求函数值域的几种常见方法学生版
数学-值域的10种求法(学生版)

函数值域1基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.;当a<0时,值域为(2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为y y≥4ac−b24a.y y≤4ac−b24a.(3)y=k x(k≠0)的值域是y y≠0(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.2函数值域的求解方法方法归纳观察法根据最基本函数值域(如x2≥0,a x>0及函数的图像、性质、简单的计算、推理,凭观察能直接得到些简单的复合函数的值域.方法归纳配方法对于形如y=ax2+bx+c a≠0的值域问题可充分利用二次函数可配方的特点,结合二次函数的定义城求出函数的值域.方法归纳图像法(数形结合)根据所给数学式子的特征,构造合适的几何模型.方法归纳基本不等式法注意使用基本不等式的条件,即一正、二定、三相等.方法归纳换元法(代数换元与三角换元)分为三角换元法与代数换元法,对于形y=ax+b+cx+d的值城,可通过换元将原函数转化为二次型函数.方法归纳分离常数法对某些齐次分式型的函数进行常数化处理,使函数解析式简化内便于分析.方法归纳判别式法把函数解析式化为关于x的-元二次方程,利用一元二次方程的判别式求值域,一般地,形如y=Ax+博观而约取 厚积而薄发B ,ax 2+bx +c 或y =ax 2+bx +cd x 2+ex +f的函数值域问题可运用判别式法(注意x 的取值范围必须为实数集R ).方法归纳单调性法先确定函数在定义域(或它的子集)内的单调性,再求出值域.对于形如y =ax +b +cx +d 或y =ax +b +cx +d 的函数,当ac >0时可利用单调性法.方法归纳有界性法充分利用三角函数或一些代数表达式的有界性,求出值域.因为常出现反解出y 的表达式的过程,故又常称此为反解有界性法.方法归纳导数法先利用导数求出函数的极大值和极小值,再确定最大(小)值,从而求出函数的值域.1.例题精讲题型一:观察法1函数y =1x +1-1的值域是( )A.-∞,-1B.+1,+∞C.-∞,-1 ∪-1,+∞D.-∞,+∞2下列函数中,值域为0,+∞ 的是( )A.y =x 2B.y =2xC.y =2xD.y =log 2x3下列函数中,函数值域为(0,+∞)的是( )A.y =(x +1)2,x ∈(0,+∞) B.y =log 2x ,x ∈(1,+∞)C.y =2x -1D.y =2x -1题型二:配方法1函数的y =-x 2-6x -5值域为()A.0,+∞B.0,2C.2,+∞D.2,+∞2函数y =f x 的图象是如图所示的折线段OAB ,其中A 1,2 ,B 3,0 ,函数g x =x ⋅f x ,那么函数g x 的值域为()Ox y 213ABA.0,2B.0,94C.0,32D.0,43已知正实数a ,b ,c 满足2a +b =1,abc +1=2c ,则c 的最大值为()A.12B.23C.815D.2题型三:图像法(数形结合)数形结合:即作出函数的图像,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域。
高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种)一、 观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例:求函数()x 323y -+=的值域。
点拨:根据算术平方根的性质,先求出()x 3-2的值域。
解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。
点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。
练习:求函数()5x 0x y ≤≤=的值域。
(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例:求函数2x 1x y ++=的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数x-x -xx 10101010y ++=的值域。
(答案:{}1y 1-y |y 或)。
三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。
例:求函数()2x x-y 2++=的值域。
点拨:将被开方数配方成平方数,利用二次函数的值求。
解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。
此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:x 4-155-x 2y +=的值域。
(答案:{}3y |y ≤)四、判别式法:若可化为关于某变量的二次方程的分式函数或无理数,可用判别式法求函数的值域。
函数值域的常见求法8大题型(解析版)

函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。
函数求值域的15种方法

函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。
它也可以用来判断函数是否具有极值以及极值在哪里。
求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。
1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。
2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。
3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。
4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。
5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。
6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。
7. 不等式法:分析函数的不等式,来求出函数的定义域。
8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。
9. 极值法:通过分析函数的极值,找出函数的值域。
10. 极限法:通过求解函数的极限,来确定函数的值域。
11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。
12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。
13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。
14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。
15. 图解法:通过对函数的图解,计算出函数所具有的定义域。
以上就是15种求解函数域的方法。
上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。
根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。
求函数值域常见的五种方法

求函数值域常见的五种方法求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.一、 判别式法思路:将函数式整理成一元二次方程的形式,借用判别式求值域.例1 求函数的4312--=x x y 值域. 解:原式整理成01432=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,∴0)14(492≥++=∆y y y .解得0≥y 或254-≤y . 当 254-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]254--+∞⋃∞,(. 二、 配方法例2 求函数x x y 21-+=的值域. 解:由已知得2121)21(21+-+--=x x y 1)121(212+---=x∴所求函数的值域是]1-,(∞. 三、 单调性法思路:利用函数的图象和性质求解.例3 当)0,21(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.解:由已知得)1lg(2x y -=, ∵)0,21(-∈x ,∴)41,0(2∈x . 又2x -在)0,21(-∈x 上递增, ∴)1,43(12∈-x . 又u y lg =在)1,43(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,43(lg . 四、 反函数法例4 求函数xx y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得011≥+-=y y x , ∴1≥y 或1-<y .∴函数的值域为),1[)1,(+∞⋃--∞.五、 换元法例5 求函数x x y --=1的值域。
解:令x t -=1,则)0(12≥-=t t x ,那么45)21(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .∴原函数的值域是]1,(-∞.。
求值域的十种方法

求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例 1 .求函数的值域。
【解析】∵ ,∴ ,∴函数的值域为。
【练习】1 .求下列函数的值域:① ;② ;③ ;,。
【参考答案】① ;② ;③ ;。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如的函数的值域问题,均可使用配方法。
例 2 .求函数()的值域。
【解析】。
∵ ,∴ ,∴ ,∴ ,∴ 。
∴函数()的值域为。
例 3 .求函数的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:配方得:利用二次函数的相关知识得,从而得出:。
说明:在求解值域 ( 最值 ) 时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:。
例 4 .若,试求的最大值。
【分析与解】本题可看成第一象限内动点在直线上滑动时函数的最大值。
利用两点,确定一条直线,作出图象易得:, y=1 时,取最大值。
【练习】2 .求下列函数的最大值、最小值与值域:① ;② ;③ ;④ ;,;。
【参考答案】① ;② ;③ ;④ ;;三.反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。
适用类型:分子、分母只含有一次项的函数 ( 即有理分式一次型 ) ,也可用于其它易反解出自变量的函数类型。
例 5 .求函数的值域。
分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出,从而便于求出反函数。
反解得,故函数的值域为。
【练习】1 .求函数的值域。
2 .求函数,的值域。
【参考答案】 1 .;。
四.分离变量法:适用类型 1 :分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例 6 :求函数的值域。
解:∵ ,∵ ,∴ ,∴函数的值域为。
适用类型 2 :分式且分子、分母中有相似的项,通过该方法可将原函数转化为为( 常数 ) 的形式。
例 7 :求函数的值域。
求函数值域的十种方法

求函数值域的常用方法函数的值域是指函数能够取到的所有可能的输出值。
确定一个函数的值域有很多常用的方法,下面将介绍其中一些常用的方法。
1.求极限。
当自变量趋于无穷大或无穷小时,函数的极限可以帮助确定函数的值域。
如果一个函数的极限存在,并且随着自变量的增大或减小而无限接近一些确定的值,那么该函数的值域一定包含该极限值。
2.分析函数的定义域。
函数的定义域是指函数的自变量的取值范围。
如果函数在定义域上是连续的,并且没有间断点,那么函数的值域可以通过分析函数在定义域上的取值范围来确定。
3.分析函数的图像。
函数的图像是函数在坐标平面上的表示。
通过观察函数的图像可以初步估计函数的值域。
如果函数的图像在一些区间上单调递增或递减,并且没有振荡现象,那么该函数的值域将是该区间的闭区间。
4.求函数的导数。
函数的导数描述了函数的变化趋势。
通过求函数的导数可以确定函数的极值点,从而确定函数的值域。
当函数的导数在一些点处为零,并且在该点的左侧和右侧具有不同的符号,那么该点就是函数的极值点。
函数在极值点取到最大值或最小值时,该值一定属于函数的值域。
5.利用奇偶性。
一些函数具有奇偶性,即在定义域内满足一定的对称性。
如果函数是偶函数,则函数的值域在对称轴上具有对称性,可以根据对称轴的函数值确定其值域。
如果函数是奇函数,则函数的值域在原点上具有对称性。
6.利用函数的周期性。
一些函数具有周期性,即在定义域内满足重复性。
如果函数是周期函数,那么其值域也是周期性的,可以通过分析一个周期内的函数值来确定其值域。
7.求函数的反函数。
有些函数存在反函数,通过求反函数可以确定函数的值域。
反函数的定义域是原函数的值域,反函数的值域是原函数的定义域。
8.利用已知的数学性质。
根据一些已知的数学性质来确定函数的值域,例如三角函数的取值范围是[-1,1],对数函数的定义域是正实数,指数函数的值域是正实数等。
以上是常用的一些方法来确定函数的值域。
在实际问题中,可以结合多种方法来确定函数的值域。
求函数值域的解题方法总结(16种)

求函数值域的16种解题方法在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
一、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例:求函数()x 323y -+=的值域。
点拨:根据算术平方根的性质,先求出()x 3-2的值域。
解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。
点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。
练习:求函数()5x 0x y ≤≤=的值域。
(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例:求函数2x 1x y ++=的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数2x 1x y ++=的反函数为:yy --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数x-x -xx 10101010y ++=的值域。
(答案:{}1y 1-y |y 或)。
三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。
例:求函数()2x x-y 2++=的值域。
点拨:将被开方数配方成平方数,利用二次函数的值求。
解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。
此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛ ()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y 点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数值域的几种常见方法
1.直接法:利用常见函数的值域来求。
例1.求下列函数的值域
① y=3x+2 (-1≤x ≤1) ②x x f -+=42)( ③1y x =-
2.配方法:二次函数在给定区间上的值域(最值)。
例2. 求下列函数的最大值、最小值与值域:
①142+-=x x y ; ②]4,3[,142∈+-=x x x y ; ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;
【练习】求函数242(14)y x x x =-+-≤≤的值域. 【练习】求函数21y x x =++的值域 【练习】求函数2432y x x =-+-的值域
3.判别式法: 例3.求函数y=1
122+++-x x x x 值域 【练习】求函数2
34x y x =+的最值. 【练习】利用判别式方法求函数222231
x x y x x -+=-+的值域. 4.换元法
例4.求函数x x y -+=142的值域
【练习】求函数25154y x x =-+-的值域. 【练习】求函数21y x x =--的值域。
5.分离常数法
【例】求下列函数的值域:(1)21x y x +=+ (2)2211
x y x -=+.
【练习】求函数5142
x y x -=
+的值域
【练习】求函数6
6522-++-=x x x x y 的值域
6.分段函数
例6.求函数y=|x+1|+|x-2|的值域.
【练习】函数222(03)()6(20)x x x f x x x x ⎧-≤≤⎪=⎨+-≤≤⎪⎩
的值域是( ) A .R B .[
)9,-+∞ C .[]8,1- D .[]9,1-。