH,再求出AD,然后证明△ADH∽△ACB,得出比例式=,求出DH,即可求出△ADH的面积.【解答】解:(1)∵∠ACB=90°,D是AB的中点,∴DC=DB=DA,∴∠B=∠DCB,又∵△ABC≌△FDE,∴∠FDE=∠B,∴∠FDE=∠DCB,∴DG∥BC,∴∠AGD=∠ACB=90°,∴DG⊥AC,又∵DC=DA,∴G是AC的中点,∴CG=AC=×8=4,DG=BC=×6=3,=×CG×DG=×4×3=6.∴S△DCG(2)如图2,∵△ABC≌△FDE,∴∠B=∠1,∵∠C=90°,ED⊥AB,∴∠A+∠B=90°,∠A+∠2=90°,∴∠B=∠2,∴∠1=∠2,∴GH=GD,∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD,∴AG=GH,∴点G为AH的中点,在Rt△ABC中,AB===10,∵D是AB中点,∴AD=AB=5,在△ADH与△ACB中,∵∠A=∠A,∠ADH=∠ACB=90°,∴△ADH∽△ACB,∴=,即=,∴DH=,=×DH×AD=××5=.∴S△ADH2017年4月7日。

陕西省西安市2015-2016学年七年级下期末数学试卷含答案解析.docx

陕西省西安市2015-2016学年七年级下期末数学试卷含答案解析.docx

陕西省西安市2015-2016 学年七年级下期末数学试卷含答案解析2015-2016 学年陕西省西安市七年级(下)期末数学试卷一、选择题1.如图所示的四个“艺术字”中,轴对称图形的个数是()A. 1 个 B.2 个 C. 3 个 D.4 个2.下列计算正确的是()3)263÷3a33.3+3a36.325A.(﹣a=﹣a B.9a=3a C2a=5a D2a ?3a =6a 3.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠ 2 的大小是()A. 35°B.45°C. 55°D.65°4.下列事件发生的概率为0 的是()A.射击运动员只射击 1 次,就命中 10 环B.任取一个有理数x,都有 | x| ≥0C.画一个三角形,使其三个内角的和为199°D.抛掷一枚质地均匀且六个面分别刻有 1 到 6 的点数的正方体骰子,朝上一面的点数为 15.若整式 x+3 与 x﹣a的乘积为 x2+bx﹣6,则 b 的值是()A. 1 B.﹣1C. 2 D.﹣26.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′ O′ B∠′=AOB 的依据是()A.( S.S.S.) B.( S.A . S.) C.( A . S.A .)D.( A .A . S.)7.为配合地铁五号线建设,市政部分现对雁翔路某段进行雨、污水管道改造施工,施工单位在工作了一段时间后,因天气原因被迫停工几天,随后施工单位加快了施工进度,按时完成了管道施工任务,下面能反映该工程尚未改造的管道长度 y(米)与时间 x(天)的关系的大致图象是()A.B.C.D.8.如图,在△ ABC 中, BD 平分∠ ABC , DE⊥ AB 交 AB 于点 E, DF⊥ BC 交BC 于点 F,若 AB=12cm, BC=18cm,S△ABC =90cm2,则 DF 长为()A. 3cmB .6cmC. 9cmD .12cm9.如图,在△ ABC 中,直线 ED 是线段 BC 的垂直平分线,直线 ED 分别交BC、AB 于点 D、点 E,已知 BD=4 ,△ ABC 的周长为 20,则△ AEC 的周长为()A. 24 B.20 C. 16 D.1210.如图, G 是△ ABC 的重心,直线 L 过 A 点与 BC 平行.若直线 CG 分别与AB ,L 交于 D, E 两点,直线 BG 与 AC 交于 F 点,则△ AED 的面积:四边形ADGF 的面积 =()A. 1:2B.2:1C.2:3D.3:2二、填空题11.用科学记数法表示: 0.00000108=.12.一个不透明袋中放入 7 枚只有颜色不同的围棋棋子,其中 4 枚黑色, 3 枚白色,任意摸出一枚,摸到棋子是黑色的概率为.13.若 3x=2,9y=6,则 3x﹣2y=.14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量 /千1 1.52 2.53 3.54克烤制时间 /分6080100120140160180设鸭的质量为 x 千克,烤制时间为t,估计当 x=2.9 千克时, t 的值为.15.已知,则代数式的值为.16.如图,已知△ ABC 中, AC=BC ,点 D、E 分别在边 AB 、 BC 上,把△BDE 沿直线 DE 翻折,使点 B 落在 B'处, DB'、 EB'分别交 AC 于点 F、G,若∠ ADF=66°,则∠ EGC 的度数为.17.在 Rt△ABC 中,∠ ACB=90°, AC=3,BC=4, AD 是∠ BAC 的平分线,若P、Q 分别是 AD 和 AC 上的动点,则 PC+PQ 的最小值是.三、解答题18.计算(1)﹣(3x+y)( x﹣y)(2)( 4a3﹣2 2+12ab3)÷2ab b 6ab( 3) [ 4365366﹣3×( 3.14﹣π)0×(﹣0.25)﹣2 ](4) 20152﹣ 2016× 2014.19.作图题(要求尺规作图,保留作图痕迹,不写作法)已知:线段 a,∠β.求作:△ ABC ,使 BC=a,∠ ABC= ∠β,∠ ACB=2 ∠β.20.如图,已知∠ A=∠ F,∠ C=∠D,试说明 BD∥ CE.解:∵∠ A=∠ F(已知)∴ AC∥(内错角相等,两直线平行)∴∠ C=∠CEF().∵∠ C=∠D(已知),∴=∠CEF(等量代换)∴BD∥ CE()21.为了提高身体素质,小明假期为自己制定了慢跑锻炼计划,某日小明从省体育场出发沿长安路慢跑,已知他离省体育场的距离s(km)与时间 t(h)之间的关系如图所示,根据图象回答下列问题:( 1)小明离开省体育场的最远距离是千米,他在120 分钟内共跑了千米;( 2)小明在这次慢跑过程中,停留所用的时间为分钟;( 3)小明在这段时间内慢跑的最快速度是每小时千米.22.如图,△ ABC 是等边三角形,延长BA 至点 D,延长 CB 至点 E,使得BE=AD ,连结 CD,AE .求证: AE=CD .23.阅读材料:把形如ax2+bx+c 的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即:a2± 2ab+b2=(a±b)2.根据阅读材料解决下面问题:( 1) m2+4m+4=()2(2)无论 n 取何值, 9n2﹣ 6n+10(填“<”,“>”,“≤”,“≥”或“ =)”(3)已知 m,n 是△ ABC 的两条边,且满足 10m2+4n2+4=12mn+4m,若该三角形的第三边 k 的长是奇数,求 k 的长.24.如图,在△ ABC 中,已知 AB=AC ,∠ BAC=90°, AH 是△ ABC 的高,AH=4 cm,BC=8 cm,直线 CM ⊥BC,动点 D 从点 C 开始沿射线 CB 方向以每秒3 厘米的速度运动,动点 E 也同时从点 C 开始在直线 CM 上以每秒 1 厘米的速度向远离 C 点的方向运动,连接AD 、 AE,设运动时间为t( t>0)秒.( 1)请直接写出 CD、 CE 的长度(用含有 t 的代数式表示): CD=cm,CE=cm;(2)当 t 为多少时,△ ABD 的面积为 12 cm2?(3)请利用备用图探究,当 t 为多少时,△ ABD ≌△ ACE ?并简要说明理由.2015-2016 学年陕西省西安市七年级(下)期末数学试卷参考答案与试题解析一、选择题1.如图所示的四个“艺术字”中,轴对称图形的个数是()A. 1 个 B.2 个 C. 3 个 D.4 个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:最:不是轴对称图形,不符合题意;美:是轴对称图形,符合题意;铁:不是轴对称图形,不符合题意;一:是轴对称图形,符合题意.故选: B.2.下列计算正确的是()3)263÷3a333+3a36325 A.(﹣a=﹣a B.9a=3a C.2a=5a D. 2a ?3a =6a【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的乘除法、合并同类项法则即可作出判断.【解答】解:( A)原式 =a6,故 A 错误;(B)原式 =3,故 B 错误(C)原式 =5a3,故 C 错误故选( D)3.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠ 2 的大小是()A. 35°B.45°C. 55°D.65°【考点】平行线的性质.【分析】先求出∠ ACE 的度数,根据平行线的性质得出∠ 2=∠ACE ,即可得出答案.【解答】解:如图,∵∠ ACB=90°,∠ 1=35°,∴∠ ACE=90°﹣35°=55°,∵MN ∥EF,∴∠ 2=∠ ACE=55°,故选 C.4.下列事件发生的概率为0 的是(A.射击运动员只射击 1 次,就命中)10 环B.任取一个有理数x,都有 | x|≥0C.画一个三角形,使其三个内角的和为199°D.抛掷一枚质地均匀且六个面分别刻有 1 到 6 的点数的正方体骰子,朝上一面的点数为 1【考点】概率的意义.【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于 0 并且小于 1;必然事件概率为1;不可能事件概率为0.【解答】解: A、是随机事件,概率大于0 并且小于 1;B、是必然事件,概率 =1;C、是不可能事件,概率 =0;D、是随机事件,概率大于0 并且小于 1;故选: C..若整式x+3与x﹣a的乘积为x2+bx﹣6,则 b 的值是()5A. 1 B.﹣1C. 2 D.﹣2【考点】多项式乘多项式.【分析】根据题意列出等式,利用多项式乘多项式法则变形即可确定出b 的值.【解答】解:根据题意得:( x+3)( x﹣a)=x 2+(3﹣a)x﹣3a=x2+bx﹣6,可得 3﹣a=b,﹣3a=﹣6,解得: a=2, b=1.故选 A .6.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′ O′ B∠′=AOB的依据是()A.( S.S.S.) B.( S.A . S.) C.( A . S.A .)D.( A .A . S.)【考点】全等三角形的判定.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以 O 为圆心,任意长为半径画弧,分别交 OA 、OB 于点 C、D;②任意作一点O′,作射线 O′A′,以 O′为圆心, OC 长为半径画弧,交 O′A′于点第 9 页(共 24 页)C′;③以 C′为圆心, CD 长为半径画弧,交前弧于点D′;④过点 D′作射线 O′B.′所以∠ A′O′就B′是与∠ AOB 相等的角;作图完毕.在△ OCD 与△ O′C′,D′,∴△ OCD≌△ O′C′(D′SSS),∴∠ A′O′B′=∠AOB ,显然运用的判定方法是SSS.故选: A.7.为配合地铁五号线建设,市政部分现对雁翔路某段进行雨、污水管道改造施工,施工单位在工作了一段时间后,因天气原因被迫停工几天,随后施工单位加快了施工进度,按时完成了管道施工任务,下面能反映该工程尚未改造的管道长度 y(米)与时间 x(天)的关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】分析施工过程的进度,由先慢、停工几天后快即可找出合适的函数图象,此题得解.【解答】解:∵开始几天施工速度较慢,中间停工几天,后面加快进度,∴函数的大致图象为 D 选项中图象.故选 D.8.如图,在△ ABC 中, BD 平分∠ ABC , DE⊥ AB 交 AB 于点 E, DF⊥ BC 交BC 于点 F,若 AB=12cm ,,△ABC2,则 DF 长为()BC=18cm S=90cmA. 3cmB .6cmC. 9cmD .12cm【考点】角平分线的性质.【分析】根据角平分线的性质得到 DE=DF,然后根据三角形的面积列方程即可得到结论.【解答】解:∵ BD 是∠ ABC 的平分线, DE⊥AB 于点 E,DF⊥BC 于点 F,∴DE=DF,∵S△ABC =S△ABD +S△BDC= AB?DE+ BC?DF=90cm2,∴ DF=6cm,故选 B.9.如图,在△ ABC 中,直线 ED 是线段 BC 的垂直平分线,直线 ED 分别交BC、AB 于点 D、点 E,已知 BD=4 ,△ ABC 的周长为 20,则△ AEC 的周长为()A. 24 B.20 C. 16 D.12【考点】线段垂直平分线的性质.【分析】由 BC 的垂直平分线交AB 于点 E,可得 BE=CE,又由△ ABC 的周长为10, BC=4,易求得△ ACE 的周长是△ ABC 的周长﹣BC,继而求得答案.【解答】解:∵ BC 的垂直平分线交 AB 于点 E,∴ BE=CE,∵△ ABC 的周长为 20,BC=2BD=8 ,∴△ ACE 的周长是:AE+CE+AC=AE +BE+AC=AB +AC=AB +AC+BC﹣ BC=20﹣ 8=12.故选 D.10.如图, G 是△ ABC 的重心,直线AB ,L 交于 D, E 两点,直线 BG 与ADGF 的面积 =()L 过 A 点与 BC 平行.若直线 CG 分别与AC 交于 F 点,则△ AED 的面积:四边形A. 1:2B.2:1C.2:3D.3:2【考点】三角形的重心.【分析】根据重心的概念得出D,F 分别是三角形的中点.若设△ABC 的面积是2,则△ BCD 的面积和△ BCF 的面积都是 1.又因为 BG:GF=CG: GD,可求得△ CGF 的面积.则四边形 ADGF 的面积也可求出.根据 ASA 可以证明△ADE ≌△ BDC,则△ ADE 的面积是 1.则△ AED 的面积:四边形ADGF 的面积可求.【解答】解:设三角形 ABC 的面积是 2∴三角形 BCD 的面积和三角形 BCF 的面积都是 1∵BG: GF=CG:GD=2∴三角形 CGF 的面积是∴四边形 ADGF 的面积是 2﹣1﹣ =∵△ ADE ≌△ BDC (ASA )∴△ ADE 的面积是 1∴△ AED 的面积:四边形 ADGF 的面积 =1:=3:2.故选 D.二、填空题11.用科学记数法表示: 0.00000108= 1.08× 10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为﹣na×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解: 0.00000108=1.08× 10﹣6.故答案为: 1.08×10﹣6.12.一个不透明袋中放入7 枚只有颜色不同的围棋棋子,其中 4 枚黑色, 3 枚白色,任意摸出一枚,摸到棋子是黑色的概率为.【考点】概率公式.【分析】根据概率公式用黑色棋子的个数除以总棋子的个数即可.【解答】解:∵共有 7 枚棋子,其中 4 枚黑色, 3 枚白色,∴摸到棋子是黑色的概率为;故答案为:.13.若 3x=2,9y=6,则 3x﹣2y=.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解: 32y=( 32)y=9y=6,3x﹣2y=3x÷32y=2÷6=,故答案为:.14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量 /千1 1.52 2.53 3.54克烤制时间 /分6080100120140160180设鸭的质量为 x 千克,烤制时间为 t,估计当 x=2.9 千克时, t 的值为136 .【考点】函数关系式.【分析】观察表格可知,烤鸭的质量每增加0.5 千克,烤制时间增加20 分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t 分钟,烤鸭的质量为 x 千克, t 与 x 的一次函数关系式为:t=kx+b,取( 1,60),( 2,100)代入,运用待定系数法求出函数关系式,再将x=2.9 千克代入即可求出烤制时间.【解答】解:从表中可以看出,烤鸭的质量每增加0.5 千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为 t 分钟,烤鸭的质量为x 千克, t 与 x 的一次函数关系式为:t=kx +b,,解得,所以 t=40x+20.当x=2.9 千克时, t=40×2.9+20=136.故答案为: 136.15.已知,则代数式的值为11.【考点】完全平方公式.【分析】把两边平方,再根据完全平方公式展开,即可得问题答案.【解答】解:∵,∴( x﹣)2=9,∴x2﹣2+=9,∴x2+=11,故答案为: 11.16.如图,已知△ ABC 中, AC=BC ,点 D、E 分别在边 AB 、 BC 上,把△BDE 沿直线 DE 翻折,使点 B 落在 B'处, DB'、 EB'分别交 AC 于点 F、G,若∠ ADF=66°,则∠ EGC 的度数为66° .【考点】翻折变换(折叠问题);等腰三角形的性质.【分析】由翻折变换的性质和等腰三角形的性质得出∠ B′=∠B=∠A ,再由三角形内角和定理以及对顶角相等得出∠ B′GF=∠ADF 即可.【解答】解:由翻折变换的性质得:∠ B′=∠ B,∵AC=BC ,∴∠ A= ∠B,∴∠ A= ∠B′,∵∠ A+∠ ADF+∠ AFD=180°,∠ B′+∠ B′GF+∠ B′FG=180°,∠ AFD= ∠B′FG,∴∠ B′GF=∠ADF=66°,∴∠ EGC=∠ B′GF=66°.故答案为: 66°.17.在 Rt△ABC 中,∠ ACB=90°, AC=3,BC=4, AD 是∠ BAC 的平分线,若P、Q 分别是 AD 和 AC 上的动点,则 PC+PQ 的最小值是 2.4 .【考点】轴对称﹣最短路线问题.【分析】如图作 CQ′⊥AB 于 Q′交 AD 于点 P,作 PQ⊥ AC 此时 PC+PQ 最短,利用面积法求出 CQ′即可解决问题.【解答】解:如图,作 CQ′⊥AB 于 Q′交 AD 于点 P,作 PQ⊥ AC 此时PC+PQ 最短.∵PQ⊥ AC, PQ′⊥AB ,AD 平分∠ CAB ,∴ PQ=PQ′,∴PQ+CP=PC+PQ′=CQ′∴此时 PC+PQ 最短(垂线段最短).在RT△ABC 中,∵∠ ACB=90°, AC=3,BC=4,∴ AB===5,∵?AC?BC= ?AB?CQ′,∴ CQ′===2.4.∴PC+PQ 的最小值为 2.4.故答案为 2.4.三、解答题18.计算(1)﹣(3x+y)( x﹣y)(2)( 4a3﹣2 2+12ab3)÷2ab b 6ab(3) [ 4365×(﹣0.25)366﹣2﹣3] ×( 3.14﹣π)0(4) 20152﹣ 2016× 2014.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用多项式乘以多项式法则计算即可得到结果;(2)原式利用多项式除以单项式法则计算即可得到结果;(3)原式利用积的乘方运算法则变形,再利用零指数幂、负整数指数幂法则计算即可得到结果;(4)原式变形后,利用平方差公式计算即可得到结果.【解答】解:( 1)原式 =﹣3x2+2xy+y2;(2)原式 =2a2﹣ 3ab+6b2;(3)原式 =[ (﹣4×0.25)365×(﹣0.25)﹣ ] × 1= ;( 4)原式 =20152﹣×2﹣2+1=1.=2015201519.作图题(要求尺规作图,保留作图痕迹,不写作法)已知:线段 a,∠β.求作:△ ABC ,使 BC=a,∠ ABC= ∠β,∠ ACB=2 ∠β.【考点】作图—复杂作图.【分析】先作线段 BC=a,再作∠ MBC=α,∠ ACB=2α,BM 和 NC 相交于点A,则△ ABC 满足条件.【解答】解:如图,△ ABC 为所作.20.如图,已知∠ A=∠ F,∠ C=∠D,试说明 BD∥ CE.解:∵∠ A=∠ F(已知)∴ AC∥DF(内错角相等,两直线平行)∴∠ C=∠CEF(两直线平行,内错角相等).∵∠ C=∠D(已知),∴∠ D=∠ CEF(等量代换)∴ BD∥ CE(同位角相等,两直线平行)【考点】平行线的判定与性质.【分析】根据平行线的判定得出AC ∥DF,根据平行线的性质得出∠C=∠ CEF,求出∠ D=∠CEF,根据平行线的判定得出即可.【解答】解:∵∠ A=∠ F(已知),∴ AC∥ DF(内错角相等,两直线平行),∴∠ C=∠CEF(两直线平行,内错角相等),∵∠ C=∠D(已知),∴∠ D=∠CEF(等量代换),∴ BD∥ CE(同位角相等,两直线平行),故答案为: DF,两直线平行,内错角相等,∠D,同位角相等,两直线平行.21.为了提高身体素质,小明假期为自己制定了慢跑锻炼计划,某日小明从省体育场出发沿长安路慢跑,已知他离省体育场的距离s(km)与时间 t(h)之间的关系如图所示,根据图象回答下列问题:( 1)小明离开省体育场的最远距离是4千米,他在120分钟内共跑了8千米;( 2)小明在这次慢跑过程中,停留所用的时间为20分钟;( 3)小明在这段时间内慢跑的最快速度是每小时8千米.【考点】一次函数的应用.【分析】(1)观察函数图象即可得出结论;(2)观察函数图象二者做差即可得出结论;(3)根据速度 =路程÷时间,即可小明在这段时间内慢跑的最快速度,此题得解.【解答】解:( 1)由图象知,小明离开省体育场的最远距离是 4 千米,他在120 分钟内共跑了 8 千米;( 2)小明在这次慢跑过程中,停留所用的时间为:60﹣40=20分钟;( 3)小明在这段时间内慢跑的最快速度是4÷=8 千米 /小时.故答案为: 4,8,20,8.22.如图,△ ABC 是等边三角形,延长 BA 至点 D,延长 CB 至点 E,使得BE=AD ,连结 CD,AE .求证: AE=CD .【考点】全等三角形的判定与性质;等边三角形的性质.【分析】只要证明△ ABE ≌△ ACD ,即可推出AE=CD .【解答】证明:∵△ ABC 是等边三角形,∴AB=AC ,∠ CAB= ∠ABC=60°,∴∠ DAC= ∠ ABE=120°,在△ ABE 和△ ACD 中,,∴△ ABE≌△ ACD ,∴AE=CD .23.阅读材料:把形如ax2+bx+c 的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即:a2± 2ab+b2=(a±b)2.根据阅读材料解决下面问题:( 1) m2+4m+4=(m+2)2( 2)无论 n 取何值, 9n2﹣ 6n+1≥0(填“<”,“>”,“≤”,“≥”或“ =)”(3)已知 m,n 是△ ABC 的两条边,且满足 10m2+4n2+4=12mn+4m,若该三角形的第三边 k 的长是奇数,求 k 的长.【考点】配方法的应用;完全平方式;三角形三边关系.【分析】(1)根据完全平方式得出结论;(2) 9n2﹣ 6n+1=(3n﹣1)2≥0;( 3)将已知等式配方后,利用非负性得结论:,求出 m 和 n 的值,再根据三角形的三边关系得出k 的值.【解答】解:( 1)原式 =(m+2)2;故答案为: m+2;( 2) 9n2﹣6n+1=(﹣1)2≥0;3n∴无论 n 取何值, 9n2﹣≥ ,6n+10故答案为:≥;( 3) 10m2+4n2+4=12mn+4m,已知等式整理得: 9m2﹣ 12mn+4n2+m2﹣ 4m+4=0,(3m﹣2n )2+(m﹣2)2=0,,∴,∵ m,n 是△ ABC 的两条边,∴3﹣2<k<3+2,1<k<5,∵第三边 k 的长是奇数,∴k=3.24.如图,在△ ABC 中,已知 AB=AC ,∠ BAC=90°, AH 是△ ABC 的高,AH=4 cm,BC=8 cm,直线 CM ⊥BC,动点 D 从点 C 开始沿射线 CB 方向以每秒3 厘米的速度运动,动点 E 也同时从点 C 开始在直线 CM 上以每秒 1 厘米的速度向远离 C 点的方向运动,连接AD 、 AE,设运动时间为t( t>0)秒.( 1)请直接写出 CD、 CE 的长度(用含有 t 的代数式表示): CD=3tcm,CE= t cm;(2)当 t 为多少时,△ ABD 的面积为 12 cm2?(3)请利用备用图探究,当 t 为多少时,△ ABD ≌△ ACE ?并简要说明理由.【考点】三角形综合题.【分析】(1)根据路程 =速度×时间,即可得出结果;( 2)首先求出△ ABD 中 BD 边上的高,然后根据面积公式列出方程,求出 BD 的值,分两种情况分别求出 t 的值即可;(3)假设△ ABD ≌△ ACE,根据全等三角形的对应边相等得出 BD=CE,分别用含 t 的代数式表示 CE 和 BD ,得到关于 t 的方程,从而求出 t 的值.【解答】解:( 1)根据题意得: CD=3tcm, CE=tcm;故答案为: 3t,t;(2)∵ S△ABD = BD?AH=12, AH=4 ,∴AH× BD=24 ,∴BD=6.若D 在 B 点右侧,则 CD=BC﹣BD=2 , t= ;若 D 在 B 点左侧,则 CD=BC+BD=14,t=;综上所述:当 t 为s 或s 时,△ ABD 的面积为 12 cm2;( 3)动点 E 从点 C 沿射线 CM 方向运动 2 秒或当动点 E 从点 C 沿射线 CM 的反向延长线方向运动 4 秒时,△ ABD ≌△ ACE .理由如下:如图所示①当 E 在射线 CM 上时, D 必在 CB 上,则需 BD=CE.∵CE=t, BD=8﹣3t∴t=8﹣3t,∴t=2,∵在△ ABD 和△ ACE 中,,∴△ ABD ≌△ ACE (SAS).②当 E 在 CM 的反向延长线上时, D 必在 CB 延长线上,则需BD=CE.∵CE=t, BD=3t﹣8,∴ t=3t ﹣8,∴ t=4,∵在△ ABD 和△ ACE 中,,∴△ ABD ≌△ ACE (SAS).2017 年 4 月 13 日。

七年级下数学期末考试真题附答案解析-北师大版

七年级下数学期末考试真题附答案解析-北师大版


6
24.(本题满分 12 分)
如图,在 RtABC 中, AB AC 4cm ,BAC 90 , O 为边 BC 上一点,OA OB OC ,点 M 、N 分 别在边 AB 、 AC 上运动,在运动过程中始终保持 AN BM .
⑴在运动过程中, OM 与 ON 相等吗?请说明理由. ⑵在运动过程中, OM 与 ON 垂直吗?请说明理由. ⑶在运动过程中,四边形 AMON 的面积是否发生变化?若变化,请说明理由;若不变化,求出四边形 AMON
A. 1 2
B. 2 3
C. 5 9
D. 4 9
7. 如图,边长为 a 2 在正方形纸片剪出一个边长为 a 的正方形之后,剩余部分可剪拼成一
个长方形(不重叠无缝隙),若拼成的长方形一边长为 2,则另一个长是( ).
A.2
B. a 4
C. 2a 2 D. 2a 4a2来自a+21
8. 如图,在 △ABC 中, C 90 , AD 平分 BAC , DE AB于 E,则下列结论:


10. 一不透明的口袋里装有白球和红球共 20 个,这些球除颜色外完全相同,小明通过多次摸球试验后发现,其中
摸到白色球的频率稳定在 0.2 左右,则口袋中红色球可能有
个.
11. 如图,在△ABC 中,边 BC 长为 10,BC 边上的高 AD 为 6,点 D 在 BC 上运动,设 BD长为 x0 x 10 ,则 △ACD
20.(本题满分 7 分) 甲、乙两人玩赢卡片游戏,工具是一个如图所示的转盘(等分成 8 份),游戏规则:自由转动转盘,当转盘停
止后指针指向字母“A”,则甲输给乙 2 张卡片,若指针指向字母“B”,则乙输给甲 3 张卡片;若指针指向字母“C”, 则乙输给甲 1 张卡片.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止)

【数学】2015-2016年陕西省师大附中七年级下学期数学期末试卷和答案解析PDF

【数学】2015-2016年陕西省师大附中七年级下学期数学期末试卷和答案解析PDF

2015-2016学年陕西省师大附中七年级(下)期末数学试卷一、选择题1.(3分)在8,,,1.030030003,中,无理数有()A.4个 B.3个 C.2个 D.1个2.(3分)在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作PQ∥BC,交AB于点P,交AC于点Q,若∠A=60°,则∠PEB+∠QEC=()A.50°B.60°C.70°D.80°3.(3分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率4.(3分)人的身高h随时间t的变化而变化,那么下列说法正确的是()A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量 D.h是自变量,t是因变量5.(3分)若一个直角三角形的三边长分别为a、b、c,已知a2=25,b2=144,则c2=()A.169 B.119 C.13或25 D.169或1196.(3分)以下说法合理的是()A.小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖C.不确定事件A发生的概率是0与1之间的一个常数D.某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是7.(3分)如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC8.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.9.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个10.(3分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDEF不可能四边都相等;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的有()A.①②③B.①③④C.①④⑤D.③④⑤二、填空题11.(3分)等腰三角形的顶角是80°,一腰上的高与底边的夹角是°.12.(3分)点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,且点Q在点P左边,则P、Q之间的距离为.13.(3分)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,若DE垂直平分AB,交AB于点E,则∠B=.14.(3分)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM ⊥l于点P,若∠1=50°,则∠2=°.15.(3分)已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为.16.(3分)若m2=(﹣2)2,n2=(﹣3)2,则mn=.17.(3分)如图,A村到公路l的距离AB为6km,C村到公路l的距离CD为2km,且BD的长为6km.现要在公路l上取一点P,使AP+CP的值最小,则这个最小值为.18.(3分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC为斜边AC为直角边,画第2个等腰直角三角形ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,以此类推,第n个等腰直角三角形的面积是.三、解答题19.计算:(1)解方程:2(1﹣2x)2=162;(2)化简:×(﹣)++;(3)化简:|3﹣π|++.20.尺规作图已知在Rt△ABC中,∠B=90°,请用尺规在边BC上找一点D,使得点D到A、C 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)21.如图,在△ABC中,∠BAC=90°,AB=AC,AM是过点A的任意一条直线,BD ⊥AM于点D,CE⊥AM于点E,求证:DE=BD﹣CE.22.点燃的蜡烛每分钟燃烧的长度一定,长为22cm的蜡烛,点燃10分钟,变短4cm,设点燃x分钟后,还剩ycm.(1)求y与x之间的关系式;(2)点燃30分钟后,蜡烛还剩多少?(3)此蜡烛几分钟能燃烧完?23.一个口袋中6个黑球,10个白球,这些球除了颜色外完全相同.充分搅匀后随机摸出一球,发现是黑球.(1)如果将这个黑球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个黑球不放回,再摸出一球,那么它是白球的概率是多少?24.如图1所示,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D在边AB上.(1)若DE经过点C,且AD=CD=BD,DF交AC于点G,求重叠部分(△DCG)的面积;(2)思考探究:“数学学习小组”的几位同学受到启发,保持(1)中的点D不动,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求△ADH的面积.2015-2016学年陕西省师大附中七年级(下)期末数学试卷参考答案与试题解析一、选择题1.(3分)在8,,,1.030030003,中,无理数有()A.4个 B.3个 C.2个 D.1个【解答】解:无理数有,,故选:C.2.(3分)在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作PQ∥BC,交AB于点P,交AC于点Q,若∠A=60°,则∠PEB+∠QEC=()A.50°B.60°C.70°D.80°【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠ABC和∠ACB的角平分线交于点E,∴∠PBE=∠EBC,∠QCE=∠BCE,∴∠CBE+∠BCE=60°,∵PQ∥BC,∴∠PEB=∠EBC,∠QEC=∠QCE,∴∠PEB+∠QEC=60°,故选:B.3.(3分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.4.(3分)人的身高h随时间t的变化而变化,那么下列说法正确的是()A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量 D.h是自变量,t是因变量【解答】解:因为人的身高h随时间t的变化而变化,所以t是自变量,h是因变量;故选:B.5.(3分)若一个直角三角形的三边长分别为a、b、c,已知a2=25,b2=144,则c2=()A.169 B.119 C.13或25 D.169或119【解答】解;当a,b为直角边时,c2=a2+b2=25+144=169,当a,c为直角边,b为斜边时,c2=b2﹣a2=144﹣25=119,故选:D.6.(3分)以下说法合理的是()A.小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖C.不确定事件A发生的概率是0与1之间的一个常数D.某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是【解答】解:A、小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是,不合理;B、某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖,不合理;C、不确定事件A发生的概率是0与1之间的一个常数,合理;D、某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是,不合理.故选:C.7.(3分)如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选:A.8.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选:B.9.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选:C.10.(3分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDEF不可能四边都相等;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的有()A.①②③B.①③④C.①④⑤D.③④⑤【解答】解:①连接CF,∵∠ACB=90°,AC=BC,∴∠A=45°,∵F是AB边上的中点,∴CF=AF=BF,CF⊥AB,∠ACF=∠BCF=45°,∴∠AFC=90°,∴∠A=∠BCF,在△ADF和△CEF中,∵,∴△ADF≌△CEF(SAS),∴DF=EF,∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC=90°,即∠DFE=90°,∴△DEF是等腰直角三角形;所以此结论正确;②当D、E分别为AC、BC中点时,四边形CDFE是正方形.如图2,∵E是BC的中点,F是AB边上的中点,∴EF是△ABC的中位线,∴EF∥AC,EF=AC=CD,∴四边形CDFE是平行四边形,∵CD=AC,CE=BC,AC=BC,∴CD=CE,∵∠C=90°,∴四边形CDFE是正方形,但已知点D、E分别在AC、BC边上运动,并不能一直保持D、E分别是AC、BC 的中点,所以四边形CDEF不可能四边都相等;所以此结论不正确;③由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4;所以此结论不正确;④∵△ADF≌△CEF,∴S=S△ADF△CEF=S△AFC.∴S四边形CDFE∴四边形CDFE的面积保持不变;所以此结论正确;⑤当△CDE面积最大时,此时△DEF的面积最小,∵∠C=90°,AC=BC=8,∴AB==8,∴AF=CF=4,=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=××﹣×4×4=16﹣8=8.此时S△CDE则结论正确的是①④⑤.故选:C.二、填空题11.(3分)等腰三角形的顶角是80°,一腰上的高与底边的夹角是40°.【解答】解:因为等腰三角形的顶角是80°,根据等腰三角形一腰上的高与底边的夹角等于顶角的一半得所求的角为40°.故答案为:40.12.(3分)点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,且点Q在点P左边,则P、Q之间的距离为5或1.【解答】解:∵点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,∴点P表示的数为±2,点Q表示的数为±3,又∵点Q在点P左边,∴点Q表示的数为﹣3.当点P表示的数为2时,PQ=2﹣(﹣3)=5;当点P表示的数为﹣2时,PQ=﹣2﹣(﹣3)=1.故答案为:5或1.13.(3分)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,若DE垂直平分AB,交AB于点E,则∠B=30°.【解答】解:∵DE垂直平分AB,∴AD=BD,∴∠B=∠DAB,∵∠CAB的平分线AD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴3∠B=90°,∴∠B=30°,故答案为:30°14.(3分)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM ⊥l于点P,若∠1=50°,则∠2=40°.【解答】解:∵直线a∥b,∴∠3=∠1=50°,又∵PM⊥l于点P,∴∠MPQ=90°,∴∠2=90°﹣∠3=90°﹣50°=40°.故答案是:40.15.(3分)已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为等腰直角三角形.【解答】解:∵|a2﹣b2﹣c2|+=0,∴a2﹣b2﹣c2=0,b﹣c=0,∴a2﹣b2=c2,b=c,∴△ABC的形状为等腰直角三角形,故答案为:等腰直角三角形.16.(3分)若m2=(﹣2)2,n2=(﹣3)2,则mn=±6.【解答】解:∵m2=(﹣2)2,n2=(﹣3)2,∴m=±2,n=±3,当m=2,n=3时,mn=6;当m=2,n=﹣3时,mn=﹣6;当m=﹣2,n=3时,mn=﹣6;当m=﹣2,n=﹣3时,mn=6;故答案为±6.17.(3分)如图,A村到公路l的距离AB为6km,C村到公路l的距离CD为2km,且BD的长为6km.现要在公路l上取一点P,使AP+CP的值最小,则这个最小值为10km.【解答】解:作点C关于直线BD的对称点C′,连接AC′交BD′于点P.∵AB=6km,CD=2km,BD=6km,∴AC′==10km.故答案为:10km.18.(3分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC为斜边AC为直角边,画第2个等腰直角三角形ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,以此类推,第n个等腰直角三角形的面积是2n﹣2.【解答】解:由勾股定理可知:AC2=2,AD2=4,AE2=8,AF2=16,故第n个等腰三角形的斜边的平方为:2n,设等腰三角形的直角边长为a;斜边长为c,∴由勾股定理可知:c2=2a2由三角形面积公式可知:a2=c2,∴第n个等腰三角形的面积为:×2n=2n﹣2故答案为:2n﹣2三、解答题19.计算:(1)解方程:2(1﹣2x)2=162;(2)化简:×(﹣)++;(3)化简:|3﹣π|++.【解答】解:(1)方程整理得:(1﹣2x)2=81,开方得:1﹣2x=9或1﹣2x=﹣9,解得:x=﹣4或x=5;(2)原式=×(﹣2)+4+=2;(3)原式=π﹣3+﹣1+4=π+.20.尺规作图已知在Rt△ABC中,∠B=90°,请用尺规在边BC上找一点D,使得点D到A、C 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)【解答】解:如图,点D为所作.21.如图,在△ABC中,∠BAC=90°,AB=AC,AM是过点A的任意一条直线,BD ⊥AM于点D,CE⊥AM于点E,求证:DE=BD﹣CE.【解答】证明:∵CE⊥AM,BD⊥AM,∴∠AEC=∠BDA=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,即∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴BD﹣CE=AE﹣AD=DE,即DE=BD﹣CE.22.点燃的蜡烛每分钟燃烧的长度一定,长为22cm的蜡烛,点燃10分钟,变短4cm,设点燃x分钟后,还剩ycm.(1)求y与x之间的关系式;(2)点燃30分钟后,蜡烛还剩多少?(3)此蜡烛几分钟能燃烧完?【解答】解:(1)由题意可得,y=22﹣(4÷10)×x=22﹣0.4x,即y与x之间的关系式是y=22﹣0.4x;(2)当x=30时,y=22﹣0.4×30=10,即点燃30分钟后,蜡烛还剩10cm;(3)令y=0,则0=22﹣0.4x,解得,x=55,即此蜡烛55分钟能燃烧完.23.一个口袋中6个黑球,10个白球,这些球除了颜色外完全相同.充分搅匀后随机摸出一球,发现是黑球.(1)如果将这个黑球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个黑球不放回,再摸出一球,那么它是白球的概率是多少?【解答】解:(1)如果将白球放回,再摸出一球P==;(摸到的球是白球)(2)如果这个黑球不放回,再摸出一球,有10个白球和5个黑球,再摸出一球P(摸到的球是白球)==.24.如图1所示,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D在边AB上.(1)若DE经过点C,且AD=CD=BD,DF交AC于点G,求重叠部分(△DCG)的面积;(2)思考探究:“数学学习小组”的几位同学受到启发,保持(1)中的点D不动,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求△ADH的面积.【解答】解:(1)∵∠ACB=90°,D是AB的中点,∴DC=DB=DA,∴∠B=∠DCB,又∵△ABC≌△FDE,∴∠FDE=∠B,∴∠FDE=∠DCB,∴DG∥BC,∴∠AGD=∠ACB=90°,∴DG⊥AC,又∵DC=DA,∴G是AC的中点,∴CG=AC=×8=4,DG=BC=×6=3,=×CG×DG=×4×3=6.∴S△DCG(2)如图2,∵△ABC≌△FDE,∴∠B=∠1,∵∠C=90°,ED⊥AB,∴∠A+∠B=90°,∠A+∠2=90°,∴∠B=∠2,∴∠1=∠2,∴GH=GD,∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD,∴AG=GH,∴点G为AH的中点,在Rt△ABC中,AB===10,∵D是AB中点,∴AD=AB=5,在△ADH与△ACB中,∵∠A=∠A,∠ADH=∠ACB=90°,∴△ADH∽△ACB,∴=,即=,∴DH=,=×DH×AD=××5=.∴S△ADH赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bb x-aa 45°D Ba +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.ABFEDCF。

2015-2016年陕西省师大附中七年级(下)期末数学试卷(解析版)

2015-2016年陕西省师大附中七年级(下)期末数学试卷(解析版)

2015-2016学年陕西省师大附中七年级(下)期末数学试卷一、选择题1.(3分)在8,,,1.030030003,中,无理数有()A.4个B.3个C.2个D.1个2.(3分)在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作PQ∥BC,交AB 于点P,交AC于点Q,若∠A=60°,则∠PEB+∠QEC=()A.50°B.60°C.70°D.80°3.(3分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率4.(3分)人的身高h随时间t的变化而变化,那么下列说法正确的是()A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量D.h是自变量,t是因变量5.(3分)若一个直角三角形的三边长分别为a、b、c,已知a2=25,b2=144,则c2=()A.169B.119C.13或25D.169或119 6.(3分)以下说法合理的是()A.小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖C.不确定事件A发生的概率是0与1之间的一个常数D.某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是7.(3分)如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC8.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.9.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个10.(3分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDEF不可能四边都相等;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的有()A.①②③B.①③④C.①④⑤D.③④⑤二、填空题11.(3分)等腰三角形的顶角是80°,一腰上的高与底边的夹角是°.12.(3分)点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,且点Q在点P左边,则P、Q之间的距离为.13.(3分)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,若DE 垂直平分AB,交AB于点E,则∠B=.14.(3分)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=50°,则∠2=°.15.(3分)已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为.16.(3分)若m2=(﹣2)2,n2=(﹣3)2,则mn=.17.(3分)如图,A村到公路l的距离AB为6km,C村到公路l的距离CD为2km,且BD 的长为6km.现要在公路l上取一点P,使AP+CP的值最小,则这个最小值为.18.(3分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰直角三角形ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt △ADE,…,以此类推,第n个等腰直角三角形的面积是.三、解答题19.计算:(1)解方程:2(1﹣2x)2=162;(2)化简:×(﹣)++;(3)化简:|3﹣π|++.20.尺规作图已知在Rt△ABC中,∠B=90°,请用尺规在边BC上找一点D,使得点D到A、C两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)21.如图,在△ABC中,∠BAC=90°,AB=AC,AM是过点A的任意一条直线,BD⊥AM于点D,CE⊥AM于点E,求证:DE=BD﹣CE.22.点燃的蜡烛每分钟燃烧的长度一定,长为22cm的蜡烛,点燃10分钟,变短4cm,设点燃x分钟后,还剩ycm.(1)求y与x之间的关系式;(2)点燃30分钟后,蜡烛还剩多少?(3)此蜡烛几分钟能燃烧完?23.一个口袋中6个黑球,10个白球,这些球除了颜色外完全相同.充分搅匀后随机摸出一球,发现是黑球.(1)如果将这个黑球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个黑球不放回,再摸出一球,那么它是白球的概率是多少?24.如图1所示,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB =∠E=90°,BC=DE=6,AC=FE=8,顶点D在边AB上.(1)若DE经过点C,且AD=CD=BD,DF交AC于点G,求重叠部分(△DCG)的面积;(2)思考探究:“数学学习小组”的几位同学受到启发,保持(1)中的点D不动,将△DEF 绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求△ADH的面积.2015-2016学年陕西省师大附中七年级(下)期末数学试卷参考答案与试题解析一、选择题1.(3分)在8,,,1.030030003,中,无理数有()A.4个B.3个C.2个D.1个【解答】解:无理数有,,故选:C.2.(3分)在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作PQ∥BC,交AB 于点P,交AC于点Q,若∠A=60°,则∠PEB+∠QEC=()A.50°B.60°C.70°D.80°【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠ABC和∠ACB的角平分线交于点E,∴∠PBE=∠EBC,∠QCE=∠BCE,∴∠CBE+∠BCE=60°,∵PQ∥BC,∴∠PEB=∠EBC,∠QEC=∠QCE,∴∠PEB+∠QEC=60°,故选:B.3.(3分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.4.(3分)人的身高h随时间t的变化而变化,那么下列说法正确的是()A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量D.h是自变量,t是因变量【解答】解:因为人的身高h随时间t的变化而变化,所以t是自变量,h是因变量;故选:B.5.(3分)若一个直角三角形的三边长分别为a、b、c,已知a2=25,b2=144,则c2=()A.169B.119C.13或25D.169或119【解答】解;当a,b为直角边时,c2=a2+b2=25+144=169,当a,c为直角边,b为斜边时,c2=b2﹣a2=144﹣25=119,故选:D.6.(3分)以下说法合理的是()A.小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖C.不确定事件A发生的概率是0与1之间的一个常数D.某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是【解答】解:A、小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是,不合理;B、某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖,不合理;C、不确定事件A发生的概率是0与1之间的一个常数,合理;D、某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是,不合理.故选:C.7.(3分)如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选:A.8.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选:B.9.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选:C.10.(3分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDEF不可能四边都相等;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的有()A.①②③B.①③④C.①④⑤D.③④⑤【解答】解:①连接CF,∵∠ACB=90°,AC=BC,∴∠A=45°,∵F是AB边上的中点,∴CF=AF=BF,CF⊥AB,∠ACF=∠BCF=45°,∴∠AFC=90°,∴∠A=∠BCF,在△ADF和△CEF中,∵,∴△ADF≌△CEF(SAS),∴DF=EF,∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC=90°,即∠DFE=90°,∴△DEF是等腰直角三角形;所以此结论正确;②当D、E分别为AC、BC中点时,四边形CDFE是正方形.如图2,∵E是BC的中点,F是AB边上的中点,∴EF是△ABC的中位线,∴EF∥AC,EF=AC=CD,∴四边形CDFE是平行四边形,∵CD=AC,CE=BC,AC=BC,∴CD=CE,∵∠C=90°,∴四边形CDFE是正方形,但已知点D、E分别在AC、BC边上运动,并不能一直保持D、E分别是AC、BC的中点,所以四边形CDEF不可能四边都相等;所以此结论不正确;③由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4;所以此结论不正确;④∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC.∴四边形CDFE的面积保持不变;所以此结论正确;⑤当△CDE面积最大时,此时△DEF的面积最小,∵∠C=90°,AC=BC=8,∴AB==8,∴AF=CF=4,此时S△CDE=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=××﹣×4×4=16﹣8=8.则结论正确的是①④⑤.故选:C.二、填空题11.(3分)等腰三角形的顶角是80°,一腰上的高与底边的夹角是40°.【解答】解:因为等腰三角形的顶角是80°,根据等腰三角形一腰上的高与底边的夹角等于顶角的一半得所求的角为40°.故答案为:40.12.(3分)点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,且点Q在点P左边,则P、Q之间的距离为5或1.【解答】解:∵点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,∴点P表示的数为±2,点Q表示的数为±3,又∵点Q在点P左边,∴点Q表示的数为﹣3.当点P表示的数为2时,PQ=2﹣(﹣3)=5;当点P表示的数为﹣2时,PQ=﹣2﹣(﹣3)=1.故答案为:5或1.13.(3分)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,若DE 垂直平分AB,交AB于点E,则∠B=30°.【解答】解:∵DE垂直平分AB,∴AD=BD,∴∠B=∠DAB,∵∠CAB的平分线AD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴3∠B=90°,∴∠B=30°,故答案为:30°14.(3分)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=50°,则∠2=40°.【解答】解:∵直线a∥b,∴∠3=∠1=50°,又∵PM⊥l于点P,∴∠MPQ=90°,∴∠2=90°﹣∠3=90°﹣50°=40°.故答案是:40.15.(3分)已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为等腰直角三角形.【解答】解:∵|a2﹣b2﹣c2|+=0,∴a2﹣b2﹣c2=0,b﹣c=0,∴a2﹣b2=c2,b=c,∴△ABC的形状为等腰直角三角形,故答案为:等腰直角三角形.16.(3分)若m2=(﹣2)2,n2=(﹣3)2,则mn=±6.【解答】解:∵m2=(﹣2)2,n2=(﹣3)2,∴m=±2,n=±3,当m=2,n=3时,mn=6;当m=2,n=﹣3时,mn=﹣6;当m=﹣2,n=3时,mn=﹣6;当m=﹣2,n=﹣3时,mn=6;故答案为±6.17.(3分)如图,A村到公路l的距离AB为6km,C村到公路l的距离CD为2km,且BD 的长为6km.现要在公路l上取一点P,使AP+CP的值最小,则这个最小值为10km.【解答】解:作点C关于直线BD的对称点C′,连接AC′交BD′于点P.∵AB=6km,CD=2km,BD=6km,∴AC′==10km.故答案为:10km.18.(3分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰直角三角形ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt △ADE,…,以此类推,第n个等腰直角三角形的面积是2n﹣2.【解答】解:由勾股定理可知:AC2=2,AD2=4,AE2=8,AF2=16,故第n个等腰三角形的斜边的平方为:2n,设等腰三角形的直角边长为a;斜边长为c,∴由勾股定理可知:c2=2a2由三角形面积公式可知:a2=c2,∴第n个等腰三角形的面积为:×2n=2n﹣2故答案为:2n﹣2三、解答题19.计算:(1)解方程:2(1﹣2x)2=162;(2)化简:×(﹣)++;(3)化简:|3﹣π|++.【解答】解:(1)方程整理得:(1﹣2x)2=81,开方得:1﹣2x=9或1﹣2x=﹣9,解得:x=﹣4或x=5;(2)原式=×(﹣2)+4+=2;(3)原式=π﹣3+﹣1+4=π+.20.尺规作图已知在Rt△ABC中,∠B=90°,请用尺规在边BC上找一点D,使得点D到A、C两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)【解答】解:如图,点D为所作.21.如图,在△ABC中,∠BAC=90°,AB=AC,AM是过点A的任意一条直线,BD⊥AM 于点D,CE⊥AM于点E,求证:DE=BD﹣CE.【解答】证明:∵CE⊥AM,BD⊥AM,∴∠AEC=∠BDA=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,即∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴BD﹣CE=AE﹣AD=DE,即DE=BD﹣CE.22.点燃的蜡烛每分钟燃烧的长度一定,长为22cm的蜡烛,点燃10分钟,变短4cm,设点燃x分钟后,还剩ycm.(1)求y与x之间的关系式;(2)点燃30分钟后,蜡烛还剩多少?(3)此蜡烛几分钟能燃烧完?【解答】解:(1)由题意可得,y=22﹣(4÷10)×x=22﹣0.4x,即y与x之间的关系式是y=22﹣0.4x;(2)当x=30时,y=22﹣0.4×30=10,即点燃30分钟后,蜡烛还剩10cm;(3)令y=0,则0=22﹣0.4x,解得,x=55,即此蜡烛55分钟能燃烧完.23.一个口袋中6个黑球,10个白球,这些球除了颜色外完全相同.充分搅匀后随机摸出一球,发现是黑球.(1)如果将这个黑球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个黑球不放回,再摸出一球,那么它是白球的概率是多少?【解答】解:(1)如果将白球放回,再摸出一球P(摸到的球是白球)==;(2)如果这个黑球不放回,再摸出一球,有10个白球和5个黑球,再摸出一球P(摸到的球是==.白球)24.如图1所示,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB =∠E=90°,BC=DE=6,AC=FE=8,顶点D在边AB上.(1)若DE经过点C,且AD=CD=BD,DF交AC于点G,求重叠部分(△DCG)的面积;(2)思考探究:“数学学习小组”的几位同学受到启发,保持(1)中的点D不动,将△DEF 绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求△ADH的面积.【解答】解:(1)∵∠ACB=90°,D是AB的中点,∴DC=DB=DA,∴∠B=∠DCB,又∵△ABC≌△FDE,∴∠FDE=∠B,∴∠FDE=∠DCB,∴DG∥BC,∴∠AGD=∠ACB=90°,∴DG⊥AC,又∵DC=DA,∴G是AC的中点,∴CG=AC=×8=4,DG=BC=×6=3,∴S△DCG=×CG×DG=×4×3=6.(2)如图2,∵△ABC≌△FDE,∴∠B=∠1,∵∠C=90°,ED⊥AB,∴∠A+∠B=90°,∠A+∠2=90°,∴∠B=∠2,∴∠1=∠2,∴GH=GD,∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD,∴AG=GH,∴点G为AH的中点,在Rt△ABC中,AB===10,∵D是AB中点,∴AD=AB=5,在△ADH与△ACB中,∵∠A=∠A,∠ADH=∠ACB=90°,∴△ADH∽△ACB,∴=,即=,∴DH=,∴S△ADH=×DH×AD=××5=.。

2022-2023学年陕西师大附中七年级(下)期末数学试卷及答案解析

2022-2023学年陕西师大附中七年级(下)期末数学试卷及答案解析

2022-2023学年陕西师大附中七年级(下)期末数学试卷一、选择题(每小题3分,共10题,合计30分)1.(3分)下列图形不是轴对称图形的是()A.B.C.D.2.(3分)石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣11 3.(3分)下列计算正确的是()A.3x2⋅2x2y=6x5B.(2x)3⋅(﹣5x2y)=﹣10x5y C.(x﹣y)3=﹣(y﹣x)3D.(m+n)2=m2+n24.(3分)一个袋中有3个红球,5个白球,2个黑球,这些球除颜色外均相同,小强任意摸出一个是红球的概率为()A.1B.C.D.5.(3分)如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°6.(3分)在△ABC中,∠A=∠B=∠C,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7.(3分)如图,在△ABC中,过顶点A的直线l与边BC相交于点D,当顶点A沿直线AD 向点D运动,且越过点D后逐渐远离D,在这一运动过程中,△ABC的面积的变化情况是()A.由大变小B.由小变大C.先由大变小,后由小变大D.先由小变大,后由大变小8.(3分)如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.9.(3分)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段AD是△ABC的BC边上的高线B.线段AD是△ABC的AC边上的高线C.线段CD是△ABC的AC边上的高线D.线段CD是△ABC的AB边上的高线10.(3分)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD 于点E.若AB=6,AD=8,那么点E到BD的距离为()A.B.C.D.二、填空题(每小题3分,共6题,合计18分)11.(3分)若2x=3,2y=5,则2x+y=.12.(3分)△ABC的三边a,b,c满足(3﹣a)2+|7﹣b|=0且c为偶数,则△ABC的周长为.13.(3分)长方形的周长为24cm,其中一边长为x(cm),面积为y(cm2),则y与x的关系可表示为.14.(3分)如图,点D是△ABC边BC上任意一点,点E,F分别是线段AD,CE的中点,若△ABC的面积是12,则△BEF的面积是.15.(3分)如图,在△ABC中,∠ACB=90°,AC=BC,点P在斜边AB上,以PC为直角边作等腰直角三角形PCQ,∠PCQ=90°,则PA2,PB2,PC2三者之间的数量关系是.16.(3分)如图,在△ABC中,∠BAC=45°,点D是BC边上一点,连接AD,M,N是线段AD上两点,AM=8,AN=15,点P,Q分别是AB,AC边上的动点,连接PM,PQ,NQ,则PM+PQ+NQ的最小值为.三、解答题(共7题,合计52分)17.(12分)(1)(﹣1)2023+()﹣2﹣(3.14﹣π)0;(2)(﹣2a3)2•a3+(﹣3a)3•a6﹣(4a3)3;(3)(m+2n+1)(m﹣2n﹣1).18.(5分)先化简,再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]+2x,其中x=﹣2,y=.19.(6分)如图,已知△ABC,CA=CB,点D在BC的延长线上.请用尺规作图法,求作直线CP,使CP∥AB.(保留作图痕迹,不写作法)20.(6分)如图,在四边形ABCD中,AD∥BC,∠B=80°,AE平分∠BAD交BC于点E,∠BCD=50°.求证:AE∥DC.21.(6分)电影《长空之王》上映,好评不断,小明和小颖都想去观看这部电影,但只有一张电影票,于是他们决定通过摸牌游戏决定胜负,获胜者去看电影,游戏规则如下:现有一副去掉大、小王的扑克牌,小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A,且牌面的大小与花色无关).如果小明已经摸到的牌面为5,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率是多少?22.(7分)“美好”书店出租图书的收费标准如下:3本及以下每月收费8元,超过3本的部分每本每月收1.6元.(1)写出每月租书费用y(元)与出租图书的数量x(本)之间的关系式(其中x>3).(2)小苏这个月租了5本书,应付多少钱?(3)如果小灯这个月租书花费16元,那么他租了多少本书?23.(10分)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:如图1,试探索垂美四边形ABCD两组对边AB、CD与BC、AD之间的数量关系并说明理由.(3)问题解决:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作等腰直角三角形ACE和等腰直角三角形ABD,使得∠BAD=∠CAE=90°,AB=AD,AC=AE,连接CD,BE,DE,已知BC=3,AC=4,求DE2的值.2022-2023学年陕西师大附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共10题,合计30分)1.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000034=3.4×10﹣10,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】分别根据完全平方公式,幂的乘方与积的乘方法则及单项式乘以单项式的法则对各选项进行判断即可.【解答】解:A、3x2•2x2y=6x4y,原计算错误,不符合题意;B、(2x)3•(﹣5x2y)=﹣40x5y,原计算错误,不符合题意;C、(x﹣y)3=﹣(y﹣x)3,正确,符合题意;D、(m+n)2=m2+n2+2mn,原计算错误,不符合题意.故选:C.【点评】本题考查的是完全平方公式,幂的乘方与积的乘方法则及单项式乘以单项式,熟知以上知识是解题的关键.4.【分析】用红球的个数除以球的总个数即可求得摸到红球的概率.【解答】解:∵口袋中装有3个红球,5个白球,2个黑球,它们除颜色外都相同,∴从中任意摸出一个球,摸到红球的概率为:.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.【分析】由AE∥BD,根据两直线平行,同位角相等,即可求得∠CBD的度数,又由对顶角相等,即可得∠CDB的度数,由三角形内角和定理即可求得∠C的度数.【解答】解:∵AE∥BD,∴∠CBD=∠1=120°,∵∠BDC=∠2=40°,∠C+∠CBD+∠CDB=180°,∴∠C=20°.故选:B.【点评】此题考查了平行线的性质与三角形内角和定理.注意两直线平行,同位角相等.6.【分析】根据三角形的内角和是180°得出.【解答】解:设∠A=x°,则∠B=3x°,∠C=5x°.由∠A+∠B+∠C=180°,得:x+3x+5x=180,所以x=20,故∠C=20°×5=100°,∴△ABC是钝角三角形.故选:B.【点评】①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.7.【分析】设点A到BC的距离为h,从而可得△ABC的面积=BC•h,然后根据题意可得:在A点的运动过程中,BC的长度不变,点A到BC的距离h先变小,然后变大,即可解答.【解答】解:设点A到BC的距离为h,∴△ABC的面积=BC•h,由题意得:在A点的运动过程中,BC的长度不变,点A到BC的距离h先变小,然后变大,∴△ABC的面积的变化情况是先由大变小,后由小变大,【点评】本题考查了三角形的面积,熟练掌握三角形的面积公式是解题的关键.8.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:如图所示:S△ABC=×BC×AE=×BD×AC,∵AE=4,AC==5,BC=4即×4×4=×5×BD,解得:BD=.故选:C.【点评】本题主要考查了勾股定理的知识,解题的关键是利用勾股定理求出AC的长,此题难度一般.9.【分析】根据三角形的高的概念判断即可.【解答】解:线段AD不是△ABC的边上的高线,故选项A、B说法错误,不符合题意;线段CD是△ABC的AB边上的高线,故选项C说法错误,不符合题意,选项D说法正确,符合题意;故选:D.【点评】本题考查的是三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.10.【分析】解法一:由勾股定理可求得BD=10,由折叠可知∠CBD=∠C′BD,由平行线的性质可得∠EDB=∠CBD,进而得到∠EDB=∠EBD,BE=DE,设AE=x,则BE =DE=8﹣x,在Rt△ABE中,利用勾股定理建立方程求得x=,则AE=,DE=,过点E作EF⊥BD于点F,由等腰三角形三线合一性质得DF==5,在Rt△DEF 中,利用勾股定理求出EF的长即可;解法二:过点E作EF⊥BD于点F,由勾股定理可求得BD=10,由折叠可知∠CBD=∠C′BD,由平行线的性质可得∠EDB=∠CBD,进而得到∠EDB=∠EBD,BE=DE,由等腰三角形三线合一性质得DF==5,易得△DEF∽△DBA,利用相似三角形的性【解答】解:解法一:∵四边形ABCD为矩形,∴∠A=90°,AD∥BC,在Rt△ABD中,==10,∵将长方形ABCD沿着对角线BD折叠,使点C落在C′处,∴∠CBD=∠C′BD,∵AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠C′BD,即∠EDB=∠EBD,∴BE=DE,设AE=x,则BE=DE=AD﹣AE=8﹣x,在Rt△ABE中,AE2+AB2=BE2,∴x2+62=(8﹣x)2,解得:x=,∴AE=,DE=,如图,过点E作EF⊥BD于点F,∵BE=DE,∴DF==,在Rt△DEF中,==,∴点E到BD的距离为.解法二:如图,过点E作EF⊥BD于点F,∵四边形ABCD为矩形,∴∠A=90°,AD∥BC,在Rt△ABD中,==10,∵将长方形ABCD沿着对角线BD折叠,使点C落在C′处,∴∠CBD=∠C′BD,∵AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠C′BD,即∠EDB=∠EBD,∴BE=DE,∵EF⊥BD,∴DF=BD=5,∵∠FDE=∠ADB,∠EFD=∠BAD,∴△DEF∽△DBA,∴,即,∴EF=,∴点E到BD的距离为.故选:A.【点评】本题主要考查矩形的性质、折叠的性质、等腰三角形的判定与性质、勾股定理,熟练掌握折叠的性质是解题关键.二、填空题(每小题3分,共6题,合计18分)11.【分析】由2x=3,2y=5,根据同底数幂的乘法可得2x+y=2x•2y,继而可求得答案.【解答】解:∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.【点评】此题考查了同底数幂的乘法.此题比较简单,注意掌握公式的逆运算.12.【分析】运用非负数和三角形三边关系确定出a,b,c的值,再代入计算.【解答】解:由题意得,,解得,∴a+b=10,b﹣a=4,∴4<c<10,∵c为偶数,∴c=6或c=8,当c=6时,a+b+c=3+7+6=16;当c=8时,a+b+c=3+7+8=18,故答案为:16或18.【点评】此题考查了非负数和三角形三边关系的应用能力,关键是能准确理解并运用以上知识进行求解.13.【分析】直接利用长方形面积求法得出答案.【解答】解:∵长方形的周长为24cm,其中一边长为xcm,∴另一边长为:(12﹣x)cm,故y=(12﹣x)x=﹣x2+12x.故答案为:y=﹣x2+12x.【点评】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.14.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵点E是AD的中点,=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×12=6,∴S△ABE=S△ABC=×12=6,∴S△BCE∵点F是CE的中点,=S△BCE=×6=3.∴S△BEF故答案为:3.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.15.【分析】连接BQ,由“SAS”可证△ACP≌△BCQ,可得∠CAP=∠CBQ=45°,AP=BQ,可得∠ABQ=90°,由勾股定理可得PB2+BQ2=PQ2,即可求解.【解答】解:如图,连接BQ,∵∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,∵△PCQ是等腰直角三角形,∴PC=CQ,∠PCQ=90°=∠ACB,PQ2=2CP2,∴∠ACP=∠BCQ,又∵AC=BC,∴△ACP≌△BCQ(SAS),∴∠CAP=∠CBQ=45°,AP=BQ,∴∠ABQ=90°,∴PB2+BQ2=PQ2,∴PB2+AP2=2CP2,故答案为:PB2+AP2=2CP2.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,证明∠ABQ=90°是本题的关键.16.【分析】分别作点M关于直线AB的对称点M′,作点N关于直线AC的对称点N′,连接M′N′,可用发现PM+PQ+NQ的最小值为M′N′的长,再根据已知条件,利用勾股定理求出M′N′的长即可.【解答】解:作点M关于直线AB的对称点M′,作点N关于直线AC的对称点N′,作射线AM′,AN′,则∠BAM′=∠BAD,∠CAN′=∠CAD,PM′=PM,QN′=QN,AM′=AM=8,AN′=AN=15,∴PM+PQ+NQ=PM′+PQ+QN′,要使PM+PQ+NQ最小,只要M′,P,Q,N′在一条直线上即可,连接M′N′交AB,AC于点P′,Q′,PM+PQ+NQ最小时P,Q位于P′,Q′处,PM+PQ+NQ最小值为M′N′的长,∵∠BAC=45°,∴∠M′AN′=90°,∴M′N′=,故答案为:17.【点评】本题考查轴对称﹣最短路径问题,解答时还涉及勾股定理,利用轴对称找出最短路径的线段是解题的关键.三、解答题(共7题,合计52分)17.【分析】(1)利用有理数的乘方法则,负整数指数幂,零指数幂进行计算即可;(2)利用积的乘方,同底数幂乘法法则进行计算即可;(3)利用完全平方公式和平方差公式进行计算即可.【解答】解:(1)原式=﹣1+4﹣1=3﹣1=2;(2)原式=4a6•a3﹣27a3•a6﹣64a9=4a9﹣27a9﹣64a9=﹣87a9;(3)原式=[m+(2n+1)][m﹣(2n+1)]=m2﹣(2n+1)2=m2﹣(4n2+4n+1)=m2﹣4n2﹣4n﹣1.【点评】本题考查实数及整式的与运算,熟练掌握相关运算法则是解题的关键.18.【分析】先根据完全平方公式和多项式乘多项式进行计算,再合并同类项,最后代入求出答案即可.【解答】解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]+2x=x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2+2x=﹣2x2+2xy+2x,当x=﹣2,y=时,原式=﹣2×(﹣2)2+2×(﹣2)×+2×(﹣2)=﹣8﹣2﹣4=﹣14.【点评】本题考查了整式的化简与求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.19.【分析】根据“同位角相等,两直线平行”进行作图.【解答】解:如下图:CP即为所求.【点评】本题考查了复杂作图,掌握平行线的判定定理是解题的关键.20.【分析】根据两直线平行,同旁内角互补求出∠BAD,根据角平分线的定义求出∠DAE,根据平行线的性质求出∠AEB,得到∠AEB=∠BCD,根据平行线的判定定理证明结论.【解答】证明:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=80°,∴∠BAD=100°,∵AE平分∠BAD,∴∠DAE=50°,∵AD∥BC,∴∠AEB=∠DAE=50°,∵∠BCD=50°,∴∠AEB=∠BCD,∴AE∥DC.【点评】本题考查的是平行线的判定和性质、角平分线的定义,掌握平行线的性质是解题的关键.21.【分析】小明已经摸到的牌面为5,而小于5的结果为4×3,大于5的结果数为4×9,然后根据概率公式求解.【解答】解:由题意知,小明获胜的概率为=,小颖获胜的概率为=.【点评】本题主要考查概率公式,解题的关键是根据题意找到所有等可能结果及符合条件的结果数.22.【分析】(1)根据3km本内(含3本)收费8元;超过3本的部分每本每月收1.6元,即可得出y=8+(x﹣3)×1.6,整理即可;(2)根据小苏这个月租了5本书,即x=5,求y即可;(3)根据小灯这个月租书花费16元,即y=16,求出x即可.【解答】解:(1)根据题意可得:y=8+(x﹣3)×1.6,∴y=1.6x+3.2(x≥3);(2)x=5时,y=1.6x+3.2=1.6×5+3.2=11.2;答:小苏这个月租了5本书,应付11.2元;(3)y=16时,16=1.6x+3.2,解得x=8,答:他租了8本书.【点评】本题主要考查了一次函数的应用,正确写出函数关系式是解题关键.23.【分析】(1)根据垂直平分线的判定即可解决问题;(2)根据垂直的定义和勾股定理即可求解;(3)设CD与BE交于点F,AC与BE交于点G,由等角加同角相等可得∠BAE=∠DAC,则可通过SAS证明△ABE≌△ADC,得到∠AEB=∠ACD,由等角加等角相等可得∠AEG+∠AGE=90°,∠FCG+∠CGF=90°,于是可得∠CFG=90°,则四边形BCED为垂美四边形,利用勾股定理和等腰三角形的性质求得AB=5,CE=,BD=,利用(2)中的结论可得DE2=CE2+BD2﹣BC2,代入计算即可求解.【解答】解:(1)四边形ABCD是垂美四边形,理由如下:如图,连接AC,连接BD交AC于点O,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴AC是线段BD的垂直平分线,∴AC⊥BD,∴四边形ABCD是垂美四边形;(2)AB2+CD2=AD2+BC2,理由如下:∵AC⊥BD,∴∠AOB=∠BOC=∠COD=∠AOD=90°,由勾股定理得:AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2;(3)如图,设CD与BE交于点F,AC与BE交于点G,∵∠BAD=∠CAE=90°,∴∠CAE+BAC=∠BAD+∠BAC,即∠BAE=∠DAC,在△ABE和△ADC,,∴△ABE≌△ADC(SAS),∴∠AEB=∠ACD,∵∠CAE=90°,∴∠AEG+∠AGE=90°,∴∠FCG+∠CGF=90°,∴∠CFG=90°,即CD⊥BE,∴四边形BCED为垂美四边形,∵BC=3,AC=4,∠ACB=90°,∴AB===5,∵△ACE和△ABD均为等腰直角三角形,∴CE=AC=,BD=AB=,由(2)可得,BC2+DE2=CE2+BD2,∴DE2=CE2+BD2﹣BC2==73.【点评】本题主要考查线段垂直平分线的性质、勾股定理、全等三角形的判定与性质,正确垂美四边形的定义,灵活运用勾股定理是解题关键。

西师大版七年级数学下册期末试卷及答案【完整版】

西师大版七年级数学下册期末试卷及答案【完整版】

西师大版七年级数学下册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A.0 B.1 C.2 D.37.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.6的相反数为()A.-6 B.6 C.16-D.169.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x3﹣4x=________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.若|a|=5,b=﹣2,且ab>0,则a+b=________.4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解不等式组:331213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩并在数轴上把解集表示出来.2.先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=1 23.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a2|b40++-=,点C的坐标为(0,3).(1)求a,b的值及S三角形ABC;(2)若点M在x轴上,且S三角形ACM =13S三角形ABC,试求点M的坐标.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、B6、B7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、20°.3、-74、205、2或2.56、2或-8三、解答题(本大题共6小题,共72分)1、−2<x≤1,数轴见解析2、4ab,﹣4.3、(1)9(2)(0,0)或(-4,0)4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年陕西省师大附中七年级(下)期末数学试卷一、选择题1.(3分)在8,,,1.030030003,中,无理数有()A.4个 B.3个 C.2个 D.1个2.(3分)在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作PQ∥BC,交AB于点P,交AC于点Q,若∠A=60°,则∠PEB+∠QEC=()A.50°B.60°C.70°D.80°3.(3分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率4.(3分)人的身高h随时间t的变化而变化,那么下列说法正确的是()A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量 D.h是自变量,t是因变量5.(3分)若一个直角三角形的三边长分别为a、b、c,已知a2=25,b2=144,则c2=()A.169 B.119 C.13或25 D.169或1196.(3分)以下说法合理的是()A.小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖C.不确定事件A发生的概率是0与1之间的一个常数D.某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是7.(3分)如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC8.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.9.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个10.(3分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDEF不可能四边都相等;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的有()A.①②③B.①③④C.①④⑤D.③④⑤二、填空题11.(3分)等腰三角形的顶角是80°,一腰上的高与底边的夹角是°.12.(3分)点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,且点Q在点P左边,则P、Q之间的距离为.13.(3分)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,若DE垂直平分AB,交AB于点E,则∠B=.14.(3分)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM ⊥l于点P,若∠1=50°,则∠2=°.15.(3分)已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为.16.(3分)若m2=(﹣2)2,n2=(﹣3)2,则mn=.17.(3分)如图,A村到公路l的距离AB为6km,C村到公路l的距离CD为2km,且BD的长为6km.现要在公路l上取一点P,使AP+CP的值最小,则这个最小值为.18.(3分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC为斜边AC为直角边,画第2个等腰直角三角形ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,以此类推,第n个等腰直角三角形的面积是.三、解答题19.计算:(1)解方程:2(1﹣2x)2=162;(2)化简:×(﹣)++;(3)化简:|3﹣π|++.20.尺规作图已知在Rt△ABC中,∠B=90°,请用尺规在边BC上找一点D,使得点D到A、C 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)21.如图,在△ABC中,∠BAC=90°,AB=AC,AM是过点A的任意一条直线,BD ⊥AM于点D,CE⊥AM于点E,求证:DE=BD﹣CE.22.点燃的蜡烛每分钟燃烧的长度一定,长为22cm的蜡烛,点燃10分钟,变短4cm,设点燃x分钟后,还剩ycm.(1)求y与x之间的关系式;(2)点燃30分钟后,蜡烛还剩多少?(3)此蜡烛几分钟能燃烧完?23.一个口袋中6个黑球,10个白球,这些球除了颜色外完全相同.充分搅匀后随机摸出一球,发现是黑球.(1)如果将这个黑球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个黑球不放回,再摸出一球,那么它是白球的概率是多少?24.如图1所示,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D在边AB上.(1)若DE经过点C,且AD=CD=BD,DF交AC于点G,求重叠部分(△DCG)的面积;(2)思考探究:“数学学习小组”的几位同学受到启发,保持(1)中的点D不动,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求△ADH的面积.2015-2016学年陕西省师大附中七年级(下)期末数学试卷参考答案与试题解析一、选择题1.(3分)在8,,,1.030030003,中,无理数有()A.4个 B.3个 C.2个 D.1个【解答】解:无理数有,,故选:C.2.(3分)在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作PQ∥BC,交AB于点P,交AC于点Q,若∠A=60°,则∠PEB+∠QEC=()A.50°B.60°C.70°D.80°【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠ABC和∠ACB的角平分线交于点E,∴∠PBE=∠EBC,∠QCE=∠BCE,∴∠CBE+∠BCE=60°,∵PQ∥BC,∴∠PEB=∠EBC,∠QEC=∠QCE,∴∠PEB+∠QEC=60°,故选:B.3.(3分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.4.(3分)人的身高h随时间t的变化而变化,那么下列说法正确的是()A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量 D.h是自变量,t是因变量【解答】解:因为人的身高h随时间t的变化而变化,所以t是自变量,h是因变量;故选:B.5.(3分)若一个直角三角形的三边长分别为a、b、c,已知a2=25,b2=144,则c2=()A.169 B.119 C.13或25 D.169或119【解答】解;当a,b为直角边时,c2=a2+b2=25+144=169,当a,c为直角边,b为斜边时,c2=b2﹣a2=144﹣25=119,故选:D.6.(3分)以下说法合理的是()A.小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖C.不确定事件A发生的概率是0与1之间的一个常数D.某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是【解答】解:A、小明做5次掷图钉的实验,发现3次钉尖朝上,由此他说钉尖朝上的概率是,不合理;B、某彩票的中奖概率是5%,那么如果买100张一定会有5张中奖,不合理;C、不确定事件A发生的概率是0与1之间的一个常数,合理;D、某射击运动员射击一次只有两种可能的结果:中靶和不中靶,所以它们发生的概率都是,不合理.故选:C.7.(3分)如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选:A.8.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选:B.9.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选:C.10.(3分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDEF不可能四边都相等;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的有()A.①②③B.①③④C.①④⑤D.③④⑤【解答】解:①连接CF,∵∠ACB=90°,AC=BC,∴∠A=45°,∵F是AB边上的中点,∴CF=AF=BF,CF⊥AB,∠ACF=∠BCF=45°,∴∠AFC=90°,∴∠A=∠BCF,在△ADF和△CEF中,∵,∴△ADF≌△CEF(SAS),∴DF=EF,∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC=90°,即∠DFE=90°,∴△DEF是等腰直角三角形;所以此结论正确;②当D、E分别为AC、BC中点时,四边形CDFE是正方形.如图2,∵E是BC的中点,F是AB边上的中点,∴EF是△ABC的中位线,∴EF∥AC,EF=AC=CD,∴四边形CDFE是平行四边形,∵CD=AC,CE=BC,AC=BC,∴CD=CE,∵∠C=90°,∴四边形CDFE是正方形,但已知点D、E分别在AC、BC边上运动,并不能一直保持D、E分别是AC、BC 的中点,所以四边形CDEF不可能四边都相等;所以此结论不正确;③由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4;所以此结论不正确;④∵△ADF≌△CEF,∴S=S△ADF△CEF=S△AFC.∴S四边形CDFE∴四边形CDFE的面积保持不变;所以此结论正确;⑤当△CDE面积最大时,此时△DEF的面积最小,∵∠C=90°,AC=BC=8,∴AB==8,∴AF=CF=4,=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=××﹣×4×4=16﹣8=8.此时S△CDE则结论正确的是①④⑤.故选:C.二、填空题11.(3分)等腰三角形的顶角是80°,一腰上的高与底边的夹角是40°.【解答】解:因为等腰三角形的顶角是80°,根据等腰三角形一腰上的高与底边的夹角等于顶角的一半得所求的角为40°.故答案为:40.12.(3分)点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,且点Q在点P左边,则P、Q之间的距离为5或1.【解答】解:∵点P在数轴上和原点相距2个单位,点Q在数轴上和原点相距3个单位,∴点P表示的数为±2,点Q表示的数为±3,又∵点Q在点P左边,∴点Q表示的数为﹣3.当点P表示的数为2时,PQ=2﹣(﹣3)=5;当点P表示的数为﹣2时,PQ=﹣2﹣(﹣3)=1.故答案为:5或1.13.(3分)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,若DE垂直平分AB,交AB于点E,则∠B=30°.【解答】解:∵DE垂直平分AB,∴AD=BD,∴∠B=∠DAB,∵∠CAB的平分线AD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴3∠B=90°,∴∠B=30°,故答案为:30°14.(3分)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM ⊥l于点P,若∠1=50°,则∠2=40°.【解答】解:∵直线a∥b,∴∠3=∠1=50°,又∵PM⊥l于点P,∴∠MPQ=90°,∴∠2=90°﹣∠3=90°﹣50°=40°.故答案是:40.15.(3分)已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为等腰直角三角形.【解答】解:∵|a2﹣b2﹣c2|+=0,∴a2﹣b2﹣c2=0,b﹣c=0,∴a2﹣b2=c2,b=c,∴△ABC的形状为等腰直角三角形,故答案为:等腰直角三角形.16.(3分)若m2=(﹣2)2,n2=(﹣3)2,则mn=±6.【解答】解:∵m2=(﹣2)2,n2=(﹣3)2,∴m=±2,n=±3,当m=2,n=3时,mn=6;当m=2,n=﹣3时,mn=﹣6;当m=﹣2,n=3时,mn=﹣6;当m=﹣2,n=﹣3时,mn=6;故答案为±6.17.(3分)如图,A村到公路l的距离AB为6km,C村到公路l的距离CD为2km,且BD的长为6km.现要在公路l上取一点P,使AP+CP的值最小,则这个最小值为10km.【解答】解:作点C关于直线BD的对称点C′,连接AC′交BD′于点P.∵AB=6km,CD=2km,BD=6km,∴AC′==10km.故答案为:10km.18.(3分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC为斜边AC为直角边,画第2个等腰直角三角形ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,以此类推,第n个等腰直角三角形的面积是2n﹣2.【解答】解:由勾股定理可知:AC2=2,AD2=4,AE2=8,AF2=16,故第n个等腰三角形的斜边的平方为:2n,设等腰三角形的直角边长为a;斜边长为c,∴由勾股定理可知:c2=2a2由三角形面积公式可知:a2=c2,∴第n个等腰三角形的面积为:×2n=2n﹣2故答案为:2n﹣2三、解答题19.计算:(1)解方程:2(1﹣2x)2=162;(2)化简:×(﹣)++;(3)化简:|3﹣π|++.【解答】解:(1)方程整理得:(1﹣2x)2=81,开方得:1﹣2x=9或1﹣2x=﹣9,解得:x=﹣4或x=5;(2)原式=×(﹣2)+4+=2;(3)原式=π﹣3+﹣1+4=π+.20.尺规作图已知在Rt△ABC中,∠B=90°,请用尺规在边BC上找一点D,使得点D到A、C 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)【解答】解:如图,点D为所作.21.如图,在△ABC中,∠BAC=90°,AB=AC,AM是过点A的任意一条直线,BD ⊥AM于点D,CE⊥AM于点E,求证:DE=BD﹣CE.【解答】证明:∵CE⊥AM,BD⊥AM,∴∠AEC=∠BDA=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,即∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴BD﹣CE=AE﹣AD=DE,即DE=BD﹣CE.22.点燃的蜡烛每分钟燃烧的长度一定,长为22cm的蜡烛,点燃10分钟,变短4cm,设点燃x分钟后,还剩ycm.(1)求y与x之间的关系式;(2)点燃30分钟后,蜡烛还剩多少?(3)此蜡烛几分钟能燃烧完?【解答】解:(1)由题意可得,y=22﹣(4÷10)×x=22﹣0.4x,即y与x之间的关系式是y=22﹣0.4x;(2)当x=30时,y=22﹣0.4×30=10,即点燃30分钟后,蜡烛还剩10cm;(3)令y=0,则0=22﹣0.4x,解得,x=55,即此蜡烛55分钟能燃烧完.23.一个口袋中6个黑球,10个白球,这些球除了颜色外完全相同.充分搅匀后随机摸出一球,发现是黑球.(1)如果将这个黑球放回,再摸出一球,那么它是白球的概率是多少?(2)如果这个黑球不放回,再摸出一球,那么它是白球的概率是多少?【解答】解:(1)如果将白球放回,再摸出一球P==;(摸到的球是白球)(2)如果这个黑球不放回,再摸出一球,有10个白球和5个黑球,再摸出一球P(摸到的球是白球)==.24.如图1所示,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D在边AB上.(1)若DE经过点C,且AD=CD=BD,DF交AC于点G,求重叠部分(△DCG)的面积;(2)思考探究:“数学学习小组”的几位同学受到启发,保持(1)中的点D不动,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求△ADH的面积.【解答】解:(1)∵∠ACB=90°,D是AB的中点,∴DC=DB=DA,∴∠B=∠DCB,又∵△ABC≌△FDE,∴∠FDE=∠B,∴∠FDE=∠DCB,∴DG∥BC,∴∠AGD=∠ACB=90°,∴DG⊥AC,又∵DC=DA,∴G是AC的中点,∴CG=AC=×8=4,DG=BC=×6=3,=×CG×DG=×4×3=6.∴S△DCG(2)如图2,∵△ABC≌△FDE,∴∠B=∠1,∵∠C=90°,ED⊥AB,∴∠A+∠B=90°,∠A+∠2=90°,∴∠B=∠2,∴∠1=∠2,∴GH=GD,∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD,∴AG=GH,∴点G为AH的中点,在Rt△ABC中,AB===10,∵D是AB中点,∴AD=AB=5,在△ADH与△ACB中,∵∠A=∠A,∠ADH=∠ACB=90°,∴△ADH∽△ACB,∴=,即=,∴DH=,=×DH×AD=××5=.∴S△ADH赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档